Isoreticular synthesis and modification of frameworks with the

UiO-66 topology

Sergio J. Garibay and Seth M. Cohen*

Department of Chemistry and Biochemistry, University of California, San Diego, 9500

Gilman Drive, La Jolla, California 92093-0358

scohen@ucsd.edu

SUPPORTING INFORMATION

Experimental Methods

General

Starting materials and solvents were purchased and used without further purification from commercial suppliers (Sigma-Aldrich, Alfa Aesar, EMD, TCI, Cambridge Isotope Laboratories, Inc., and others).

Characterization of UiO-66 functionalized frameworks

¹*H NMR Digestion and Analysis*. Approximately 10 mg of microcrystalline UiO-66 was digested by sonication in 570 μ L of d_6 -DMSO and 30 μ L of HF. After complete dissolution of the material, the solution was used to collect a ¹H NMR spectrum. ¹H NMR spectra were recorded on a JEOL ECA spectrometer (500 MHz).

ESI-MS Analysis. Electrospray ionization mass spectrometry (ESI-MS) was performed using a ThermoFinnigan LCQ-DECA mass spectrometer and the data were analyzed using the Xcalibur software suite in negative ion mode. UiO-66 samples were digested by sonicating the materials in a mixture of 10 μ L of HF and 1.0 mL of CH₃CN.

Thermal Gravimetric Analysis. Approximately 10-20 mg of modified BET analyzed UiO-66 samples were used for TGA measurements. Samples were analyzed under a stream of dinitrogen using a TA Instrument Q600 SDT running from room temperature to 800 °C with a scan rate of 5 °C/min.

PXRD Analysis. PXRD data were collected at ambient temperature on a Bruker Advance D8 diffractometer at 40 kV, 40 mA for $K\alpha$ ($\lambda = 1.5418$ Å) with a scan speed of 3°/min, a step size of 0.02° in 20, and a 20 range of 5-45°. Approximately 15 mg of microcrystalline UiO-66 samples were dried at 150 °C for at least 2 h before PXRD

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

analysis. The experimental backgrounds were corrected using the Jade 5.0 software package.

FT-IR Analysis. Approximately 5-10 mg of modified UiO-66 was dried at 150 °C for at least 2 h before FT-IR analysis. FT-IR spectra were collected using a Bruker ALPHA-P FT-IR spectrometer with a diamond ATR.

BET Surface Area Analysis. BET surface area (m^2/g) measurements were collected at 77 K using dinitrogen on an ASAP 2020 using the volumetric technique. Approximately 40-60 mg of activated UiO-66 samples were evacuated on a vacuum line for 5-18 h. The sample was then transferred to a preweighed sample tube and degassed at 105 °C for approximately 24 h or until the outgas rate was <5 µmHg. The sample tube was reweighed to obtain a consistent mass for the degassed UiO-66 samples.

Figure S1. ¹HNMR Spectra of digested UiO-66 and UiO-66 functionalized samples.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Figure S2. FTIR spectra of modified UiO-66-NH₂ samples.

Figure S3. Magnification of the FTIR spectra of modified UiO-66-NH₂ samples.

Figure S4. ESI-MS of digested UiO-66-AM1.

Figure S5. ESI-MS of digested UiO-66-AM4.

Figure S6. ESI-MS of digested UiO-66-AM7.

Figure S7. ESI-MS of digested UiO-66-AMMal.