Electronic Supporting Information

Asymmetric synthesis of synthetic alkaloids by a biocatalysis/Ugi/Pictet-Spengler sequence

Anass Znabet, ${ }^{a}$ Job Zonneveld, ${ }^{a}$ Elwin Janssen, ${ }^{a}$ Frans J. J. de Kanter, ${ }^{a}$ Madeleine Helliwell, ${ }^{b}$ Nicholas J. Turner, ${ }^{c}$ Eelco Ruijter* ${ }^{a}$ and Romano V. A. Orru* ${ }^{a}$
${ }^{a}$ Department of Chemistry \& Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, the Netherlands. Fax: +31 2059 87488; Tel: +31 2059 87462; E-mail: rva.orru@few.vu.nl; e.ruijter@few.vu.nl
${ }^{b}$ School of Chemistry, University of Manchester, Brunswick Street, Manchester, M13 9PL, UK.
${ }^{c}$ School of Chemistry, University of Manchester, Manchester Inter-disciplinary Biocentre, 131 Princess Street, Manchester, UK M1 7DN

Item	Page
General information	S 2
Experimental procedures	S 2
References	S 12
Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra	S 13
Crystallographic data	S 35

General Information

Starting materials and solvents were purchased from ABCR and Sigma-Aldrich and were used without treatment. 3-Azabicylo[3,3,0]octane hydrochloride was purchased from AK Scientific. $\quad(1 R, 2 S, 6 R, 7 S)$-4-methyl-4-azatricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-ene was prepared according to literature procedure. ${ }^{1}$ Column chromatography was performed on silica gel.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance $400\left(400.13 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}$ and 100.61 MHz for ${ }^{13} \mathrm{C}$) or Bruker Avance $500\left(500.23 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}$ and 125.78 MHz for
${ }^{13} \mathrm{C}$) in CDCl_{3}. Chemical shifts are reported in δ values (ppm) downfield from tetramethylsilane.
Electrospray Ionisation (ESI) mass spectrometry was carried out using a Bruker micrOTOF-Q instrument in positive ion mode (capillary potential of 4500 V).
Infrared (IR) spectra were recorded neat, and wavelengths are reported in cm^{-1}. Optical rotations were measured with a sodium lamp and are reported as follows: $[\alpha]_{\mathrm{D}}{ }^{20}$ ($\mathrm{c}=$ $\mathrm{g} / 100 \mathrm{~mL}$, solvent).
2-(2-isocyanoethyl)-1H-indole 17, 4-(isocyanomethyl)-1,2-dimethoxybenzene 13 and 4-(2-isocyanoethyl)-1,2-dimethoxybenzene $\mathbf{8}$ were synthesized according to literature procedures. ${ }^{2}$

General Procedure 1: Preparation of optically active imines (3S,7R)-11 and azabicyclo-[3,3,0]oct-2-ene

Unless stated otherwise: imines were synthesized according to literature procedure ${ }^{3}$ with minor adjustments. 0.7 g of freeze-dried MAO-N D5 E. coli were rehydrated for 30 min . in 20 ml of KPO_{4} buffer ($100 \mathrm{mM}, \mathrm{pH}=8,0$) at $37^{\circ} \mathrm{C}$. Subsequently 1 mmol amine $\left((3 S, 7 R)-\mathbf{1 1}\right.$ or azabicyclo-[3,3,0]oct-2-ene) in 30 ml of KPO_{4} buffer $(100 \mathrm{mM}, \mathrm{pH}=8,0)$ was prepared. The pH of the solution was adjusted to 8.0 by addition of NaOH and then added to the rehydrated cells. After 16-17 h the reaction was stopped (conversions were $>$ 95%) and worked up. For workup the reaction mixture was centrifuged at 4000 rpm and $4^{\circ} \mathrm{C}$ until the supernatant had clarified ($40-60$ minutes). The pH of the supernatant was then adjusted to $10-11$ by addition of aq. NaOH and the supernatant was subsequently extracted with t-butyl methyl ether or dichloromethane $(4 \times 70 \mathrm{~mL})$. The combined organic phases were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated at the rotary evaporator.

General procedure 2: Preparation of optically active Ugi derivatives 14a-d, 18a-c and 20-22
Unless stated otherwise: Ugi derivatives were synthesised according to literature procedure. ${ }^{4}$
Imine (0.70 mmol) was dissolved in 2 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by the addition of carboxylic acid (0.93 mmol) and isocyanide (0.93 mmol). The reaction mixture was stirred for 24 h at $\mathrm{RT} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added and the resulting mixture was washed with $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. Subsequently the crude product was subjected to column chromatography ($\mathrm{SiO}_{2}, \mathrm{EtOAc}$ (1): cyclohexane (1)). After concentration in vacuo, the pure oily compound was
dissolved in a $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane mixture and concentrated to give the product as a solid. Note: Rotamer formation and traces of hexane might be observed in the NMR data.

General procedure 3: Preparation of DKP derivatives 15a-b, 16, 19a-c and 23-25 via a Pictet-Spengler cyclization

Unless stated otherwise: A dry 500 ml flask with activated $4 \AA$ molecular sieves was prepared. Ugi derivative (0.25 mmol) was dissolved in 300 ml dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled down to $-10^{\circ} \mathrm{C}$. 1.3 eq. (0.325 mmol) of TMSOTf was dissolved in 5 ml dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dropwise added in 5 h to the mixture while stirring the flask. After complete addition of the TMSOTf the mixture was allowed to warm up to room temperature. The reaction mixture was stirred for another 11 h . The resulting mixture was filtered and washed with $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. Subsequently the crude product was subjected to column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}\right.$ (1): cyclohexane (1)). After concentration in vacuo, the pure oily compound was dissolved in a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane mixture and concentrated to give the product as a solid.
Note: Traces of hexane might be observed in the NMR data.

General procedure 4: Preparation of DKP derivatives 15 c and 16 via a PictetSpengler cyclization

Unless stated otherwise: A dry 50 ml flask with activated $4 \AA$ molecular sieves was prepared. Ugi derivative (0.25 mmol) was dissolved in 10 ml dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 10 ml TFA. 1.0 eq. (0.25 mmol) of trifluoroacetic anhydride was added in and subsequently stirred for 16 h . The resulting mixture was filtered and washed with $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. Subsequently the crude product was subjected to column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc}\right.$ (1): cyclohexane (1)). After concentration in vacuo, the pure oily compound was dissolved in a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane mixture and concentrated to give the product as a solid.
Note: Traces of hexane might be observed in the NMR data.

Compound 14a: General procedure 2 was followed using imine ($94.4 \mathrm{mg}, 0.709 \mathrm{mmol}$), phenylglyoxylic acid ($138.6 \mathrm{mg}, 0.923$ mmol) and 4-(2-isocyanoethyl)-1,2-dimethoxybenzene (160.9 $\mathrm{mg}, 0.842 \mathrm{mmol}$) giving 14 a as a pale yellow solid, yield 72%. $[\alpha]_{\mathrm{D}}{ }^{20}=-18.2(\mathrm{c}=0.440, \mathrm{MeCN}) .{ }^{1} \mathrm{H}$ NMR $(500.23 \mathrm{MHz}$, CDCl_{3}), $\delta 7.91$ (dd, $\left.J=8.2,1.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.67-7.64(\mathrm{~m}, 1 \mathrm{H})$, 7.53-7.49 (m, 2H), $6.80(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.72-6.69(\mathrm{~m}, 1 \mathrm{H}), 6.64(\mathrm{bs}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=5.7,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.00(\mathrm{dd}, J=5.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), \delta 3.83(\mathrm{~s}, 3 \mathrm{H})$, 3.81-3.80 (m, 1H), 3.54-3.40 (m, 3H), 3.10 (m, 2H), 2.94-2.89 (m, 1H), 2.87-2.83 (m, $1 \mathrm{H}), 2.77(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.53-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.40(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.78 $\mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta=191.0,170.2,164.8,149.0,147.7,135.4,134.9,134.7,132.5,131.2$, $129.9,129.1,120.7,111.9,111.4,64.5,62.2,55.9,55.8,51.7,49.8,47.2,46.6,45.0,41.2$,
35.0; IR (neat): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3320(\mathrm{w}), 2930(\mathrm{w}), 1676(\mathrm{~m}), 1628(\mathrm{~s}), 1514(\mathrm{~m}), 1443$ (m), 1260 (s), 1234 (s), 1140 (m), 1026 (s), 714 (s), 665 (s); HRMS (ESI+) calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 475.2155$, found 475.2213 .

Compound 14b: General procedure 2 was followed using imine ($70.5 \mathrm{mg}, 0.529 \mathrm{mmol}$), 4-methyl-2-oxopentanoic acid ($89.6 \mathrm{mg}, 85 \mu \mathrm{~L}, 0.688 \mathrm{mmol}$) and 4-(2-isocyanoethyl)-1,2dimethoxybenzene ($140.6 \mathrm{mg}, 0.735 \mathrm{mmol}$) giving $\mathbf{1 4 b}$ as a yellow wax, yield 77%.
${ }^{1} \mathrm{H}$ NMR ($500.23 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 6.78$ (d, $\left.J=7.9 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 6.72-6.67 (m, 2H), $6.46(\mathrm{bs}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=5.6,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.08(\mathrm{dd}, J=5.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), \delta 3.87(\mathrm{~s}, 3 \mathrm{H}), \delta 3.85(\mathrm{~s}$, $3 \mathrm{H}), 3.49-3.41(\mathrm{~m}, 3 \mathrm{H}), 3.35(\mathrm{~m}, 2 \mathrm{H}), 3.03-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.54$ $(\mathrm{m}, 4 \mathrm{H}), 2.14(\mathrm{sep}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), \delta 1.52-1.49(\mathrm{~m}, 1 \mathrm{H}), \delta 1.43-1.40(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J$ $=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(125.78 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta=200.1$, $170.2,163.8,148.9,147.6,134.8$, 134.7, 131.2, 120.6, 111.8, 111.2, 62.8, 55.9, 55.8, $51.7,49.8,48.0,47.0,46.6,45.7,45.3,40.9 .35 .2,23.9,22.6,22.4$; IR (neat): $v_{\max }\left(\mathrm{cm}^{-1}\right)$ $=3310(\mathrm{w}), 2957(\mathrm{w}), 1624(\mathrm{~s}), 1530(\mathrm{~m}), 1454(\mathrm{~m}), 1341(\mathrm{~m}), 1221(\mathrm{~m}), 739(\mathrm{~s})$; HRMS (ESI +) calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 455.2468$, found 455.2537.

Compound 14c: General procedure 2 was followed using imine (133.0 $\mathrm{mg}, 1.0 \mathrm{mmol})$, phenylglyoxylic acid ($195 \mathrm{mg}, 1.3 \mathrm{mmol}$) and 4-(2-isocyanomethyl)-1,2-dimethoxybenzene ($230 \mathrm{mg}, 1.3 \mathrm{mmol}$) giving 14c as a yellow solid, yield 79\%.
$[\alpha]_{\mathrm{D}}{ }^{20}=+16.5(\mathrm{c}=0.121, \mathrm{MeCN}) .{ }^{1} \mathrm{H}$ NMR ($\left.500.23 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta$ $7.86-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.00(\mathrm{bs}$, $1 \mathrm{H}), 6.83-6.79(\mathrm{~m}, 3 \mathrm{H}), 6.27$ (dd, $J=5.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.04$ (dd, $J=$ $5.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=14.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=14.7,5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (s, 3H), $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.47$ (m, 1H), 3.12 (dd, $\mathrm{J}=11.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-3.06(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.89-2.86(\mathrm{~m}, 1 \mathrm{H}), 1.54-$ $1.51(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.43(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.78 MHz, $\left.\mathrm{CDCl}_{3}\right), \delta 190.7,170.0,165.3$, 149.1, 148.3, 135.4, 134.9, 134.7, 132.4, 130.6, 129.9, 129.0, 119.8, 111.2, 110.8, 62.3, $55.9,55.9,51.7,49.8,47.0,46.6,46.1,45.2,43.5$, ; IR (neat): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3306(\mathrm{w})$, 2940 (w), 1632 (s), 1512 (s), 1443 (s), 1234 (s) 1138 (s), 1022 (s), 718 (s), 667 (m), 459 (m); HRMS (ESI+) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 461.2076$, found 461.2067.

Compound 14d: General procedure 2 was followed using imine (70.7 $\mathrm{mg}, 0.531 \mathrm{mmol}$), 4-methyl-2-oxopentanoic acid ($89.8 \mathrm{mg}, 85 \mu \mathrm{~L}$, 0.690 mmol) and 4-(isocyanomethyl)-1,2-dimethoxybenzene (122.2 $\mathrm{mg}, 0.690 \mathrm{mmol}$) giving $\mathbf{1 4 d}$ as yellow solid, yield 44%.
${ }^{1} \mathrm{H}$ NMR ($500.23 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 6.84-6.75 (m, 3H), 6.13 (dd, $J=5.7$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=5.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H})$,
$4.25(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{dd}, J=12.5,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-$ $3.30(\mathrm{~m}, 2 \mathrm{H}), 3.02-2.93(\mathrm{~m}, 3 \mathrm{H}), 2.71-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.51(\mathrm{~m}$, $1 \mathrm{H}), 1.45-1.39(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(125.78 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta=200.0,170.1,163.9,149.1,148.3,134.9,134.8,130.6,119.6$, 111.1, 110.7, 62.9, 55.9, 55.8, 51.7, 51.7, 49.9, 48.1, 47.0, 46.6, 45.6, 45.4, 43.3, 23.9, 22.6, 22.5; IR (neat): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3308(\mathrm{w}), 2959(\mathrm{w}), 2928(\mathrm{w}), 1711(\mathrm{w}), 1630(\mathrm{~s})$, 1451 (m), 1358 (m), 1261 (s$), 1234$ (s), 1138 (s), 1026 (s), 729 (m); HRMS (ESI+) calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 441.2311$, found 441.2387.

Compound 15a: General procedure 3 was followed using 14a (138.3 mg, 0.292 mmol) and TMSOTf ($71.3 \mathrm{mg}, 58 \mu \mathrm{~L}, 0.321 \mathrm{mmol}$) giving 15a as a white solid, yield 72%.
$[\alpha]_{\mathrm{D}}{ }^{20}=+292.0(\mathrm{c}=0.210, \mathrm{MeCN}) .{ }^{1} \mathrm{H}$ NMR $\left(500.23 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 7.36-$ $7.26(\mathrm{~m}, 5 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=5.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.90$ (dd, $J=5.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{ddd}, J=12.9,2.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.82$ $(\mathrm{m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{ddd}, J=25.1$, $12.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.07(\mathrm{~m}, 1 \mathrm{H}), \delta 3.05-3.03(\mathrm{~m}, 2 \mathrm{H}), \delta 3.01-2.96(\mathrm{~m}$, $2 \mathrm{H}), \delta 2.87-2.83(\mathrm{~m}, 1 \mathrm{H}), \delta 2.79-2.73(\mathrm{~m}, 1 \mathrm{H}), \delta 1.70-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.58(\mathrm{~m}, 1 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (125.78 MHz, CDCl_{3}), $\delta=169.5,165.7,148.3,146.8,141.6,136.9,136.7$, $128.9,128.3,127.2,126.3,125.4,115.1,110.3,69.6,61.5,55.9,55.8,52.6,50.0,48.7$, $45.7,45.6,43.8,40.2,29.0$; IR (neat): $v_{\max }\left(\mathrm{cm}^{-1}\right)=(\mathrm{w}), 1665(\mathrm{~s}), 1542(\mathrm{~m}), 1398(\mathrm{~s})$, 1261 (s), 1219 (m), 743 (s), 706 (m); HRMS (ESI+) calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 457.2049, found 457.2107.

Compound 15b: General procedure 3 was followed using 14b (109.6 mg , $0.241 \mathrm{mmol})$ and TMSOTf ($70.1 \mathrm{mg}, 57 \mu \mathrm{~L}, 0.315 \mathrm{mmol}$) giving 15b as a white solid, yield 86%.
(Note: Minor diastereomer is given in italic). ${ }^{1} \mathrm{H}$ NMR (400.13 MHz, CDCl_{3}), $\delta 7.44(\mathrm{~s}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=5.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{dd}$, $J=5.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.74$ (ddd, $J=20.4,13.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13$ (dd, $J=$ 12.3, $9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.78 (s, 3H), 3.76 (s, 3H), 3.43 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-$ $3.10(\mathrm{~m}, 1 \mathrm{H}), 3.08-2.98(\mathrm{~m}, 3 \mathrm{H}), 2.91-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.46(\mathrm{~m}, 3 \mathrm{H}), 1.86$ (dd, $J=14.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{sep}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 0.82(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{1} H \mathrm{NMR}\left(400.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.53(s, l H), 6.45(s, l H), 6.27(d d, J=5.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(d d, J=4.8,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.85-4.81 (m, lH), 3.91-3.86 (m, lH), 3.84 (s, 3H), 3.77 (s, 3H), 3.62 (d, J = 7.6 Hz, lH), 3.25-3.21 (m, lH), 3.10-3.06 (m, lH), 2.87-2.79 (m, 4H), 2.65 (dd, $J=12.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.56-2.50 (m, lH), 2.11 (dd, $J=14.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.72(\mathrm{~m}, 1 \mathrm{H})$, 1.62-1.53 (m, 2H), $0.84(d, J=6.7 \mathrm{~Hz}, 3 H), 0.74(d, J=6.6 \mathrm{~Hz}, 3 H)$; ${ }^{13} \mathrm{C}$ NMR (100.61 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta=167.5,154.0,147.3,137.5,137.2,129.8,124.9,111.9,108.8,66.5$, $60.0,55.9,55.8,53.5,53.4,49.4,45.8,45.3,44.5,43.2,36.9,27.2,25.2,23.6,21.8 ;{ }^{13} \mathrm{C}$ $N M R\left(100.61 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta=166.9,166.2,148.2,146.8,137.6,137.3,127.7,127.3$,
113.1, 110.9, 67.0, 60.4, 56.1, 55.8, 53.4, 52.6, 49.3, 48.3, 45.3, 44.8, 43.3, 37.8, 29.0, 24.8, 24.3, 23.7; IR (neat): $v_{\max }\left(\mathrm{cm}^{-1}\right)=2953(\mathrm{w}), 1651(\mathrm{~s}), 1514(\mathrm{~m}), 1408$ (s), 1256 (s), 1219 (s), 1096 (m), $737(\mathrm{~m})$; HRMS (ESI+) calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$437.2362, found 437.2419 .

Compound 15c: General procedure 4 was followed using 14c (110.0 mg , 0.255 mmol) and trifluoroacetic anhydride ($33.7 \mathrm{mg}, 21 \mu \mathrm{~L}, 0.255 \mathrm{mmol}$) giving 15c as a white solid, 60% yield.
$[\alpha]_{\mathrm{D}}{ }^{20}=+247.6(\mathrm{c}=0.210, \mathrm{MeCN}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500.23 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta$ $7.36-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=7.1,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.94$ (dd, $J=5.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.97$ (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=$ $15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.85-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.54(\mathrm{~m}$, $1 \mathrm{H}), 3.28(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-3.03(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.94-$ $2.91(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=6.1,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.58(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125.78 MHz, CDCl_{3}), $\delta 167.7$, 165.9, 150.0, 149.3, 139.8, 137.2, 136.6, 132.0, $129.2,128.3,125.9,124.6,108.3,104.8,75.5,61.7,56.1,56.1,52.8,50.9,49.1,48.3$, 45.7, 45.5, 44.3; ; IR (neat): $v_{\max }\left(\mathrm{cm}^{-1}\right)=2924$ (w), 2855 (w), 1667 (s), 1408 (s), 1327 $(\mathrm{m}), 849(\mathrm{~m}), 741(\mathrm{~s}), 702(\mathrm{~m}), 606(\mathrm{~m}), 467(\mathrm{w})$; HRMS (ESI+) calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 443.1971$, found 443.1972.

Compound 16: General procedure 4 was followed using 14d (69.9 $\mathrm{mg}, 0.159 \mathrm{mmol}$) and trifluoroacetic anhydride $(34.4 \mathrm{mg}, 21 \mu \mathrm{~L}$, 0.260 mmol) giving 15 c as a pale yellow solid, 60% yield.
$[\alpha]_{\mathrm{D}}{ }^{20}=-126.8(\mathrm{c}=0.205, \mathrm{MeCN}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500.23 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=6.80-6.70(\mathrm{~m}, 3 \mathrm{H}), 6.31-6.28(\mathrm{~m}, 2 \mathrm{H}), 5.42(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.90(\mathrm{~d}, J=15.4,1 \mathrm{H}), 4.74(\mathrm{~d}, J=15.4,1 \mathrm{H}), 3.90(\mathrm{dd}, J=9.6,12.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.09(\mathrm{~m}$, $1 \mathrm{H}), 3.08-3.02(\mathrm{~m}, 1), 2.98-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=6.5,12.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.79-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.66(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=6.6,3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.78 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta=167.0,159.2,149.1,148.3,137.6,137.0$, 134.7, 129.6, 129.1, 119.4, 111.2, 110.6, 60.8, 55.9, 55.9, 53.1, 50.7, 47.7, 47.7, 45.5, $45.4,43.8,26.7,23.2,23.0$; IR (neat): $v_{\max }\left(\mathrm{cm}^{-1}\right)=2963$ (w), 1674 (s), 1624 (s), 1516 (s), 1452 (m), 1393 (s), 1258 (s), 1138 (s), 1026 (s), 733 (s); HRMS (ESI+) calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 423.2206$, found 423.2269 .

Compound 18a: General procedure 2 was followed using imine ($66.8 \mathrm{mg}, 0.501 \mathrm{mmol}$), phenylglyoxylic acid ($98.0 \mathrm{mg}, 0.653$ mmol) and 2-(2-isocyanoethyl)-1 H-indole ($110.8 \mathrm{mg}, 0.651 \mathrm{mmol}$) giving 18a as a pale yellow solid, yield 77%.
$[\alpha]_{\mathrm{D}}{ }^{20}=-18.00(\mathrm{c}=0.445, \mathrm{MeCN}) .{ }^{1} \mathrm{H}$ NMR (500. $23 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 8.05(\mathrm{bs}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=1.3,8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.08(\mathrm{~m}, 7 \mathrm{H})$,
6.60 (bs, 1H), 6.23 (dd, $J=5.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.99$ (dd, $J=5.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ (d, $J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.43-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.01-2.98(\mathrm{~m}, 3 \mathrm{H}), 2.96-2.87(\mathrm{~m}, 3 \mathrm{H})$, 2.85-2.82 (m, 1H), 2.80-2.78 (m, 1H), 1.51-1.48 (m, 1H), 1.41-1.39 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(125.78 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta=191.0,170.1,165.2,136.4,135.3,134.9,134.7,132.4,129.9$, $129.0,127.2,122.5,122.1,119.5,118.7,112.6,111.2,64.5,62.2,51.7,49.8,47.0,46.6$, $46.5,45.0,39.8,25.2$; IR (neat): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3312(\mathrm{w}), 2930(\mathrm{w}), 1624(\mathrm{~s}), 1530(\mathrm{~m})$, 1447 (m), 1343 (m), 1215 (s), 739 (s), 714 (s), 667 (s); HRMS (ESI+) calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 454.2052$, found 454.2121 .

Compound 18b: General procedure 3 was followed using imine ($70.2 \mathrm{mg}, 0.527 \mathrm{mmol}$), 2-(furan-2-yl)-2-oxoacetic acid (96.0 mg , 0.685 mmol) and 2-(2-isocyanoethyl)- $1 H$-indole ($116.6 \mathrm{mg}, 0.685$ mmol) giving $\mathbf{1 8 b}$ as a yellow solid, yield 71%.
$[\alpha]_{\mathrm{D}}{ }^{20}=-12.5(\mathrm{c}=0.320, \mathrm{MeCN}) .{ }^{1} \mathrm{H}$ NMR ($\left.500.23 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 8.04(\mathrm{bs}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=0.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{dd}, J$ $=1.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{bs}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=3.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dd}, J=2.6,5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.29(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.44-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{dd}, J=1.3$, $11.9 \mathrm{~Hz}, 2 \mathrm{H})$, 3.19-3.15 (m, 1H), 3.03-2.93 (m, 3H), 2.88-2.85 (m, 2H), $1.49(\mathrm{~m}, 1 \mathrm{H})$. $1.41(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.78 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta=177.6,169.9$, 163.5, 149.6, 149.1, $136.4,135.0,134.6,127.2,122.5,122.1,119.4,118.6,113.0,112.6,111.3,62.5,51.6$, 49.9, 47.0, 46.7, 46.2, 45.0, 39.6, 25.1; IR (neat): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3314$ (w), 2924 (w), 1628 (s), 1535 (w), 1452 (s), 1389 (m), 1011 (m), 741 (s), 590 (m); HRMS (ESI+) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 444.1845$, found 444.1897 .

Compound 18c: General procedure 3 was followed using imine ($74.1 \mathrm{mg}, 0.556 \mathrm{mmol}$), 4-methyl-2-oxopentanoic acid (94.1 mg , $89 \mu \mathrm{~L}, 0.723 \mathrm{mmol}$) and 2-(2-isocyanoethyl)- 1 H -indole (124.0 mg , 0.729 mmol) giving 18c as a yellow solid, yield 48%.
$[\alpha]_{\mathrm{D}}{ }^{20}=-21.3(\mathrm{c}=0.470, \mathrm{MeCN}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500.23 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $\delta 8.04(\mathrm{bs}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.22-7.10 (m, 2H), $7.01(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{bs}, 1 \mathrm{H}), 6.11-$ $6.08(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.29$ $(\mathrm{m}, 2 \mathrm{H}), 3.00-2.89(\mathrm{~m}, 4 \mathrm{H}), 2.63-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.48(\mathrm{~m}, 1 \mathrm{H})$, $1.41-1.39(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.78 $\mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta=200.2,170.1,163.8,136.3,134.8,127.2,122.2,122.1,119.4,118.7$, $112.7,111.2,62.8,51.7,49.8,48.0,47.0,46.6,45.8,45.2,39.7,25.1,23.8,22.6,22.4$; IR (neat): HRMS (ESI+) calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 434.2365$, found 434.2438 .

Compound 19a: General procedure 4 was followed using 18a (137.8 mg , 0.304 mmol) and TMSOTf ($92.3 \mathrm{mg}, 75 \mu \mathrm{~L}, 0.415 \mathrm{mmol}$) giving 19a as a pale yellow solid, yield 92%.
(Note: Minor diastereomer is given in italic). ${ }^{1} \mathrm{H}$ NMR (500.23 MHz, CDCl_{3}): $\delta 9.28(\mathrm{bs}, 1 \mathrm{H}), 7.51-7.08(\mathrm{~m}, 9 \mathrm{H}), 6.32-6.28(\mathrm{~m}, 1 \mathrm{H}), 6.24(\mathrm{dd}, J=$ $5.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), \delta 4.79(\mathrm{dd}, J=12.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.75$ $(\mathrm{d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.04-2.87(\mathrm{~m}$, $3 \mathrm{H}), 2.80-2.58(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.73(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{1} H$ NMR ($500.23 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.70(\mathrm{bs}, 1 \mathrm{H}), 7.51-7.08(\mathrm{~m}, 9 \mathrm{H}), 6.34(d d, J=5.7,3.0 \mathrm{~Hz}, \mathrm{lH})$, 6.32-6.28 (m, lH), $\delta 4.89(d d, J=12.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.86(d, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H})$, 3.39-3.34 (m, 1 H), 3.18-3.15 (m, 1 H), 3.04-2.87 (m, 4H), 2.80-2.58 (m, 2H), 1.84-1.81 ($m, 1 H$), 1.68-1.65 ($m, l H$); ${ }^{13} \mathrm{C}$ NMR ($125.78 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta=164.5,163.4$, $142.5,137.7,137.3,126.6,126.4,126.2$, 122.7, 119.8, 118.6, 111.4, 110.3, 60.9, 53.5, 53.1, 47.4, 45.0, 44.3, 44.0, 37.2, 20.7, ${ }^{13} \mathrm{C} \mathrm{NMR}\left(125.78 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta=165.6,164.0$, 143.3, 137.6, 137.4, 126.4, 126.2, 126.0, 122.7, 119.6, 118.5, 111.6, 111.0, 60.6, 53.4, 53.0, 48.0, 45.3, 44.7, 43.3, 37.5, 20.6; IR (neat): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3318(\mathrm{w}), 2928(\mathrm{w}), 1651$ (s), 1422 (s), $1300(\mathrm{~m}), 1233(\mathrm{~m}), 733$ (s), $505(\mathrm{~s}) ;$ HRMS (ESI+) calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$436.1947, found 436.2005.

Compound 19b: General procedure 4 was followed using 18b (137.8 mg, 0.304 mmol) and $\operatorname{TMSOTf}(92.3 \mathrm{mg}, 75 \mu \mathrm{~L}, 0.415 \mathrm{mmol}$) giving 19b as a white solid, yield 92%.
(Note: Minor diastereomer is given in italic). ${ }^{1} \mathrm{H}$ NMR (500.23 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 9.57,7.54-7.12(\mathrm{~m}, 5 \mathrm{H}), 6.36-6.33(\mathrm{~m}, 1 \mathrm{H}), 6.27-6.24(\mathrm{~m}, 2 \mathrm{H})$, 6.08 (dd, J = 3.3, $0.72 \mathrm{~Hz}, 1 \mathrm{H}$), 4.84-4.81 (m, 1H), 4.27 (dd, J = 12.2, 9.0 $\mathrm{Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.19(\mathrm{~m}, 1 \mathrm{H})$, $3.10-2.75(\mathrm{~m}, 3 \mathrm{H}), 2.61(\mathrm{dd}, \mathrm{J}=12.2,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.77-$ $1.75(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{1} H \operatorname{NMR}\left(500.23 \mathrm{MHz}, C D C l_{3}\right): \delta 9.28,7.54-7.12(\mathrm{~m}, 5 \mathrm{H}), 6.39(\mathrm{dd}, \mathrm{J}=$ $5.8,3.1 \mathrm{~Hz}, \mathrm{lH})$, 6.36-6.33 (m, lH), 6.27-6.24 (m, 1 H), 5.99 (dd, $J=3.3,0.72 \mathrm{~Hz}, \mathrm{lH}$), 4.97-4.92 (m, lH), 4.02-3.97 ($\mathrm{m}, 2 \mathrm{H}$), 3.40-3.33 (m, lH), 3.21-3.19 (m, lH), 3.10-2.75 $(m, 4 H), 1.86-1.84(m, 1 H), 1.71-1.69(m, 1 H) ;{ }^{13} \mathrm{C}$ NMR (125.78 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=$ $164.7,161.4,152.5,142.9,137.7,137.1,135.817,127.8,126.3,122.8,119.7,118.6$, $111.6,111.3,110.5,110.3,61.2,53.6,52.7,47.6,44.8,44.2,44.2,36.8,29.7,20.6 ;{ }^{13} \mathrm{C}$ NMR (125.78 MHz, $\left.C D C l_{3}\right), \delta=166.9,162.4,151.7,143.3,137.6,137.4,136.4,128.3$, 125.9, 122.8, 119.5, 118.6, 111.7, 111.4, 110.9, 110.4, 60.6, 53.4, 52.5, 48.2, 45.4, 44.9, 43.4, 37.2, 31.6, 22.7; IR (neat): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3318(\mathrm{w}), 2928(\mathrm{w}), 1651(\mathrm{~s}), 1422(\mathrm{~s})$, $1300(\mathrm{~m}), 1233(\mathrm{~m}), 733(\mathrm{~s}), 505(\mathrm{~s})$; HRMS (ESI+) calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 427.1739, found 427.1904.

Compound 19c: General procedure 4 was followed using 18c (110.0 mg, 0.254 mmol) and TMSOTf ($73.4 \mathrm{mg}, 60 \mu \mathrm{~L}, 0.330 \mathrm{mmol}$) giving 19c as a white solid, yield 90%. (Note: Minor diastereomer is given in italic). ${ }^{1} \mathrm{H}$ NMR (400.13 MHz, CDCl_{3}), $\delta 9.33(\mathrm{bs}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.08 (t, $J=7.17 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{dd}, J=5.7,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.31-6.29(\mathrm{~m}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=13.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=12.4$, $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.15(\mathrm{~m}, 2 \mathrm{H})$, 2.92-2.88 (3H), 2.80-2.70(m, 2H), $2.34(\mathrm{dd}, J=14.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), \delta 2.10(\mathrm{dd}, J=14.7$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.66(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{1} \mathrm{H} N M R\left(400.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta$ $8.91(\mathrm{bs}, \mathrm{lH}), 7.46-7.08(\mathrm{~m}, \mathrm{lH}), 6.35(d d, J=5.7,3.0 \mathrm{~Hz}, l \mathrm{H}), 6.21(d d, J=5.6,2.8 \mathrm{~Hz}$, $1 H), 5.03(d d, J=13.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(d d, J=12.3,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(d, J=8.5 \mathrm{~Hz}$, $1 H)$, 3.28-3.21 (m, lH), 3.19-3.15 (m, 2H), 2.92-2.88 (3H), 2.80-2.70 (m, 2H), 2.59 (dd, J $=12.3,8.1 \mathrm{~Hz}, 1 \mathrm{H}), \delta 2.49(d d, J=14.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.66(\mathrm{~m}$, $2 H) ;{ }^{13} \mathrm{C}$ NMR $\left(100.61 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta=165.8,165.3,137.6,137.5,136.1,133.5$, $126.3,122.4,119.5,118.3,111.5,108.6,65.2,60.4,53.5,52.9,48.8,47.9,45.2$, 44.7, 43.3, 37.0, 25.0, 23.9, 23.5, 20.6; (ESI+) calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2}$ (MH+) 416.2360, found 416.2313. ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100.61 \mathrm{MHz}, C D C l_{3}\right), \delta=165.6,163.9,137.7,137.1,135.6,133.1$, 126.6, 122.4, 119.6, 118.3, 111.3, 107.3, 64.5, 60.8, 53.5, 53.1, 48.8, 47.2, 45.0, 44.3, 43.9, 36.8, 25.1, 23.6, 22.8, 20.6; IR (neat): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3329(\mathrm{w}), 2953(\mathrm{w}), 1649(\mathrm{~s})$, 1416 (s), 1300 (m), 1233 (m), 733 (s); HRMS (ESI+) calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 416.2360 , found 416.2313.

Compound 20: General procedure 2 was followed using imine ($54.4 \mathrm{mg}, 0.498 \mathrm{mmol}$), phenylglyoxylic acid ($123.9 \mathrm{mg}, 0.648$ mmol) and 4-(2-isocyanoethyl)-1,2-dimethoxybenzene (97.3 $\mathrm{mg}, 0.648 \mathrm{mmol}$) giving 20 as a white solid, yield 75%.
$[\alpha]_{\mathrm{D}}{ }^{20}=+25.0(\mathrm{c}=0.240, \mathrm{MeCN}) .{ }^{1} \mathrm{H}$ NMR $(500.23 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right), \delta 7.96(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), \delta 7.64(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), \delta$
$7.51(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), \delta 6.78-6.67(\mathrm{~m}, 3 \mathrm{H}), \delta 6.59-6.55(\mathrm{~m}$, $1 \mathrm{H}), \delta 4.44(\mathrm{~s}, 1 \mathrm{H}), \delta 3.85(\mathrm{~s}, 3 \mathrm{H}), \delta 3.83(\mathrm{~s}, 3 \mathrm{H}), \delta 3.65-3.51(\mathrm{~m}, 3 \mathrm{H}), \delta 3.26(\mathrm{dd}, J=$ $2.7,11.0 \mathrm{~Hz}, 2 \mathrm{H}), \delta 3.02-2.96(\mathrm{~m}, 1 \mathrm{H}), \delta 2.81-2.71(\mathrm{~m}, 3 \mathrm{H}), \delta 2.01-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.87-$ $1.77(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.27(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125.78 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta=190.9,170.2,165.9,148.9,147.6,134.9,132.6,131.2,129.8$, 129.1, 120.7, 111.9, 111.3, 66.1, 55.8, 55.8, 53.5, 45.7, 42.8, 41.1, 40.7, 35.3, 32.8, 32.1, 25.8; IR (neat): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3312(\mathrm{w}), 2930(\mathrm{w}), 1676(\mathrm{~m}), 1632(\mathrm{~s}), 1514(\mathrm{~s}), 1443(\mathrm{~s})$, 1260 (s), 1234 (s), 1140 (s), 1024 (s), 802 (m), 718 (s); HRMS (ESI+) calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 451.2155$, found 451.2217 .

Compound 21: General procedure 2 was followed using imine ($54.2 \mathrm{mg}, 0.496 \mathrm{mmol}$), phenylglyoxylic acid ($97.2 \mathrm{mg}, 0.647$ mmol) and 2-(2-isocyanoethyl)-1H-indole ($110.3 \mathrm{mg}, 0.648 \mathrm{mmol}$) giving 22 as a yellow solid, yield 75%.
$[\alpha]_{\mathrm{D}}{ }^{20}=-9.3(\mathrm{c}=0.215, \mathrm{MeCN}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500.23 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta$ 8.07 ($\mathrm{bs}, 1 \mathrm{H}$), 7.96-7.93 (m, 2H), 7.65-7.62 (m, 2H), 7.48-7.45 (m, 2H), 7.38-7.35 (m, 1H), 7.22-7.12 (m, 3H), 6.49 (bs, 1H), 4.44 (d, J $=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.58(\mathrm{~m}, 3 \mathrm{H}), 3.25(\mathrm{dd}, J=11.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}) 3.05-3.01(\mathrm{~m}, 2 \mathrm{H})$, 2.88-2.84 (m, 1H), 2.77-2.74 (m, 1H), 1.99-1.23 (m, 6H); ${ }^{13} \mathrm{C}$ NMR (125.78 MHz, $\left.\mathrm{CDCl}_{3}\right), \delta=191.1,170.2,166.0,136.4,134.9,132.7,129.8,129.1,127.3,122.6,122.1$, $119.4,118.7,112.6,111.3,66.2,53.5,45.7,42.8,39.9,32.9,32.2,25.9,25.2$; IR (neat): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3304(\mathrm{w}), 2945(\mathrm{w}), 1670(\mathrm{~m}), 1628(\mathrm{~s}), 1530(\mathrm{~m}), 1447(\mathrm{~s}), 1227(\mathrm{~s}), 741$ (s), 718 (s), 665 (s); HRMS (ESI+) calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$430.2052, found 430.2116.

Compound 22: General procedure 3 was followed using imine ($74.7 \mathrm{mg}, 0.684 \mathrm{mmol}$), 4-methyl-2-oxopentanoic acid (115.8 mg , $110 \mu \mathrm{~L}, 0.890 \mathrm{mmol}$) and 2-(2-isocyanoethyl)-1 H -indole (151.4 $\mathrm{mg}, 0.890 \mathrm{mmol}$) giving 23 as an orange solid, yield 56%.
$[\alpha]_{\mathrm{D}}{ }^{20}=-19.7(\mathrm{c}=0.305, \mathrm{MeCN}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500.23 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=8.10(\mathrm{t}, \mathrm{J}=21.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{q}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{p}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.06-7.04 (m, 1H), 6.43-6.33 (m, 1H), 4.31 (d, J = 2.2 Hz, 1H), 3.76-3.68 (m, 1H), 3.62$3.49(\mathrm{~m}, 2 \mathrm{H}), 3.47-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.93(\mathrm{~m}, 3 \mathrm{H}), 2.81-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.58(\mathrm{~m}$, $2 \mathrm{H}), 2.20-1.29(\mathrm{~m}, 7 \mathrm{H}), 0.97-0.90(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125.78 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta=199.6$, $169.2,163.3,135.3,126.3,121.2,121.1,118.4,117.7,111.7,110.2,65.9,52.8,48.4$, $47.1,43.9,42.0,38.7,31.7,31.3,24.8,24.1,23.0,21.6,21.4$. IR (neat): $v_{\max }\left(\mathrm{cm}^{-1}\right)=$ 3314 (w), 2955 (w), 1624 (s), 1532 (w), 1454 (m), 1358 (m), 1227 (m), 741 (s), 424 (s).; HRMS (ESI +) calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 410.2438$, found 410.2431 .

Compound 23: General procedure 2 was followed using $20(90.0 \mathrm{mg}$, 0.200 mmol) and TMSOTf ($57.8 \mathrm{mg}, 47 \mu \mathrm{~L}, 0.260 \mathrm{mmol}$) giving 24 as a yellow solid, yield 62%.
(Note: Minor diastereomer is given in italic). $[\alpha]_{\mathrm{D}}{ }^{20}=-186.7(\mathrm{c}=0.225$, $\mathrm{MeCN}) .{ }^{1} \mathrm{H}$ NMR ($500.23 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 7.30-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H})$, $6.53(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{dq}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=8.6,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ (s, 3H), $3.63(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{td}, J=3.3,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=7.7 \mathrm{~Hz})$, 3.13 (dd, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{dt}, J$ $=2.7,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.57(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.28$ $(\mathrm{m}, 1 \mathrm{H}), 1.25-1.16(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{1} H \operatorname{NMR}\left(500.23 \mathrm{MHz}, C D C l_{3}\right), \delta 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.26(\mathrm{~m}$, $3 H), 7.06-7.03(\mathrm{~m}, 2 H), 6.65(\mathrm{~s}, \mathrm{lH}), 4.48(d d d, J=2.0,7.3,20.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(d d, J=$ 9.0, $12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.65(d, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.15-3.07 (m, 1 H), 3.07-3.00 (m, lH), $2.83(d d, J=6.9,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.72(\mathrm{~m}, 2 H), 2.47$ (ddd, $J=1.7$, $5.5,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.59$ (m ,
lH), 1.53-1.46 (m, lH); ${ }^{13} \mathrm{C}$ NMR ($125.78 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta=169.2,165.4,148.4,146.8$, $142.0,129.0,128.3,127.4,126.3,125.5,115.0,110.4,69.5,64.0,55.9,55.8,51.6,47.5$, $40.5,40.0,32.1,31.4,29.0,25.0 ;{ }^{13} C \operatorname{NMR}\left(125.78 \mathrm{MHz}, C D C l_{3}\right), \delta=167.2,163.8$, $148.9,146.9,143.2,128.4,127.9,127.3,127.2,125.8,112.1,110.4,70.2,62.6,56.1$, 55.9, 51.4, 49.9, 39.9, 37.9, 32.1, 31.5, 31.0, 26.7, 24.7; IR (neat): $v_{\max }\left(\mathrm{cm}^{-1}\right)=2934(\mathrm{w})$, 1655 (s), 1512 (m), 1400 (s), 1258 (s), 1221 (s$), 1028$ (m), 750 (m), 714 (m), 698 (m); HRMS (ESI+) calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 433.2049$, found 433.2109

Compound 24: General procedure 3 was followed using 22 ($75.0 \mathrm{mg}, 0.175$ mmol) and TMSOTf ($50.5 \mathrm{mg}, 41 \mu \mathrm{~L}, 0.227 \mathrm{mmol}$) giving 26 as a white solid, yield 83%.
(Note: Minor diastereomer is given in italic). ${ }^{1} \mathrm{H}$ NMR (500.23 MHz , CDCl_{3}): $\delta 9.32(\mathrm{bs}, 1 \mathrm{H}), \delta 7.54-7.12(\mathrm{~m}, 9 \mathrm{H}), 4.82(\mathrm{dd}, J=12.6,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.40(\mathrm{dd}, J=12.2,9.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-2.65(\mathrm{~m}$, $6 \mathrm{H}), \delta 2.16-1.50(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{1} H \operatorname{NMR}\left(500.23 \mathrm{MHz}, C D C l_{3}\right): \delta 9.74(b s, 1 \mathrm{H})$, 7.54-7.12 (m, 9H), $4.92(d d, J=13.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(d d, J=12.7,9.3$ $H z, 1 H$), $3.97(d, J=8.9 \mathrm{~Hz}, 1 H), 3.11-2.65(m, 6 H), \delta 2.16-1.50(m, 6 H) .{ }^{13} \mathrm{C}$ NMR $\left(125.78 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta=164.4,163.4,142.3,135.7,129.4,128.7,126.6,126.3,122.8$, $119.8,118.6,111.5,110.3,67.1,62.9,50.8,49.9,40.5,37.2,31.8,31.2,24.6,20.7 ;{ }^{13} C$ NMR (125.78 MHz, $\left.C D C l_{3}\right), \delta=165.4,163.9,140.6,136.2,130.3,129.0,128.6,126.4$, 126.2, 119.7, 118.6, 111.6, 111.1, 67.1, 63.1, 51.4, 49.4, 39.8, 37.4, 32.2, 31.6, 24.9, 20.6; IR (neat): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3331(\mathrm{w}), 2922(\mathrm{w}), 1649(\mathrm{~s}), 1422(\mathrm{~s}), 1298(\mathrm{~m}), 1234(\mathrm{~m})$, 739 (s), 694 (s), 577 (m), 509 (m); HRMS (ESI +) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 412.1947, found 412.2008.

Compound 25: General procedure 4 was followed using 23 ($96.8 \mathrm{mg}, 0.236$ mmol) and TMSOTf ($68.3 \mathrm{mg}, 56 \mu \mathrm{~L}, 0.307 \mathrm{mmol}$) giving 27 as a white solid, yield 83%.
(Note: Minor diastereomer is given in italic). ${ }^{1} \mathrm{H}$ NMR (500.23 MHz, CDCl_{3}), $\delta 9.35(\mathrm{bs}, 1 \mathrm{H}), 7.48-7.09(\mathrm{~m}, 4 \mathrm{H}), \delta 5.06(\mathrm{dd}, J=13.1,4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.27(\mathrm{dd}, J=9.3,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.12(\mathrm{~m}$, 1 H), 3.00-2.60 (m, 4H), 2.50 (dd, J = 14.7, 6.2, 1H), $2.38(\mathrm{dd}, \mathrm{J}=14.8,6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.13(\mathrm{dd}, \mathrm{J}=14.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.48(\mathrm{~m}, 6 \mathrm{H}), 0.94(\mathrm{~d}, J=4.7$ $\mathrm{Hz}, 3 \mathrm{H}$), 0.93 (d, $J=4.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{1} H \operatorname{NMR}\left(500.23 \mathrm{MHz}, C D C l_{3}\right), \delta 8.97(b s, 1 H), 7.48-$ $7.09(m, 4 H), 5.06(d d, J=13.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(d d, J=12.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(d, J$ $=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.12(\mathrm{~m}, 1 \mathrm{H})$, $), 3.00-2.60(\mathrm{~m}, 4 \mathrm{H}), 2.50(\mathrm{dd}, J=14.7,6.2,1 \mathrm{H}), 2.08$ ($d d, J=14.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.00-1.48 (m, 6 H), 0.91 (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}$), 0.89 (d, $J=3.6$ $\mathrm{Hz}, 3 H) ;{ }^{13} \mathrm{C}$ NMR (125.78 MHz, CDCl_{3}), $\delta=165.6,165.0,136.0,134.0,126.2,122.4$, $119.5,118.3,111.4,108.5,65.1,62.8,51.2,49.3,48.8,39.6,36.9,32.2,31.5,25.0,24.8$, 23.9, 23.6, 20.6; ${ }^{13} \mathrm{C}$ NMR (125.78 MHz, $C D C l 3$), $\delta=165.4,163.8,135.6,133.1,126.6$, $122.4,119.6,118.3,111.3,107.4,64.5,62.7,50.6,49.6,48.6,40.4,36.7,31.8,31.2,25.0$, 24.6, 23.6, 23.0, 20.6; IR (neat): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3349(\mathrm{w}), 2953(\mathrm{w}), 1651(\mathrm{~s}), 1418(\mathrm{~s})$,
$1298(\mathrm{~m}), 1235(\mathrm{~m}), 737(\mathrm{~s}), 511(\mathrm{~m})$; HRMS (ESI+) calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 392.2260 , found 392.2327.

References

1. S. Michaelis and S. Blechert, Chem. Eur. J. 2007, 13, 2358.
2. N. Elders, E. Ruijter, F. J. J. de Kanter, E. Janssen, M. Lutz, A. L. Spek and R. V. A. Orru, Chem. Eur. J. 2009, 6096.
3. V. Köhler, K. R. Bailey, A. Znabet, J. Raftery, M. Helliwell and N. J. Turner, Angew. Chem. Int. Ed. 2010, 49, 2182.
4. A. Znabet, E. Ruijter, F. J. J. de Kanter, V. Köhler, M. Helliwell, N. J. Turner and R. V. A. Orru, Angew. Chem. Int. Ed. 2010, 49, 5289.

Compound 14a

Compound 14b

Compound 14c

Compound 14d

Compound 15a

Compound 15b (major diastereomer)

=-===== CHANNEL $f 1$ 1 usec
dB
MHz
MHz

$\stackrel{(0}{8}$

$\begin{array}{llllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & \mathrm{ppm}\end{array}$

Compound 15b (minor diastereomer)

$\begin{array}{llllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & \mathrm{ppm}\end{array}$

Compound 15c

Compound 16

Compound 18a

Compound 18b

Compound 18c

$\begin{array}{llllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & \mathrm{ppm}\end{array}$

Compound 19a

Compound 19b

Compound 19c

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30

Compound 20

Compound 21

$\begin{array}{lllllllllllllllllll}9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & \mathrm{ppm}\end{array}$

88.77790070 WB
88.77790070
125.7955118

Compound 22

Compound 23 (major diastereomer)

Compound 23 (minor diastereomer)

Compound 24

Compound 25

Crystallographic data

Fig. S1 X-ray crystal structure of compound 14a with atom labels

Fig. S2 X-ray crystal structure of compound 14a with unit cell

