SUPPORTING INFORMATION:

α, α' -Dihydroxyketone formation using aromatic and

heteroaromatic aldehydes with evolved transketolase

enzymes

James L. Galman,^a David Steadman,^a Sarah Bacon,^b Phattaraporn Morris,^c Mark E. B. Smith,^a John Ward,^b Paul A. Dalby^c and Helen C. Hailes^{*a}

^a Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK. Fax:+44 (0)20 7679 7463; Tel: :+44 (0)20 7679 4654; E-mail: <u>h.c.hailes@ucl.ac.uk</u> ^b Research Department of Structural & Molecular Biology, University College London, Gower Street, London WC1E

6BT, UK

Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK.

General methods

Unless otherwise noted, solvents and reagents were reagent grade from commercial suppliers (Sigma-Aldrich) and used without further purification. Dry CH₂Cl₂ was obtained using anhydrous alumina columns.¹ All moisture-sensitive reactions were performed under a nitrogen or argon atmosphere using oven-dried glassware. Reactions were monitored by TLC on Kieselgel 60 F₂₅₄ plates with detection by UV, potassium permanganate and phosphomolybdic acid (PMA) [PMA hydrate (12 g) and ethanol (250 mL)] stains. Flash column chromatography was carried out using silica gel (particle size 40-63 µm). ¹H NMR and ¹³C NMR spectra were recorded at the field indicated using Bruker AMX300 MHz, AMX400 Avance-500 MHz and Avance-600 MHz machines. Coupling constants are measured in Hertz (Hz) and unless otherwise specified, NMR spectra were recorded at 298 K. Mass spectra were recorded on a Thermo Finnegan MAT 900XP and Micro Mass Quattro LC electrospray mass spectrometers VG ZAB 2SE. Infrared spectra were recorded on a Shimadzu FTIR-8700 and Perkin Elmer Spectrum 100 FTIR spectrometer. Optical rotations were recorded on a Perkin Elmer model 343 polarimeter at 589 nm, quoted in deg cm² g⁻¹ and conc (c) in g/100 mL. Chiral HPLC analysis was performed on a Varian Prostar instrument equipped with Chiracel OD or Chiralpak AD chiral columns (Daicel; Chiral Technologies Europe, France) $25 \text{ cm} \times 0.46 \text{ cm}$.

Lithium hydroxypyruvate was synthesised as previously described.² 1,3-dihydroxy-1phenylpropan-2-one **3a** was prepared as previously described.³

Synthesis of racemic α,α' -dihydroxyketones. The corresponding aldehyde 2b–2f (1.00 mmol) was added to a solution of Li-1 (110 mg, 1.00 mmol) and *N*-methylmorpholine (110 µL, 1.00 mmol) in water (20 mL) at pH 8 (adjusted with 10% HCl). The reaction was stirred for 24–48 h at rt and monitored by TLC analysis. Upon concentration *in vacuo*, the crude material was dry loaded and purified using flash silica chromatography.

Chiral HPLC analysis of 3a, 3d-f to determine *ees.* Compounds 3d and 3e were monobenzoylated (dibenzoylated compounds were not separable by chiral HPLC columns used) and the products analysed by chiral HPLC to determine *ees.*⁴ Ketodiols 3a and 3f were dibenzoylated for chiral HPLC analysis.⁴ HPLC analysis for 3a, 3d and 3e was carried out using a Chiralcel OD column, and for 3f on a Chiralpak AD column, and the hexane:2-propanol solvent system given.

1,3-Dihydroxy-1-phenylpropan-2-one³ (**3a**). Racemic **3a** was dibenzoylated and HPLC analysis of the product (82:18, 1.0 mL min⁻¹) gave retention times of 10.5 min (*R*-isomer) and 13.4 min (*S*-isomer).

1-Furan-2-yl-1,3-dihydroxypropan-2-one (3b). The reaction was carried out for 48 h and the product purified using flash silica chromatography (EtOAc:hexane, 1:1) to give **3b** as a colorless oil (7 mg, 5%); $\nu_{max}(neat)/cm^{-1}$ 3391, 1708; ¹H NMR (300 MHz; CDCl₃) δ 3.39 (2H, s, OH), 4.28 (1H, d, *J* 19.5, CHHOH), 4.43 (1H, d, *J* 19.5, CHHOH), 5.30 (1H, s, HOCH), 6.35–6.47 (2H, m), 7.41 (1H, m); ¹³C NMR (125 MHz; CDCl₃) δ 66.1 (*C*H₂), 71.0 (*C*HOH), 110.5, 111.0, 143.6, 149.6 (*C*CHOH), 206.9, (*C*=O); *m/z* (HRCI) found MH⁺ 157.04964. C₇H₉O₄ requires 157.05008.

1,3-Dihydroxy-1-(thiophen-2-yl)propan-2-one (3c). The reaction was carried out for 48 h and the product purified using flash silica chromatography (EtOAc:hexane, 1:1) to give **3c** as a brown oil (8 mg, 5%); $v_{max}(neat)/cm^{-1}$ 3391, 1708, 694; ¹H NMR (500 MHz; CDCl₃) δ 3.86 (1H, s, OH), 4.36 (1H, d, *J* 19.5, CHHOH), 4.42 (1H, d, *J* 19.5, CHHOH), 5.52 (1H, s, HOCH), 7.01–7.10 (2H, m), 7.35 (1H, m); ¹³C NMR (125 MHz; CDCl₃) δ 65.2 (CH₂), 73.1 (CHO), 126.6, 127.1, 127.5, 140.1, 207.8, (C=O); *m/z* (HRCI) found M⁺ 173.02695. C₇H₉O₃S requires 173.02724.

1,3-Dihydroxy-4-phenylbutan-2-one⁵ **(3d).** The reaction was carried out for 48 h and the product purified using flash silica chromatography (EtOAc:hexane, 1:1) to give **3d** as a white solid (27 mg, 15%); M.p. 122–130 °C (EtOAc:hexane); $v_{max}(neat)/cm^{-1}$ 3262, 2966–2883, 1720; ¹H NMR (300 MHz; CDCl₃) δ 2.85 (1H, dd, *J* 14.0 and 7.9, CH*H*Ph) 3.08 (1H, dd, *J* 14.0 and 4.6, C*H*HPh), 4.28 (1H, d, *J* 18.0, CH*H*OH), 4.38 (1H, d, *J* 18.0, CH*H*OH), 4.47 (1H, m, C*H*OH), 7.18–7.34 (5H, m, Ar); ¹³C NMR (125 MHz; CDCl₃) δ 40.4 (*C*H₂Ph), 66.3 (*C*H₂OH), 76.1 (*C*HOH), 127.4, 128.7, 129.3, 135.6, 211.2 (*C*=O); *m/z* (FTMS) found [2M+Na]⁺ 383.1454. C₂₀H₂₄O₆Na requires 383.1471. Racemic **3d** was monobenzoylated and HPLC analysis of the product (97:3, 0.8 mL min⁻¹) gave retention times of 45.2 min (3*R*-isomer) and 57.0 min (3*S*-isomer).

1,3-Dihydroxy-4-phenyl-pentan-2-one (3e). The reaction was carried out for 48 h and the product purified using flash silica chromatography (EtOAc:hexane, 1:1) to give **3e** as a white solid (25 mg, 13%); M.p. 120–130 °C (EtOAc:hexane); $v_{max}(neat)/cm^{-1}$ 3407, 2925–2855, 1720; **Isomer 1** ¹H NMR (300 MHz; CDCl₃) δ 1.27 (3H, d, *J* 7.1, *CH*₃), 3.20 (1H, m, *CH*CH₃), 4.19 (1H, d, *J* 19.8, *CH*HOH), 4.27 (1H, d, *J* 19.8, *CH*HOH), 4.33 (1H, d, *J* 4.5, *CH*OH), 7.21–7.37 (5H, m, Ar); ¹³C NMR (125 MHz; CDCl₃) δ 14.3 (*C*H₃), 43.6 (*C*HCH₃), 127.4, 127.7, 129.0, 142.0, 211.5 (*C*=O); **Isomer 2** ¹H NMR (300 MHz; CDCl₃) δ 1.42 (3H, d, *J* 7.1, *CH*₃) 3.24 (1H, m, *CH*CH₃), 4.06 (1H, d, *J* 19.5, *CH*HOH), 4.33–4.40 (2H, m, *CH*HOH and *CH*OH), 7.21–7.37 (5H, m, Ar); *m/z* (FTMS) found MNa⁺ 217.0836. C₁₁H₁₄O₃Na requires 217.0835. The **3e** isomers were monobenzoylated and HPLC analysis of the product (97:3, 0.8 mL min⁻¹) gave retention times of approximately 20.0 min, 21.4 min, 24.3 min, and 26.2 min. Aldehyde 2*R*-**2e** was synthesised as previously described.⁶ When used in the biomimetic reaction above, followed by monobenzoylation, HPLC analysis revealed that

the peaks at retention times of 20.0 min and 26.2 min (peaks 1 and 4) were enhanced significantly indicating these corresponded to 3e-(3RS,4R).

1,3-Dihydroxy-1-(3-hydroxyphenyl)propan-2-one (3f). The reaction was carried out for 48 h and the product purified using flash silica chromatography (EtOAc:hexane, 1:1) to give **3f** as a colorless oil (10 mg, 4%). $v_{max}(neat)/cm^{-1}$ 3407, 2925–2855, 1720; ¹H NMR (600 MHz; CD₃OD) δ 4.32 (1H, d, *J* 19.0, *CH*HOH), 4.37 (1H, d, *J* 19.0, *CHHOH*), 5.18 (1H, s, *CHOH*), 6.73 (1H, dd, *J* 8.1 and 1.8, 4'-H), 6.84 (1H, br s, 2'-H), 6.87 (1H, d, *J* 7.7, 6'-H), 7.18 (1H, app t, *J* 7.9, 5'-H); ¹³C NMR (125 MHz; CD₃OD) δ 65.0 (CH₂OH), 77.1 (CHOH), 114.5, 119.9, 123.0, 131.0, 137.7, 156.5, 211.0 (*C*=O); *m/z* (FTMS) found MH⁺ 183.06632. C₉H₁₁O₄ requires 183.06730. Racemic **3f** was dibenzoylated and HPLC analysis of the product (80:20, 1.0 mL min⁻¹) gave retention times of 12.9 min (3*S*-isomer) and 17.1 min (3*R*-isomer).

Mutant F434A. Site-directed mutagenesis for the F434A TK mutant was performed using the Quikchange kit (Stratagene, Netherlands), forward (5'-CGTACACACCTCCACCGCCCTGATGTTCGTGG-3') and reverse (5'-CCACGAACATCAGGGCGGTGGAAGGTGTACG-3') primers,⁷ and plasmid template pQR706 which harbours the *E. coli tkta* gene complete with its natural promoter. The resulting pQR780 plasmid was transformed into supercompetent XL1-Blue (Stratagene) *Epicurian coli* cells, and subsequently re-transformed into JM107 *E. coli* cells for activity measurements.

TK conversions. The TK cell free lysates were prepared using an identical procedure to that previously described.⁴ The biotransformations were conducted at 50 mM reaction concentrations. ThDP (22 mg, 48 μ mol) and MgCl₂.6H₂O (39 mg, 180 μ mol) were dissolved in H₂O (10 mL) and the pH adjusted to 7 using 0.1 M NaOH. To this stirred solution, at 25 °C, was added TK clarified lysate (2 mL, containing approximately 0.3 mg mL⁻¹ of TK) and the mixture stirred for 20 min. In another flask, Li-1 (110 mg, 1.00 mmol) and the aldehyde (1.00 mmol) were dissolved in H₂O (8 mL) and the pH adjusted to 7 with 0.1 M NaOH. Following the 20 min enzyme/cofactor pre-incubation, the Li-1/aldehyde mixture (**2a-2f**) was added to the enzyme solution and the mixture stirred at rt for 24 h. During this time, the pH was maintained at 7.0 by addition of 1 M HCl using a pH stat (Stat Titrino, Metrohm) and the reactions were followed by TLC analysis. Silica was added and the reaction mixture concentrated to dryness, dry loaded onto a flash silica gel column, and purified. The *ees* were determined from the mono/dibenzoylated procedure given above.

TK formation of 1,3-dihydroxy-1-phenylpropan-2-one (3a). WT-TK gave no **3a**; D469E-TK gave **3a** (3 mg, 2%) as a racemate and 5% of **4**; D469T-TK gave **3a** (3 mg, 2%) in 70% *ee* (3*R*-isomer) and 5% of **4**; D469K-TK gave **3a** (3 mg, 2%) in 82% *ee* (3*R*-isomer) and 5% of **4**, and F434A-TK generated **3a** (16 mg, 10%) in 82% *ee* (3*R*-isomer) as a colorless oil; $[\alpha]_{D}^{20} = +74.0$ (*c*

0.5, CHCl₃). Data for **1,3,4,5-Tetrahydroxy-3-phenylpentan-2-one** (**4**, **R** = **Ph**). The biotransformation side product (**4**) was generated using the D469-TK mutants as a mixture of isomers (11 mg, 5%) as an oil. $v_{max}(neat)/cm^{-1}$ 3391, 1684; ¹H NMR (500 MHz; CD₃OD) δ 3.05 (0.6H, d, *J* 11.1, C*H*HOH), 3.73–3.78 (1.4H, m, C*H*HOHs and CH*H*OHs), 3.96 (0.4H, d, *J* 11.1, C*H*HOH), 4.34 (0.4H, d, *J* 11.1, CH*H*OH), 4.60 (0.6H, d, *J* 19.4, C*H*HOH), 4.65 (0.6H, d, *J* 19.4, CH*H*OH), 4.81 (1H, m, C*H*OH), 7.24–7.32 (3H, m, Ph), 7.40 (2H, dd, *J* 8.0 and 1.2, Ph); ¹³C NMR (150 MHz; CD₃OD) δ 67.0 and 67.4 (CH₂), 68.8 and 69.1(CH₂), 76.6 and 76.7 (CH), 86.2 and 86.8, 128.8–129.0 (signals superimposed), 141.2 and 141.3, 214.6 and 215.4 (*C*=O); *m/z* (HRCI) found MH⁺ 227.09110. C₁₁H₁₅O₅ requires 227.09195.

The absolute stereochemistry of **3a** generated using F434A-TK was determined using the Mosher's derivatisation method (both Mosher's esters formed).⁸

(2*S*,3'*R*)-3,3,3-Trifluoro-2-methoxy-2-phenyl propionic acid 3'-hydroxy-2'-oxo-3'-phenylpropyl ester. The reaction was carried out under anhydrous conditions. To a stirred solution of F434A-TK generated **3a** (0.008 g, 0.05 mmol) in CH₂Cl₂ (1 mL) was added triethylamine (34 μ L, 0.25 mmol) and (*R*)-MTPA chloride (10 μ L, 0.04 mmol) the reaction was stirred for 12 h at rt. The product was dry loaded onto silica gel and purified using flash chromatography (EtOAc:hexane, 1:4) to afford the titled compound as a colourless oil (0.016 g, 84%). *R*_f 0.40 (EtOAc:hexane, 1:4); $[\alpha]^{25}{}_{D} = +12.0$ (*c* 0.25, CHCl₃); *v*_{max}(neat)/cm⁻¹ 3420, 2930, 2855, 1734; ¹H NMR (300 MHz; CDCl₃) δ 3.61 (3H, s, OCH₃), 4.70 (0.17H, d, *J* 17.0, CHHO (2*R*,3'R)), 4.84 (0.83H, d, *J* 17.0, CHHO (2*S*,3'*R*)), 4.92 (0.83H, d, *J* 17.0, CHHO (2*S*,3'*R*)), 5.02 (0.17H, d, *J* 17.0, CHHO (2*R*,3'R)), 5.26 (1H, s, CHOH), 7.32–7.43 (8H, m, Ar), 7.58 (2H, m, Ar); ¹³C NMR (150 MHz; CDCl₃) δ 55.9 (OCH₃), 66.5, 78.1 (CHOH), 127.4, 127.5, 128.6, 129.5, 129.6, 130.0, 131.7, 136.8, 166.2 (*C*=O ester), 201.6 (*C*=O, ketone); ¹⁹F NMR (282 MHz; CDCl₃) δ –72.2; *m/z* (HRCI) found MH⁺ 383.11154. C₁₉H₁₈F₃O₅ requires 383.11063.

(2*R*,3'*R*)-3,3,3-Trifluoro-2-methoxy-2-phenyl propionic acid 3'-hydroxy-2'-oxo-3'-phenylpropyl ester. The reaction was carried out under anhydrous conditions. To a stirred solution of F434A-TK generated **3a** (0.008 g, 0.05 mmol) in CH₂Cl₂ (1 mL) was added triethylamine (34 μ L, 0.25 mmol) and (*R*)-MTPA chloride (10 μ L, 0.04 mmol) the reaction was stirred for 12 h at rt. The product was dry loaded onto silica gel and purified using flash chromatography (EtOAc:hexane, 1:4) to afford the titled compound as a colourless oil (0.016 g, 84%). *R*_f 0.40 (EtOAc:hexane, 1:4); [α]²⁵_D = +30.0 (*c* 0.5, CHCl₃); *v*_{max}(neat)/cm⁻¹ 3420, 2930, 2855, 1734; ¹H NMR (300 MHz; CDCl₃) δ 3.61 (3H, s, OCH₃), 4.69 (0.93H, d, *J* 17.0, CHHO (2*R*,3'R)), 4.84 (0.07H, d, *J* 17.0, CHHO (2*S*,3'*R*)), 4.91 (0.07H, d, *J* 17.0, CHHO (2*S*,3'*R*)), 5.02 (0.93H, d, *J* 17.0, CHHO (2*R*,3'R)), 5.25 (1H, s, CHOH), 7.25–7.60 (8H, m, Ar), 7.59 (2H, m, Ar); ¹³C NMR (150 MHz; CDCl₃) δ 55.9 (OCH₃), 66.5, 78.1 (CHOH), 127.4, 127.5, 128.6, 129.5, 129.6, 130.0, 131.8, 136.7, 166.3 (*C*=O ester), 201.7 (*C*=O, ketone); ¹⁹F NMR (282 MHz; CDCl₃) δ –72.2; *m/z* (HRCI) found MH⁺ 383.11154. C₁₉H₁₈F₃O₅ requires 383.11063.

TK formation of 1-furan-2-yl-1,3-dihydroxypropan-2-one (3b). WT-TK gave no **3b**; D469E-TK gave **3b** (8 mg, 5%) and **5** (R = furyl) in <2%; D469T-TK gave **3b** (5 mg, 3%) and **5** (R = furyl) in <2%; D469K-TK gave **3b** (5 mg, 3%) and **5** (R = furyl) in <2%, and F434A-TK generated **3b** (2 mg, 1%) as a colorless oil and **5** (R = furyl) in <2%. $[\alpha]^{20}_{D}$ of **3b** = +54.0 (*c* 0.4, CHCl₃).

Data for **1-Furan-2-yl-2,3-dihydroxy-propan-1-one (5, R = furyl).** The biotransformation side product (**5**) was generated using the D469 and F434-TK mutants (3 mg, 2%) as an oil. $v_{\text{max}}(\text{neat})/\text{cm}^{-1}$ 3391, 1708; ¹H NMR (300 MHz; CDCl₃) δ 3.93 (1H, dd, *J* 11.8 and 4.5, *CH*HOH), 4.06 (1H, dd, *J* 11.8 and 3.3, CHHOH), 4.91 (1H, m, CHOH), 6.60 (1H, m, Ar), 7.37 (1H, m, Ar), 7.64 (1H, m, Ar); ¹³C NMR (150 MHz; CD₃OD) δ 64.9 (CH₂), 74.8 (CHO), 112.8, 119.5, 147.4, 150.3, 187.7 (*C*=O); *m/z* (HRCI) found M⁺ 157.04964. C₇H₉O₄ requires 157.05008.

TK formation of 1,3-dihydroxy-1-(thiophen-2-yl)propan-2-one (3c). WT-TK gave no **3c**; D469E-TK gave **3c** (4 mg, 2%) and **5** (R = thienyl) in <2%; D469T-TK gave **3c** (5 mg, 3%) and **5** (R = thienyl) in <2%; D469K-TK gave **3c** (4 mg, 2%) and **5** (R = thienyl) in <2%, and F434A-TK gave **3c** (2 mg, 1%) as an oil and **5** (R = furyl) in <2%. $[\alpha]^{20}_{D}$ of **3c** = +26.0 (*c* 0.15, CHCl₃).

Data for **2,3-Dihydroxy-1-thiophen-2-yl-propan-1-one (5, R = thienyl).** The biotransformation side product (**5**) was generated using the D469 and F434-TK mutants (3 mg, 2%) as an oil. $v_{\text{max}}(\text{neat})/\text{cm}^{-1}$ 3391, 1708; ¹H NMR (300 MHz; CDCl₃) δ 3.86 (1H, dd, *J* 11.7 and 5.1, *CH*HOH), 4.05 (1H, dd, *J* 11.7 and 3.3, CHHOH), 4.97 (1H, m, *CH*OH), 7.20 (1H, app t, *J* 4.5, Ar), 7.76 (1H, d, *J* 5.0, Ar), 7.82 (1H, d, *J* 4.0, Ar); ¹³C NMR (150 MHz; CD₃OD) δ 66.2 (*C*H₂), 75.3 (*C*HO), 128.6, 133.5, 135.5, 139.7, 191.8 (*C*=O); *m/z* (HRCI) found M⁺ 173.02695. C₇H₉O₃S requires 173.02724.

TK formation of 1,3-dihydroxy-4-phenylbutane-2-one (3d). WT-TK gave 3d (9 mg, 5%) in 93% *ee* (3*S*-isomer); D469E-TK gave 3d (77 mg, 43%) in 90% *ee* (3*S*-isomer); D469T-TK gave 3d (90 mg, 50%) in 96% *ee* (3*S*-isomer); D469K-TK gave 3d (81 mg, 45%) in 95% *ee* (3*S*-isomer), and F434A-TK generated 3d (86 mg, 48%) in 97% ee (3*S*-isomer) as a white solid. M.p. 122-130 °C; $[\alpha]^{20}_{D} = +30.0$ (*c* 0.5, CHCl₃).

The absolute stereochemistry of **3d** generated using D469E-TK was determined using the Mosher's derivatisation method.⁸

(2*S*,3'*S*)-3,3,3-Trifluoro-2-methoxy-2-phenyl propionic acid 3'-hydroxy-2'-oxo-4'-phenylbutyl ester. The reaction was carried out under anhydrous conditions. To a stirred solution of synthesized

D469E **3d** (0.01 g, 0.04 mmol) in CH₂Cl₂ (1 mL) was added triethylamine (34 μ L, 0.25 mmol) and (*R*)-MTPA chloride (10 μ L, 0.04 mmol) and the reaction was stirred for 12 h at rt. The product was dry loaded onto silica gel and purified using flash chromatography (EtOAc:hexane, 1:4) to afford the titled compound as a colourless oil (0.015 g, 85%). *R*_f 0.40 (EtOAc:hexane, 1:4); $[\alpha]^{25}{}_{\rm D} = -30.0$ (*c* 0.3, CHCl₃); *v*_{max}(neat)/cm⁻¹ 3600, 2932, 1759, 1737; ¹H NMR (300 MHz; CDCl₃) δ 2.59 (1H, d, *J* 4.0 Hz, O*H*) 2.91 (1H, dd, *J* 14.1 and 8.6, PhC*H*H,) 3.17 (1H, dd, *J* 14.1 and 4.4, PhCH*H*) 3.66 (1H, s, OC*H*₃), 4.50 (1H, m, C*H*OH) 4.95 (0.95H, d, *J* 17.4, C*H*HO (2*S*,3'S)), 5.03 (0.05H, d, *J* 17.4, CHHO (2*R*,3'S)), 5.16 (0.95H, d, *J* 17.4, CH*H*O (2*S*,3'S)), 7.21–7.42 (5H, m), 7.43 (3H, m), 7.63 (2H, m); ¹³C NMR (125 MHz; CDCl₃) δ 40.2 (CH₂Ar), 55.8 (OCH₃), 67.8 (CH₂O), 76.7 (CHOH), 127.5, 127.6, 128.5, 129.0, 129.5, 129.9, 131.9, 135.6, 166.3 (*C*=O ester), 203.5 (*C*=O, ketone); ¹⁹F NMR (282 MHz; CDCl₃) δ -72.2; *m/z* (-HRES) found [M-H] 395.1119. C₂₀H₁₉F₃O₅ requires 395.1106.

TK formation of 1,3-dihydroxy-4-phenylbutane-2-one (3e). Using racemic **2e** WT-TK gave **3e** (68 mg, 35%) with 88% (3*S*,4*R*) and 12% (3*S*,4*S*); D469E-TK gave **3e** (59 mg, 30%) with 95% (3*S*,4*R*) and 5% (3*S*,4*S*); D469T-TK gave **3e** (78 mg, 40%) with 95% (3*S*,4*R*) and 5% (3*S*,4*S*); D469K-TK gave **3e** (73 mg, 38%) with 95% (3*S*,4*R*) and 5% (3*S*,4*S*), and F434A-TK gave **3e** (68 mg, 35%) with 85% (3*S*,4*R*) and 15% (3*S*,4*S*) as a white solid. M.p. 120-130 °C; $[\alpha]^{25}_{D} = +30.9$ (*c* 0.22, CHCl₃). Major isomer by ¹H NMR is isomer 1 from the biomimetic reaction. (2*R*)-**2e** was readily accepted by D469T to give one product in 40% yield, the (3*S*,4*R*)-isomer (with a retention time of approximately 26.2 min (peak 4) using the same HPLC condition as for the biomimetic reaction.

The absolute stereochemistry of 3e at C-3 generated using D469E-TK was determined using the Mosher's derivatisation method.⁸

(28,3'S,4'S)-3'-hydroxy-2'-oxo-4'-phenylpentyl-3,3,3-trifluoro-2-methoxy-2-

phenylpropanoate. The reaction was carried out under anhydrous conditions. To a stirred solution of synthesized D469E **3e** (0.012 g, 0.06 mmol) in CH₂Cl₂ (1 mL) was added triethylamine (34 μL, 0.25 mmol) and (*R*)-MTPA chloride (10 μL, 0.04 mmol) the reaction was stirred for 12 h at rt. The product was dry loaded onto silica gel and purified using flash chromatography (hexane: EtOAc, 4:1) to afford the titled compound as a colourless oil (0.018 g, 75%), *R*_f 0.45 (hexane: EtOAc, 4:1);); $[\alpha]^{25}_{D} = -37.2$ (*c* 0.25, CHCl₃); *v*_{max}(neat)/cm⁻¹ 3471, 2954, 1759, 1735, 1170; ¹H NMR (300 MHz; CDCl₃) δ 1.32 (3H, d, *J* 7.1, CHC*H*₃), 1.59 (1H, br, O*H*), 3.27 (1H, m, C*H*CH₃), 3.65 (1H, s, OC*H*₃), 4.40 (1H, d, *J* 3.9, C*H*OH) 4.87 (1H, d, *J* 17.0, C*H*HO (2*S*,3'*S*)), 4.96 (trace 2*S*,3'*R*)-isomer), 5.04 (1H, d, *J* 17.0, CH*H*O (2*S*,3'*S*)), 7.21–7.42 (5H, m), 7.43 (3H, m, Ph), 7.63 (2H, m, Ph); ¹³C NMR (125 MHz; CDCl₃) δ 1.38, 43.2, 55.8 (OCH₃), 68.5 (CH₂), 80.1 (CHOH), 127.4,

127.8, 128.5, 129.0, 129.9, 129.9, 131.9, 142.0, 166.2 (*C*=O ester), 203.7 (*C*=O, ketone); ¹⁹F NMR (282 MHz; CDCl₃) δ –72.3; *m/z* (HRMS) found MH⁺ 433.1234. C₂₁H₂₁F₃O₅ requires 433.1239.

TK formation of 1,3-dihydroxy-1-(3-hydroxyphenyl)propan-2-one (3f). WT-TK and D469E-TK gave no **3f**; D469T-TK gave **3f** (7 mg, 4%) as a racemate, and F434A-TK gave **3f** (11 mg, 6%) in 53% *ee* (3*R*-isomer) as a colorless oil. $[\alpha]^{25}_{D} = +99.3$ (*c* 0.08, MeOH).

The absolute stereochemistry of 3f using F434A-TK was determined using the Mosher's derivatisation method.⁸

(2R,3'R)-3-(1-Hydroxy-2-oxo-3-[((2R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyl)oxy)-

propyl]phenyl-3,3,3-trifluoro-2-methoxy-2-phenylpropanoate. To a stirred solution of 1,3dihydroxy-1-(3-hydroxyphenyl)propan-2-one (3 mg, 0.02 mmol) in CH₂Cl₂ (2 mL) was added 2,4,6-collidine (10 μL, 0.08 mmol) and (*S*)-MTPA chloride (10 μL, 0.04 mmol). The reaction was stirred for 36 h at rt. The product was dry loaded onto silica gel and purified using flash silica chromatography (EtOAc:hexane, 3:7) to afford the titled compound as a colourless oil (1 mg, 8%). R_f 0.14 (EtOAc:hexane, 3:7). v_{max} (neat)/cm⁻¹ 3420, 2930, 2855, 1734; ¹H NMR (600 MHz; CDCl₃) δ 3.62 (6H, s, OCH₃), 4.74 (0.4H, d, *J* 16.9, CHHO (2*R*,3'*R*,2"*R*)), 4.90 (0.2H, m, CHHO (2*R*,3'*S*,2"*R*)), 5.02 (0.4H, d, *J* 16.9, CHHO (2*R*,3'*R*,2"*R*)), 5.20 (1H, d, *J* 3.8, CHOH), 7.25–7.60 (14H, m, Ar); ¹³C NMR (150 MHz; CDCl₃) δ 55.9 (OCH₃), 66.5 (CH₂), 77.1 (CHOH), 127.3, 127.5, 128.6–129.0 (signals superimposed(, 130.0, 130.9, 138.5, 156.4, 166.6 (*C*=O esters), 201.8 (*C*=O, ketone); ¹⁹F NMR (282 MHz; CDCl₃) δ –72.2; *m/z* (ES+) found MH⁺ 615.09. C₂₉H₂₅F₆O₈ requires 615.13.

References

1. F. Dickens, *Biochemical Prep.* 1962, 9, 86.

2. E. Racker in *The Enzymes*, Vol. 5 (Eds.: P. D. Boyer, H. Lardy, K. Myrzback), Academic Press, New York, **1961**, pp. 397.

3. M. E. B. Smith, K. Smithies, T. Senussi, P. A. Dalby and H. C. Hailes, *Eur. J. Org. Chem.* 2006, **5**, 1121.

4. A. Cázares, J. L. Galman, L. G. Crago, M. E. B. Smith, J. Strafford, L. Ríos-Solís, G. L. Lye, P. A. Dalby, H. C. Hailes, *Org. Biomol. Chem.*, 2010, **6**, 1301.

5. K. G. Morris, M. E. B. Smith, N. J. Turner, M. D. Lilly, R. K. Mitra and J. M. Woodley, *Tetrahedron: Asymmetry*, 1996, 7, 2185.

6. C. Botuha, M. Haddad, M. Larchevêque, *Tetrahedron: Asymmetry*. 1998, 9, 1929.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

- 7. S. Bacon, Ph.D Thesis UCL, 2001.
- 8. J. L. Galman and H. C. Hailes, *Tetrahedron: Asymmetry*, 2009, 20, 1828.