Supporting Information Cooperative Catalysis in Highly Enantioselective Mannich-type Three-component Reactions of a Diazoacetophenone with an Alcohol and an Imine

Xinfang Xu, Yu Qian, Liping Yang and Wenhao Hu*

Institute of Drug Discovery and Development, and Department of Chemistry, East
China Normal University, Shanghai, 200062, China
E-mail: whu@chem.ecnu.edu.cn

Table of Contents

1. General \& Materials

2. General Procedure

3. NMR, Chiral HPLC and HRMS(ESI) analysis data of the products
4. Control Experiment and Derivation
5. References
6. NMR and Chiral HPLC analysis figures of the products

General: HRMS (ESI) Mass spectra were recorded on Bruker micrOTOF-II mass spectrometer. NMR spectra were recorded on a Brucker- 400 MHz spectrometer. HPLC analysis was performed on Shimadzu (SPD-20AV UV-VIS Detector and LC-20AT Liquid Chromatograph Pump). Chiralpak OD, AD, AD-H, IA were purchased from Daicel Chemical Industries, LTD. The racemic standards used in HPLC studies were prepared according to the general procedure by using racemic BINOL derivatived phosphoric acid catalysts.

Materials: Dichloromethane was distilled from calcium hydride. Diazo compounds $\mathbf{1}$ were prepared according to the literature procedure. ${ }^{1}$ Imines $\mathbf{3}$ were prepared by condensation of corresponding aldehydes and amines. ${ }^{2}$ Cyclohexanecarboxaldehyde was purchased from ACROS. Chiral phosphoric acid $\mathbf{5}$ were prepared according to the literature procedure. ${ }^{3}$ Solvents for the column chromatography were distilled before using.

General Procedure for the Enantioselective Three-component Reaction of

 9-anthryl Alcohol (2a) With Various Diazo Compounds 1 and Imines 3 (Table 2 in the manuscript):To an flame-dried vial, $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(0.004 \mathrm{mmol})$, chiral phosphoric acid $\mathbf{5 f}$ (0.01 $\mathrm{mmol})$, alcohol 2a $(0.20 \mathrm{mmol})$, imine $\mathbf{3}(0.20 \mathrm{mmol})$ and $5 \AA$ MS $(0.1 \mathrm{~g})$ were added and charged with 1.5 mL toluene. Diazo compound $1(0.24 \mathrm{mmol})$ in 0.5 mL of toluene was then added over 1 h period of time via a syringe pump at room temperature. After completion of the addition, the reaction mixture was stirred for additional 3 h and followed by addition of saturated aqueous $\mathrm{NaHCO}_{3}(0.1 \mathrm{~mL})$ to quench the reaction. Solvents were removed to give the crude products, which were subjected to ${ }^{1} \mathrm{H}$ NMR spectroscopy analysis for the determination of diastereoselectivity. The crude products were purified by flash chromatography on silica gel (eluent: EtOAc/light petroleum ether $=1: 50 \sim 1: 30$) to give the pure products.

(4a): yield 85%; 90% ee, determined by HPLC (Daicel Chirapak IA, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol/EtOH $=450: 25: 25,254 \mathrm{~nm}$, Retention time: $\mathrm{t}_{\text {major }}=9.2 \mathrm{~min}$, and $\left.\mathrm{t}_{\text {minor }}=12.4 \mathrm{~min}.\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 4.80$ $(\mathrm{br}, 1 \mathrm{H}), 4.90(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{~m}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.66$ (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.30-8.07$ (m, 23H), 8.49 (s, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): $\delta(\mathrm{ppm}) 59.36,64.71$, $84.52,113.58,117.41,124.30,124.97,126.40,127.04$, 127.15, 127.37, 128.44, 128.74, 128.81, 128.82, 128.86, 131.18, 131.29, 133.34; 135.93, 139.69, 146.62, 198.57; HRMS (ESI) calcd for $\mathrm{C}_{36} \mathrm{H}_{29} \mathrm{NNaO}_{2}(\mathrm{M}+\mathrm{Na})^{+}$ 530.2091 , found 530.2088.

(4b): yield 88%; 91% ee, determined by HPLC (Daicel Chirapak AD-H, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol/EtOH $=450: 25: 25,254 \mathrm{~nm}$, Retention time: $\mathrm{t}_{\text {major }}=15.5 \mathrm{~min}$, and $\mathrm{t}_{\text {minor }}=21.3 \mathrm{~min}$.); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 3.60(\mathrm{~s}, 3 \mathrm{H}), 4.50$ (br, 1H), $4.80(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.51$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.13-8.03 (m, 18H), 8.46 $(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 55.59$, 60.31, 64.72, 84.85, 114.47, 114.87, 124.30, 124.97, 126.39, 127.15, 127.22, 127.35, 128.42, 128.45, 128.68, 128.83, 131.16, 131.29, 133.24; 136.06, 139.78, 140.84, 151.96, 198.80; HRMS (ESI) calcd for $\mathrm{C}_{37} \mathrm{H}_{31} \mathrm{NNaO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 560.2196$, found 560.2205 .

(4c): yield $83 \% ;[\alpha]_{D}^{20}=-23.0^{\circ} \quad\left(c=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 92 \%$ ee, determined by HPLC (Daicel Chirapak IA, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol$/ \mathrm{EtOH}=450: 25: 25$, 254 nm , Retention time: $\mathrm{t}_{\text {major }}=11.4 \mathrm{~min}$, and $\mathrm{t}_{\text {minor }}=$ 20.0 min .); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta(\mathrm{ppm}) 2.27$ $(\mathrm{s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 4.51(\mathrm{br}, 1 \mathrm{H}), 4.77(\mathrm{~m}, 1 \mathrm{H}), 5.04$ (m, 1H), $5.25(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.22(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.35-8.03 (m, 13H), $8.46(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 21.10,55.55$, 59.92, 64.62, 84.95, 114.39, 114.79, 124.08, 124.91, 126.28, 126.89, 127.21, 127.55, 128.46, 128.53, 128.66, 128.78, 129.06, 131.12, 131.23; 133.20, 136.57, 136.74, 140.87, 151.82, 198.87; HRMS (ESI) calcd for $\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{NNaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$574.2353, found 574.2366.

(4d): yield 78\%; 92\% ee, determined by HPLC (Daicel Chirapak IA, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol/EtOH $=450: 25: 25,254 \mathrm{~nm}$, Retention time: $\mathrm{t}_{\text {major }}=15.6 \mathrm{~min}$, and $\mathrm{t}_{\text {minor }}=21.0 \mathrm{~min}$.); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$): $\delta(\mathrm{ppm}) 3.60(\mathrm{~s}, 3 \mathrm{H})$, $4.50(\mathrm{br}, 1 \mathrm{H}), 4.69(\mathrm{~m}, 1 \mathrm{H}), 4.97(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.12$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), \quad 7.34-8.01(\mathrm{~m}, 13 \mathrm{H})$, $8.46(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right.$,): $\delta(\mathrm{ppm}) 55.59,59.78,64.46,84.29$, $114.56,114.88$, 121.26, 123.90, 125.06, 126.51, 126.60, 128.58, 128.98, 129.04, 129.80, 131.08, 131.21, 131.42, 134.14, 138.52, 139.83, 140.22, 152.26, 197.72; HRMS (ESI) calcd for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{FNNaO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 578.2102$, found 578.2127.

(4e): yield $73 \% ;[\alpha]_{D}{ }^{20}=-34.0^{\circ} \quad\left(c=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 98 \%$ ee, determined by HPLC (Daicel Chirapak IA, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol/EtOH $=450: 25: 25$, 254 nm , Retention time: $\mathrm{t}_{\text {major }}=15.2 \mathrm{~min}$, and $\mathrm{t}_{\text {minor }}=$ 25.0 min .); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): ~ \delta(\mathrm{ppm}) 3.61$ $(\mathrm{s}, 3 \mathrm{H}), 4.50(\mathrm{br}, 1 \mathrm{H}), 4.72(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{~m}, 1 \mathrm{H}), 5.31$ $(\mathrm{d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.79-8.01(\mathrm{~m}$, $17 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$: $\delta(\mathrm{ppm}) 55.60,59.57,64.40,84.05,113.69,114.53,114.77,124.09,125.02,126.43$, 126.90, 128.27, 128.34, 128.43, 128.79, 128.91, 131.14, 131.24, 133.38; 138.27, $140.39,152.10,198.56$; HRMS (ESI) calcd for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{ClNNaO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 594.1806$, found 594.1793.

(4f): yield $70 \% ;[\alpha]_{D}{ }^{20}=-35.0^{\circ} \quad\left(c=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 93 \%$ ee, determined by HPLC (Daicel Chirapak IA, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol/EtOH $=450: 25: 25$, 254 nm , Retention time: $\mathrm{t}_{\text {major }}=14.6 \mathrm{~min}$, and $\mathrm{t}_{\text {minor }}=$ 33.1 min); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta(\mathrm{ppm}) 3.60$ $(\mathrm{s}, 3 \mathrm{H}), 4.50(\mathrm{br}, 1 \mathrm{H}), 4.70(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{~m}, 1 \mathrm{H}), 5.30$ (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.12 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.35-8.01$ (m, $13 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 55.59,59.59,64.39,83.93$, $114.52,114.73$, $121.10,124.06,125.03,126.44,126.86,128.32,128.60,128.80$, 128.90, 129.16, 131.12, 131.22, 131.34; 133.39, 135.90, 138.80, 140.34, 152.08, 198.53; HRMS (ESI) calcd for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{BrNNaO}_{3}(\mathrm{M}+\mathrm{K})^{+} 638.1301$, found 638.1329.

(4g): yield 75\%; 90\% ee, determined by HPLC (Daicel Chirapak IA, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol/EtOH $=450: 25: 25,254 \mathrm{~nm}$, Retention time: $\mathrm{t}_{\text {major }}=10.9 \mathrm{~min}$, and $\mathrm{t}_{\text {minor }}=19.4 \mathrm{~min}$.); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta(\mathrm{ppm}) 3.59$ (s, 3H), $4.57(\mathrm{br}, 1 \mathrm{H}), 4.77(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.98(\mathrm{~m}, 17 \mathrm{H})$, 8.43 (s, 1 H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta(\mathrm{ppm})$ $55.55,59.73,64.24,83.46,114.53,114.64,123.95,125.02,125.14,125.17,126.39$, $126.71,127.22,128.24,128.83,128.89,128.93,131.08,131.16,133.45,135.82$, 140.15, 143.99, 152.12, 198.37; HRMS (ESI) calcd for $\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{NNaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$ 628.2070, found 628.2093.

(4h): yield 76\%; 92\% ee, determined by HPLC (Daicel Chirapak IA, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol/EtOH $=450: 25: 25,254 \mathrm{~nm}$, Retention time: $\mathrm{t}_{\text {major }}=13.1 \mathrm{~min}$, and $\mathrm{t}_{\text {minor }}=20.5 \mathrm{~min}$.); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 3.60(\mathrm{~s}, 3 \mathrm{H}), 4.51$ (br, 1H), $4.70(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.52(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.89-8.01(\mathrm{~m}, 17 \mathrm{H}), 8.46$ $(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 55.55$, $59.70,64.37,83.80,114.46,114.69,122.55,123.98,124.98,125.69,126.51,126.81$, 128.28, 128.77, 128.88, 128.97, 129.84, 129.86, 130.42, 131.10, 131.18, 133.41, $135.82,140.27,142.32,152.04,198.42$; HRMS (ESI) calcd for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{BrNNaO}_{3}$ $(\mathrm{M}+\mathrm{Na})^{+} 638.1301$, found 638.1328 .

(4i): yield 82%; syn: 90% ee, determined by HPLC (Daicel Chirapak IA, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, hexane / isopropanol / TFA = 90: $10: 0.1,254 \mathrm{~nm}$, Retention time: $\mathrm{t}_{\text {major }}=9.7 \mathrm{~min}$, and $\mathrm{t}_{\text {minor }}=21.8 \mathrm{~min}$.), anti: $63 \% \mathrm{ee}$, determined by HPLC (Daicel Chirapak IA, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, hexane / isopropanol / TFA = 90: 10: 0.1 , 254 nm , Retention time: $\mathrm{t}_{\text {major }}=17.2 \mathrm{~min}$, and $\mathrm{t}_{\text {minor }}=$ 19.3 min .) ; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$, syn): $\delta(\mathrm{ppm})$ $3.64(\mathrm{~s}, 3 \mathrm{H}), 4.58(\mathrm{br}, 1 \mathrm{H}), 5.10(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{~m}, 1 \mathrm{H})$, $5.51(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.86-8.24(\mathrm{~m}, 17 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}),{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right.$, anti): $\delta(\mathrm{ppm}) 3.57(\mathrm{~s}, 3 \mathrm{H}), 5.01(\mathrm{br}, 1 \mathrm{H}), 5.21(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{~m}, 1 \mathrm{H}), 5.34(\mathrm{~m}, 1 \mathrm{H}), 5.62(\mathrm{~d}$, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.49(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.90-8.23(\mathrm{~m}$, $17 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right.$, syn \& anti): $\delta(\mathrm{ppm}) 55.49,55.59$, 58.67, 59.64, 63.93, 64.73, 80.11, 80.77, 114.28, 114.55, 114.84, 124.21, 124.27,
124.84, 125.00, 126.31, 126.41, 127.40 , 128.22, 128.32, 128.59, 128.72, 128.88, $128.95,131.21,131.30,132.52,133.20,136.17,140.28,152.17,198.80$; HRMS (ESI) calcd for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{BrNNaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$638.1301, found 638.1329.

(4k): yield $71 \% ;[\alpha]_{D}{ }^{20}=-17.4^{\circ} \quad\left(c=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 93 \%$ ee, determined by HPLC (Daicel Chirapak IA, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol/TFA $=90: 10: 0.1$, 254 nm , Retention time: $\mathrm{t}_{\text {major }}=11.5 \mathrm{~min}$, and $\mathrm{t}_{\text {minor }}=$ 27.3 min); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta(\mathrm{ppm}) 3.60$ $(\mathrm{s}, 3 \mathrm{H}), 4.03(\mathrm{br}, 1 \mathrm{H}), 4.57(\mathrm{~m}, 1 \mathrm{H}), 4.91(\mathrm{~m}, 1 \mathrm{H}), 5.39$ (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.49(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.87-8.13(\mathrm{~m}$, $16 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$: $\delta(\mathrm{ppm}) 55.57,59.56,64.12,83.59,114.57,114.84,123.78,125.16,126.71,126.95$, $127.01,128.54,128.84,129.14,129.21,129.68,130.10,131.13,131.33,131.57$, 132.22, 133.73, 135.66, 138.97, 139.31, 152.31, 198.83; HRMS (ESI) calcd for $\mathrm{C}_{37} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{NNaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$628.1417, found 628.1450 .

(4I): yield 68\%; $[\alpha]_{D}{ }^{20}=-11.0^{\circ} \quad\left(c=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 93 \%$ ee, determined by HPLC (Daicel Chirapak AD-H, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, hexane $/$ isopropanol $/ \mathrm{EtOH}=450: 25$: $25,254 \mathrm{~nm}$, Retention time: $\mathrm{t}_{\text {major }}=6.8 \mathrm{~min}$, and $\mathrm{t}_{\text {minor }}=$ 20.8 min.$) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm})$ $0.55-1.76(\mathrm{~m}, 11 \mathrm{H}), 3.26(\mathrm{br}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~m}$, $1 \mathrm{H}), 4.99(\mathrm{~m}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J$ $=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-8.41(\mathrm{~m}, 13 \mathrm{H}), 8.52(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 25.50,26.10,26.14,30.10,30.45,40.97,55.72$, $61.89,63.29,79.16,114.17,114.43,124.43,125.10,126.45,127.95,128.48,128.72$, $129.01,131.35,131.51,132.67,136.58,142.67,151.32$, 200.72; HRMS (ESI) calcd for $\mathrm{C}_{37} \mathrm{H}_{37} \mathrm{NNaO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 566.2666$, found 566.2693.

(4m): yield 67\%; 94\% ee, determined by HPLC (Daicel Chirapak IA, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol/TFA = 90: 10: 0.1, 254nm, Retention time: $\mathrm{t}_{\text {major }}=12.9 \mathrm{~min}$, and $\mathrm{t}_{\text {minor }}=25.6$ min.); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$,): $\delta(\mathrm{ppm}) 3.61$ ($\mathrm{s}, 3 \mathrm{H}$), 4.48 (br, 1H), $4.65(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~m}, 1 \mathrm{H})$, $5.32(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.19 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, 6.92 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.35-8.01 (m, 12H), $8.47(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$,): $\delta(\mathrm{ppm}) 55.59,59.78$, 64.46, 84.29, 114.56, 114.88, 121.26, 123.90, 125.06, 126.51, 126.60, 128.58, 128.98, $129.04,129.80,131.08,131.21,131.42,134.14,138.52,139.83,140.22,152.26$,
197.72; HRMS (ESI) calcd for $\mathrm{C}_{37} \mathrm{H}_{29} \mathrm{BrClNNaO}_{3}(\mathrm{M}+\mathrm{K})^{+}$672.0912, found 672.0895.

(4n): yield 77%; 92% ee, determined by HPLC (Daicel Chirapak IA, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol/EtOH/TFA = 500: 20: 20: 1, 254 nm , Retention time: $\mathrm{t}_{\text {major }}=18.3 \mathrm{~min}$, and $\mathrm{t}_{\text {minor }}$ $=40.0 \mathrm{~min}.) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta(\mathrm{ppm})$ $3.61(\mathrm{~s}, 3 \mathrm{H}), 4.46(\mathrm{br}, 1 \mathrm{H}), 4.65(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~m}$, $1 \mathrm{H}), 5.32(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.20$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.53$ (d, $J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.24-8.01(\mathrm{~m}, 12 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 55.60$, 59.75, 64.54, 84.24, 114.57, 114.98, 121.31, 123.07, 123.87, 125.08, 126.59, 126.73, $128.62,128.99,129.08,130.18,131.09,131.21,131.42,131.45,136.12,137.58$, $138.45,140.18,152.32$, 197.63; HRMS (ESI) calcd for $\mathrm{C}_{37} \mathrm{H}_{29} \mathrm{Br}_{2} \mathrm{NNaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$ 716.0406, found 716.0351.

(4o): yield 74\%; 87% ee, determined by HPLC (Daicel Chirapak AD-H, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol/EtOH $=450: 25: 25,254 \mathrm{~nm}$, Retention time: $\mathrm{t}_{\text {major }}=15.8 \mathrm{~min}$, and $\mathrm{t}_{\text {minor }}=37.6 \mathrm{~min}$.); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 3.68(\mathrm{~s}, 3 \mathrm{H}), 4.03$ (br, 1H), $4.70(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.58$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.80-8.19(\mathrm{~m}, 16 \mathrm{H}), 8.53$ $(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 57.01$, 60.66, 66.46, 86.67, 116.02, 116.48, 120.07, 121.06, 123.09, 125.42, 126.53, 128.09, $128.43,128.64,130.51,130.60,130.68$, 131.35, 132.57, 132.78, 133.42, 135.47, $138.72,140.10,140.89,153.78$, 203.55; HRMS (ESI) calcd for $\mathrm{C}_{37} \mathrm{H}_{29} \mathrm{Br}_{2} \mathrm{NNaO}_{3}$ $(\mathrm{M}+\mathrm{Na})^{+} 716.0406$, found 716.0422 .

Control experiment of 6 with 3 b was carried out in the strand conditions.

Deprotection of the product 4b: ${ }^{4}$

4b, $\mathrm{Ar}^{2}=9$-anthryl
91\% ee

7, yield 68%
$[a]_{D}^{25}=8.7^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$

To a solution of compound $\mathbf{4 b}(0.1 \mathrm{mmol})$ and $\mathrm{NaI}(30 \mathrm{mg}, 2 \mathrm{eq})$ in 1.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was added $30 \mu \mathrm{~L}$ TMSCl ($2 \sim 2.5 \mathrm{eq}$) via a syringe pump at room temperature under an argon atmosphere. The reaction temperature was warmed to $30{ }^{\circ} \mathrm{C}$ and stirred over night. The reaction mixture was poured into water and stirred for 10 min . The aqueous phase was extracted with EtOAc. The organic phase was separated, washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, and dried over anhydrous MgSO_{4}. After evaporating the solvents, the crude product was purified by flash chromatography on silica gel (eluent: EtOAc/light petroleum ether $=1: 50 \sim 1: 30$) to give compound 7 in 68% yield. After recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{EtOAc}$ and light petroleum ether, give the optical pure product in 47% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=8.7^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right.$) $) ; 99 \%$ ee, determined by HPLC (Daicel Chirapak OD, flow rate $0.9 \mathrm{~mL} / \mathrm{min}$, hexane/isopropanol $=90: 10,254 \mathrm{~nm}$, Retention time: $\mathrm{t}_{\text {minor }}=17.8 \mathrm{~min}$, and $\mathrm{t}_{\text {major }}=$ 20.5 min) ; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta(\mathrm{ppm}) 3.68(\mathrm{~s}, 3 \mathrm{H}), 4.86(\mathrm{~d}, J=2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.59(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, 6.92-7.18 (m, 5H), 7.53-7.90 (m, 5H); HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NNaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$ 370.1419, found 370.1408. Reference Data: ${ }^{4}[\alpha]_{D}{ }^{25}=-9.58^{\circ}$ (c $=0.748, \mathrm{CHCl}_{3}, 99 \%$ ee); syn diastereomer: $\mathrm{t}_{\text {major }}=18.1 \mathrm{~min}$, and $\mathrm{t}_{\text {minor }}=20.9 \mathrm{~min}$, (Chiralcel OD, 254 nm , heptane $/ i-\mathrm{PrOH}=90: 10,0.9 \mathrm{~mL} / \mathrm{min}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 3.66(\mathrm{~s}$, $3 \mathrm{H}), 4.82(\mathrm{dd}, J=1.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.66$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.88(\mathrm{~m}, 3$ H).

Oxidation of the product 4b: ${ }^{5}$

4b, $\mathrm{Ar}^{2}=9$-anthryl 91\% ee

8, $\mathrm{Ar}^{2}=9$-anthryl
yield 53% (35% 4b recovered)

To a solution of compound $\mathbf{4 b}(0.19 \mathrm{mmol})$ in 2.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(106 \mathrm{mg}, 0.76 \mathrm{mmol})$, and m-CPBA ($98 \mathrm{mg}, 0.57 \mathrm{mmol}$) was added in portions at room temperature. About 5 min later, the reaction mixture was quenched by aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, and extracted with ether, washed with cold aqueous NaHCO_{3} and aqueous NaCl in sequence. Then the organic phase was dried over
anhydrous MgSO_{4}. After evaporating the solvents, the crude product was purified by flash chromatography on silica gel (eluent: EtOAc/light petroleum ether $=1: 80 \sim 1: 50$) to give compound $\mathbf{8}$ in 53% yield (with 35% of the material recovered). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta(\mathrm{ppm}) 3.63(\mathrm{~s}, 3 \mathrm{H}), 4.85(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.12(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.46(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.19-6.97(\mathrm{~m}, 4 \mathrm{H}), 7.19$ $-8.03(\mathrm{~m}, 18 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H})$; HRMS (ESI) calcd for $\mathrm{C}_{37} \mathrm{H}_{31} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$576.2151, found 576.2137.

References:

1 a) M. P. Doyle, M. A. McKervey, T. Ye, in Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, John Wiley \& Sins, New York, 1998, pp. 1-46.
2 a) M. Shiino, Y. Watanabe, Umezawa, K. Bioorg. Med. Chem. 2001, 9, 1233-1240; b) W. Hu, X. Xu, J. Zhou, W. Liu, H. Huang, J. Hu, L. Yang, L. Gong, J. Am. Chem. Soc. 2008, 130, 7782-7783.
3 a) D. Uraguchi, M. Terada, J. Am. Chem. Soc. 2004, 126, 5356-5357; b) T. Akiyama, H. Morita, J. Itoh, K. Fuchibe, Org. Lett. 2005, 7, 2583-2585; c) R. I. Storer, D. E. Carrera, Y. Ni, D. W. C. MacMillan, J. Am. Chem. Soc. 2006, 128, 84-86; d) D. Uraguchi, K. Sorimachi, M. Terada, Angew. Chem. 2006, 118, 2312-2315; Angew. Chem. Int. Ed. 2006, 45, 2254-2257; (e) M. Yamanaka, I. Junji, K. Fuchibe, T. Akiyama, J. Am Chem. Soc. 2007, 129, 6756-6764; (f) Q. Guo, H. Liu, C. Guo, S. Luo, Y. Gu, L. Gong, J. Am. Chem. Soc. 2007, 129, 3790-3791; g) J. Jiang, J. Yu, X. Sun, Q. Rao, L. Gong, Angew. Chem. 2008, 120, 2492-2496; Angew. Chem. Int. Ed. 2008, 47, 2458-2462; h) T. Masahiro, U. Daisuke, S. Keiichi, S. Hideo, PCT Int. Appl. 2005, WO2005070875.
4 a) A. O. George, C. N. Subhash, G. B.G. Balaram, M. Ripudaman, J. Org. Chem. 1979, 44, 1247-1271; b) E. J. Michael, A. L. Mark, J. Org. Chem. 1977, 42, 3761-3764; c) B. M. Trost, L. R. Terrell, J. Am. Chem. Soc. 2003, 125, 338-339.

5 a) S. Matsunaga, T. Yoshida, H. Morimoto, N. Kumagai, M. Shibasaki, J. Am. Chem. Soc. 2004, 126, 8777-8785; b) M. B. Andrus, E. J. Hicken, J. C. Stephens, D. K. Bedke, J. Org. Chem. 2005, 70, 9470-9479.

D:1WHHบHZ6XXFXXF09284Cals

D: IWHH

言 $\quad \cdots \frac{\approx}{\text { a }}$

4d

臬

$$
\begin{aligned}
& \begin{array}{l}
\text { 足 } \\
\text { ion } \\
\stackrel{\pi}{0}
\end{array}
\end{aligned}
$$

思
40

4 g

Δ

ppn
-19772

4 m

D:IWHHUZ6XXFIXXF111122H.als

E

8
8
8
8

点

40

xxfA－1－race

```
发验单位: ecnu
空晦的向: 2009-10-11, 18-06:05
```


colume：La
M．P，：n－hex／t proti：EtOH＝450：25：25
Detection：254nt
flow： $1.0 \mathrm{ml} / \mathrm{min}$
实倠者：xxf
年时间，2009－10－12：21：16：26
积分方法：面积眱一法

分析结果表

桻号	峰名	保留时间	峰高	峰面积

$\mathrm{xxfA}-1-\mathrm{cat}$

买验単付：ecnu

实验者：xxf
报告时间：2009－10－12，21：13：42
积分方法：面积归一法

实验内容間介；
column：Ih
N．P．$: n$－hex／i－prOH：EtOH $=450, \quad 25: 25$
Detection：254nm
flow：1．Oml／min

xxfA－2－race


```
串㣛时用, 2009-10-12 20-55:43
```



```
colume：\(A D-H\)
1．P．：\(n\)－hex／ 4 －grolt：Et（HI－450，25：25
Detect toni254cn
flas：1．Onil／nin
```

实组者, 8×9
拱先分方忶: $2009-10-12,20: 55: 45$

峰号	峰名	保用时间	峰高	峰面积

xxfA－2－cat

要析时届：2009－10－12，20：30－55

andam：All－H

for：L．Ant／oin

分析结果表

崔㔯	隹分析结果㖪				
	矤名	保留时间	桻敞	浲面积	含逿
9		15.470	36502．020	1016982.438	
近		21．347	1623．470	50772.902	4． 7651
			38525．489	1067755．340	100， 0000

xxfA－9－race

矢察伥代

zulimint：

Detection：254ne

积分方法：直积边一法

xxfA－9－cat

実验等倍：ecnu
为验㣨间：2009－10－15，20：14：28

实验者：xxf
报告时间：2009－10－15，20：14：33
积分方法：面积归一法

colum：IA
M．P．$: n-$ hex $/ \mathrm{i}-\mathrm{prOH} ; \mathrm{EtOH}=450: 25: 25$
Detection：254nm
tlow：1．Oul $/ \mathrm{min}$

峰号	峰名	保留时间	分析结果表	
1	11.350	峰高	38039.211	峰面积

xxfA－14－race

排告分方法： $2009-10-21$,

时開，2009－10－21，21：33：01

家途内花第价
columal： LA ： Et －hex $: \mathrm{Pr}-\mathrm{CH}=450: 25: 25$
Detection：254n＂
flow：1． $0 \mathrm{ml} / \mathrm{nin}$
隹㦈图（xxf－14－race．mdy）

xxfA－14－cat

験时目：2（X）9－10－21，21：36：29

实验者：xxf
报告时间：2009－10－21，21：36：34
积分方法：面积归一法

容验内容简介；
column：1A
L． $\mathrm{P},: \mathrm{n}$－hex：Et $\mathrm{OH}: \mathrm{iPrOH}=450: 25: 25$
Detection：254nI．
flow：1．Onl／ain

xxfA－8－race

实嬐者： xxf
阳告时国，2009－10－21，21：40：25
大实险时荷；2009－10－21，21：31：52

积分方法：面积珰一法

色诰凅（xxf－8－race．mdy

分析结果表

峰号	峰名	保留时间	峰高	峰面积

xxfA－8－cat

庆姶单位：ecnu
公䏩时间：2009－10－21，22：14：21

实验内宽简介：
column：Li
L． P ．： n －hex：EtOH： $\mathrm{iPrOH}=450: 25: 25$
Detection： 254 nm
flow：1．0nl／atil

分析结果表

峰号	峰名	保留时间	峰高	峰面积

xxfA－6－race

越验单侢：ecnu
㸛时间：2009－10－14，21：44：44

笑验内容简介：
coluan：IA
M．P．：n－hex $/ \mathrm{i}-\mathrm{prOH}: \mathrm{EtOH}=450: 25: 25$
Detection：254nm
©low：1． $\mathrm{Oml} / \mathrm{min}$

分析结果表

峰号	峰名	保留时间	峰高	峰面积

xxfA－6－cat

安験单位 ecmis
雰会胕间 $2009-10-14,22: 17: 54$

夷验者： xxf
告时闸：2009－10－14，22：18：04积分方法：面积归一法

实验者： xxf
誏告时间：2009－10－14，23：04：39
积分方法：面积归一法

实験内容舞介，

columin：TA
4．P．： $\mathrm{n}^{-h e x} / \mathrm{i}-$ prot $: \mathrm{Et}$ OH $=450: 25: 25$
Detection：254na
10\％：L．Onl／nin

峰号	峰名	保留时间	峰高	峰面积

xxf－12－race

买驗单校：ecnu
实唁考；$x x f$
报告时间： $2009-10-20,21: 56 ; 04$
实敛时国，2009－10－20，21：55：44

艮告时间： $2009-10-20,21: 56: 04$

完梪内突简介：
colum：Ih
M．P．：n hex：EtOH： $\mathrm{Pr} \mathrm{Pr}=450: 25: 25$
Detection：254nin
flow：1．Om1／min
借浩（xxf－12－race．mdy）

峰号	峰名	保留时间	峰高	峰面积

xxfA－12－cat

实俭单依：ecnu
头渗时间：2009－10－20，21：18：00
孉备文件：C：\浙大管达

实堅者： xxf
报整时间：2009－10－20，21：18：29积分方法：而积归一法

头验内䆟鲜介：
columa：IA
U．P．：n－hex：Etoh：i ProH $=450: 25: 25$
Detection：254nm
flow：1． $0 \mathrm{ml} / \mathrm{nin}$

色诺图（xxf－12－cat，mdy）

峰号	峰名	保留时间	峰高	峰面积

xxfA－10－race

```
实照椑依: ecau (10-19,18:63:13
*)
```



```
columa:IA
L.P.:\mp@subsup{n}{}{-hex}:EtOH: iPrOHF-450:25:25
Detection:254nm
flow:1,0ml/min
```

实验者: xxf

	分析结果表				锋面积

N2000 数据工作站

xxfA－10－cat

实验者：xxf
告成 2009－10－19，19：44：40

和公方法：面积归一法

强验内各简介；
columa：
M．P．：n－hex：EtOH： iPr （XH $=450: 25: 25$
Detect ion： 254 num
flow：1．Onl／min

xxfA－11－race

 （20）2009－10－22， $21: 06 ; 30$（1）

积分方法：面积幽一法

```
*)
N.P. :n-hex: [PrOH:TFA=90:10:0.1
petection:254am
```


xxfA－11－cat

察险考：xxf
生时旬，2004－10－23，19：44：17积分方法：亩积归一法

准姶内客样介
coliam！1A
Colimi：IA
Detection：254nm
f ）ov： $1 .(\mathrm{ml} / \mathrm{min}$

分析结果表

峰号	峰名	保留时间	峰高	峰面积

xxfA－19－race

$\begin{aligned} & \text { 实险単倍: ecnu } \\ & \text { 实脸时: 2009-10-23, 21:33:41 } \end{aligned}$
实验内容第介；
columin：18
Detection：254nt
I．Oal／mi

报責时閧：2009－10－23，

分析结果表

峰号	峰名	保留时间	峰高	峰面积		含量
1	11.488	59867.754	1269871.750	50.4522		
2	27.250	24396.568	1247107.500	49.5478		
总计		84264.322	2516979.250	100.0000		

xxfA－19－cat

```
共雃俺偣: ecmu
```



```
Columi:LA
Detection:254nm
flov:1.0ml/nin
```


告时间; 2009-10-23, 22:04:51

峰号	峰名	保留时间	峰高	峰面积

$\mathrm{xxfA}-24-\mathrm{race}$

夷给隼伦 ecro
为险时局 $=2009-12-122,20: 35: 57$

零表者： $8 x 1$
设告时州；2009－12－02，20：35：59
积分方法：並积归一法

Y．P，n－hex：1Prkt
flection：294in

分析结果表

峰号	峰名	保留时闻	峰高	峰面积

$x \times f A-24-c a t$

齐枪单伤 exno
7．7．4：2009－12－02，20：13：59

colum：AD－ 1 I

Dethet ion：254m
flow：3，（101／aio

xxfA－20－1－race

colvonila
K．P． 2 －Hes： 1 －Prolit：TFA－90： $10,0.1$
betectinnt254um
rlown 1．lintrain

分析结果表

峰号	峰名	保留时间	峰高	峰面积

$\mathrm{xxfA}-20-1-\mathrm{cat}$

盆寝单倍：venu
苏階时困：2009－11－08，14：11：33

实噱者：XXf
售告时间1 2009－11－（08，13；14：25
积分方法：酸租一法

实頻内新简介：
columan：IA
M．P．：n－hex： 1 －ProH：TFA＝90： $10: 0.1$
Detection：254nn
flow： 1 ．Oml／min

实验者： xxf
报告时间：2009－11－08，14：11：36
积分方法：面积归一法

分析结果表

峰号	峰名	保留时间	峰高	峰面积

```
xxfA-22-race
究脌単位: ecm
**発时间; 2009-11-08,17:08:33}
宪雍者时间: 2xf 2009-11-08, 17:08:35
    公方流:209-11-08
**技内察䈠介
column:IA
4.P. : n-hex: 1-PrOH:EtOH:TFA=500, 20: 20:1
Betection:254na
flow:1.Onil/rin
```


分析结果表

| 峰号 | 峰名 | 保留时间 | 峰高 | 峰面积 |
| :---: | ---: | :---: | :---: | :---: | 含量 \quad| 1 | 18.847 | 74562.047 | 5235161.000 | 50.6721 |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 38.885 | 51818.406 | 5096290.000 | 49.3279 |
| 总计 | | 126380.453 | 10331451.000 | 100.0000 |

$x \times f A-22-c a t$

实验单位：ecnu
突验胿间 $12009-11-08,18: 38: 24$

头多内客简介
colum：Ih
3．P ：in hex： $1-\mathrm{PrOH}: \mathrm{Et}$ OH：TFA＝500：20：20：1
Detertion：254nm
flcw－1 $0 \mathrm{ml} / \mathrm{min}$

色榰图（0911070009．org

分析结果表

	峰名	保留时间	峰高	峰面积

时 $2004-12-01$ ，21：51：08
和分方法：皐积日一站

M．P．in－hiox：iFrou
Derection：25in
flos：1．0ni／oin

N2000 数据工作站

$x \times f \mathrm{~A}-24-\mathrm{cat}$


```
colum:XD-H
L. P, th-hetifrat
```


