# Supporting Information 

# Single-Crystal-to-Single-Crystal Structural Transformation of a Sandwich-like Copper(II) Pyrazolate Complex and their Excellent Catalytic Performances for MMA Polymerization 

Hong-Xi Li, ${ }^{a}$ Zhi-Gang Ren, ${ }^{a}$ Dong Liu, ${ }^{a}$ Yang Chen, ${ }^{a}$ Jian-Ping Lang, ${ }^{,{ }^{a}}$ Zhen-Ping Cheng, ${ }^{a}$ Xiu-Lin Zhu, ${ }^{*, a}$ and Brendan F. Abrahams ${ }^{b}$

${ }^{a}$ College of Chemistry, Chemical Engineering and Materials Science, Suzhou University, Suzhou 215123, Jiangsu, P. R. China.
${ }^{\boldsymbol{b}}$ School of Chemistry, University of Melbourne, Victoria 3010, Australia

## Table of Contents

Experimental Section ..... S4GeneralPreparation of $\left[\mathrm{Cu}_{7}(\mathrm{OH})_{2}(\mathrm{OAc})_{6}(\mathrm{dmnpz})_{6}(\mathrm{EtOH})_{6}\right](\mathbf{1})$
Preparation of $\left[\mathrm{Cu}_{7}(\mathrm{OH})_{2}(\mathrm{OAc})_{6}(\mathrm{dmnpz})_{6}(\mathrm{MeOH})_{6}\right]$ ..... (2)
Preparation of $\left[\mathrm{Cu}_{7}(\mathrm{OH})_{2}(\mathrm{OAc})_{6}(\mathrm{dmnpz})_{6}\right]$ ..... (3)
Preparation of $\left[\mathrm{Cu}_{7}(\mathrm{OH})_{2}(\mathrm{OAc})_{6}(\mathrm{dmnpz})_{6}(\mathrm{MeCN})_{4}\right]$ ..... (4)
Preparation of $\left[\mathrm{Cu}_{7}(\mathrm{OH})_{2}(\mathrm{OAc})_{6}(\mathrm{dmnpz})_{6}(\mathrm{DMF})_{2}\right]$ ..... (5)
X-ray Crystallographic Study
MMA Polymerization
References
Table S1. Summary of crystallographic data for $\mathbf{1 , 2 , 4} 4$ and $5 \cdot 2 \mathrm{CHCl}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ ..... S8
Figure S1. PXRD patterns of samples of 1 ..... S10
Figure S2. PXRD patterns of samples of 2 ..... S10
Figure S3. View of the molecular structure of 1 with $30 \%$ thermal ellipsoids. All H atoms are
omitted for clarity ..... S11
Figure S4. View of the molecular structure of 2 with $30 \%$ thermal ellipsoids. All H atoms are
omitted for clarity ..... S11
Figure S5. PXRD patterns of samples of 3 ..... S12
Figure S6. PXRD patterns of samples of 4 ..... S12
Figure S7. View of the molecular structure of 4 with $30 \%$ thermal ellipsoids. All H atoms areomitted for clarityS13

Figure S8. PXRD patterns of samples of 5

Figure S9. View of the molecular structure of $\mathbf{5}$ with $30 \%$ thermal ellipsoids. All H atoms are omitted for clarity

Figure S10. View of the movement of the OH and central Cu centres in complexes 1, 2, 4 and 5. All other atoms are omitted for clarity S15

Table S2. Polymerization of MMA catalysized by 1, 2, 3, 4, 5 and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ S16

Table S3. Polymerization of MMA catalysized by 1 and $\mathbf{2}^{-}$

Figure S13. The TGA cures of crystals of $\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$. All EtOH or MeOH solvent molecules of $\mathbf{1}$


## Experimental Section

General. Solvents like $\mathrm{N}, \mathrm{N}$ '-dimethylformamide (DMF), MeCN, cyclohexanone (Cy-one) and MMA were dried over $\mathrm{CaH}_{2}$ and distilled in vacuo. All chemicals and reagents were obtained from commercial sources and used as received. The dmnpzH ligand was prepared according to the published procedure. ${ }^{[1]}$ The elemental analyses for $\mathrm{C}, \mathrm{H}, \mathrm{N}$ were performed on a Carlo-Erba CHNO-S microanalyzer. The IR spectra were recorded on a Varian 1000 FT-IR spectrometer as KBr disks (4000-400 $\mathrm{cm}^{-1}$ ). Thermal analysis was performed with a Perkin Elmer TGA-7 thermogravimetric analyzer at a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$ and a flow rate of 100 $\mathrm{cm}^{3} / \min \left(\mathrm{N}_{2}\right)$. XRPD were performed using a PANalytical X'Pert PRO MPD system (PW3040/60). Molecular weight and molecular weight distributions were determined against polystyrene standard by gel permeation chromatography (GPC) on a Waters 1515 apparatus with three HR columns (HR-1, HR-2 and HR-4).

## Preparation of $\left[\mathrm{Cu}_{7}(\mathrm{OH})_{\mathbf{2}}(\mathrm{OAc})_{6}(\mathrm{dmnpz})_{6}(\mathrm{EtOH})_{6}\right](1)$

To a stirred solution of dmnpzH ( $282 \mathrm{mg}, 2 \mathrm{mmol}$ ) in EtOH ( 5 mL ) was added the solution of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(400 \mathrm{mg}, 2 \mathrm{mmol})$ in 5 mL EtOH . The resulting blue solution was stirred overnight at room temperature, forming a large number of blue microcrystalline crystals of 1, which was filtered, washed with EtOH, and briefly dried in air. Yield: $0.546 \mathrm{~g}\left(98 \%\right.$ based on $\left.\mathrm{CuAc}_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right)$. IR ( KBr , pellet): $3461(\mathrm{~m})$, 2979 (w), 2936 (w), 1547 (s), 1466 (s), 1417 (s), 1383 (s), 1358 (s), 1178 (s), 1042 (m), 995 (m), 839 (m), 771 (w), 697 (s), 615 (w), 456 (w) cm ${ }^{-1}$. Anal. Calcd. for $\mathrm{C}_{54} \mathrm{H}_{92} \mathrm{Cu}_{7} \mathrm{~N}_{18} \mathrm{O}_{32}$ : C, 33.26; H, 4.75; N, 12.93; Found: C, 33.54; H, 4.88; N, $12.68 \%$.

## Preparation of $\left[\mathrm{Cu}_{7}(\mathrm{OH})_{\mathbf{2}}(\mathrm{OAc})_{6}(\mathbf{d m n p z})_{6}(\mathrm{MeOH})_{6}\right]$ (2)

Immersing 1 into MeOH for four hours resulted in the formation of 2, which was collected by filtration, and dried in air. IR (KBr, pellet): 3471 (m), 2977 (w), 2932 (w), 1549 (s), 1464 (m), 1417 (m), 1382 (m), 1358 (m), 1177 (s), 1104 (m), 1020 (m), 993 (m), 838 (m), 769 (w), 691 (s), 615 (w), 598 (w), 446 (w) cm ${ }^{-1}$. Anal. Calcd. for $\mathrm{C}_{48} \mathrm{H}_{80} \mathrm{Cu}_{7} \mathrm{~N}_{18} \mathrm{O}_{32}$ : C, 30.89; H, 4.32; N, 13.51; Found: C, 30.66; H, 3.99; N, $13.24 \%$.

## Preparation of $\left[\mathrm{Cu}_{7}(\mathrm{OH})_{\mathbf{2}}(\mathrm{OAc})_{6}(\mathrm{dmnpz})_{6}\right]$ (3)

Compound 1 was heated at about $140^{\circ} \mathrm{C}$ in $\mathrm{N}_{2}$ for 5 hours to give complex 3. IR $(\mathrm{KBr}$, pellet): 3490 (m), 2938 (w), 2934 (w), 1548 (s), 1463 (m), 1417 (m), 1381 (m), 1357 (s), 1176 (s), 1102 (w), 1018 (m), 994 (m), 837 (s), 768 (m), 691 (m), 616 (w), 453 (w) $\mathrm{cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{42} \mathrm{H}_{56} \mathrm{Cu}_{7} \mathrm{~N}_{18} \mathrm{O}_{26}$ : C, 30.14; H, 3.37; N, 15.06; Found: C, 30.43 ; H, 3.55 ; N, $15.45 \%$.

## Preparation of $\left[\mathrm{Cu}_{7}(\mathrm{OH})_{2}(\mathrm{OAc})_{6}\left(\mathrm{dmnpz}_{6}(\mathrm{MeCN})_{4}\right]\right.$ (4)

The similar work-up to that used in the isolation of 2 afforded blue crystals of 4. IR (KBr, pellet): 3455 (w), 3003 (w), 2943 (w), 2254 (m), 1548 (s), 1469 (m), 1417 (m), 1382 (m), 1357 (m), 1178 (s), 1041 (w), 994 (w), 836 (m), 769 (w), 697 (s), 618 (w), 455 (w) $\mathrm{cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{50} \mathrm{H}_{68} \mathrm{Cu}_{7} \mathrm{~N}_{22} \mathrm{O}_{26}$ : C, 32.67; H, 3.73; N, 16.77; Found: C, 32.54; H, 4.03; N, 16.43 \%.

## Preparation of $\left[\mathrm{Cu}_{7}(\mathrm{OH})_{2}(\mathrm{OAc})_{6}(\mathrm{dmnpz})_{6}(\mathrm{DMF})_{2}\right](5)$

The solution of $\mathbf{1}$ in DMF and $\mathrm{CHCl}_{3}(\mathrm{v} / \mathrm{v}=8: 1)$ was carefully layered by $\mathrm{Et}_{2} \mathrm{O}$ and was allowed to stand at ambient temperature. Blue crystals of $5 \cdot 2 \mathrm{CHCl}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ were formed several days later and collected by filtration, washed with $\mathrm{CHCl}_{3}$, and dried in
air. IR (KBr, pellet): 3456 (w), 2933 (w), 1664 (s), 15458 (s), 1467 (m), 1415 (m), 1385 (m), 1356 (m), 1256 (w), 1177 (s), 1100 (m), 1063 (w), 994 (w), 836 (m), 769 (w), $663(\mathrm{~m}), 617(\mathrm{w}), 483(\mathrm{w}) \mathrm{cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{50} \mathrm{H}_{68} \mathrm{Cu}_{7} \mathrm{~N}_{22} \mathrm{O}_{26}$ : C, 31.68; H, 3.88 ; N, 15.39; Found: C, 31.63; H, 4.12; N, 15.54 \%.

## X-ray Crystallographic Study

Single crystals of $\mathbf{1}$ were obtained directly from the slow diffusion of the EtOH solution of dmnpzH into the EtOH solution of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$. Single crystals of 2 or 4 were obtained by immersing $\mathbf{1}$ in MeOH or MeCN for 30 minutes. Single crystals of $5 \cdot 2 \mathrm{CHCl}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ were obtained directly from the above preparation. Diffraction intensities of $\mathbf{1}, 2,4$ and $\mathbf{5} \cdot 2 \mathrm{CHCl}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ were collected on a Rigaku Mercury CCD X-ray diffractometer (Mo $\mathrm{K} \alpha, \lambda=0.71073 \AA$ ). The crystals of 1, 2, 4 and $5 \cdot 2 \mathrm{CHCl}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ were mounted at the top of a glass fiber with grease at 223 K in a stream of gaseous nitrogen. Cell parameters were refined on all observed reflections by using the program CrystalClear (Rigaku and MSc, Ver. 1.3, 2001). The collected data were reduced by the program CrystalClear, and an absorption correction (multi-scan) was applied. The reflection data were also corrected for Lorentz and polarization effects.

The crystal structures of $\mathbf{1}, \mathbf{2}, \mathbf{4}$ and $\mathbf{5} \cdot 2 \mathrm{CHCl}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ were solved by direct methods and refined on $F^{2}$ by full-matrix least-squares techniques with SHELXTL-97 program. ${ }^{[2]}$ All the non-hydrogen atoms were refined anisotropically. All hydrogen atoms were introduced at the calculated positions and included in the structure-factor calculations. All the calculations were performed on a Dell workstation using the

CrystalStructure crystallographic software package (Rigaku and MSC, Ver.3.60, 2004). Crystal data along with data collection and refinement parameters for $1,2,4$ and $\mathbf{5} \cdot 2 \mathrm{CHCl}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ are summarized in Table S1.

## MMA Polymerization

The polymerization experiments were performed under an atmosphere of oxygen-free, dry nitrogen. A typical procedure was described as follows. A Schenk tube containing the complex was evacuated and flushed with nitrogen for three times. Deoxygenated solvent and MMA were introduced into the tube. The tube was immersed into an oil bath that was pre-heated to the desired temperature. At different time intervals, each sample was withdrawn with a degassed syringe into MeOH to precipitate the resulting polymer, which was filtered off and washed with MeOH and dried in vacuo to a constant weight.

## References

[1] Morgan, G. T.; Ackerman, I. J. Chem. Soc., 1923, 123, 1308-1318.
[2] (a) Sheldrick, G. M. SHELXS-97, Program for Solution of Crystal Structures, University of Göttingen, Germany, 1997. (b) Sheldrick, G. M. SHELXL-97, Program for Refinement of Crystal Structures, University of Göttingen, Germany, 1997.

Table S1. Summary of crystallographic data for $\mathbf{1 , 2 , 4}$ and $\mathbf{5} \cdot 2 \mathrm{CHCl}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$

| Compound | $\mathbf{1}$ | $\mathbf{2}$ |
| :--- | :--- | :--- |
| Empirical Formula | $\mathrm{C}_{54} \mathrm{H}_{88} \mathrm{Cu}_{7} \mathrm{~N}_{18} \mathrm{O}_{32}$ | $\mathrm{C}_{48} \mathrm{H}_{80} \mathrm{Cu}_{7} \mathrm{~N}_{18} \mathrm{O}_{32}$ |
| Formula Weight | 1946.27 | 1866.15 |
| Crystal System | monoclinic | trigonal |
| Space Group | $P 2_{1} / c$ | $R-3 c$ |
| $a(\AA)$ | $13.329(2)$ | $18.778(3)$ |
| $b(\AA)$ | $18.527(3)$ | $18.778(3)$ |
| $c(\AA)$ | $16.144(3)$ | $35.187(7)$ |
| $\alpha\left(^{\circ}\right)$ |  |  |
| $\beta\left(^{\circ}\right)$ | $101.400(3)$ | 120 |
| $\gamma\left({ }^{\circ}\right)$ |  | $10745(3)$ |
| $V\left(\AA^{3}\right)$ | $3907.8(11)$ | 6 |
| $Z$ | 2 | 1.730 |
| $\rho_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ | 1.654 | 5718 |
| $\mathrm{~F}(000)$ | 1994 | 2.136 |
| $\mu\left(\mathrm{MoK} \alpha, \mathrm{cm}^{-1}\right)$ | 1.962 | 0.0944 |
| $R^{a}$ | 0.0442 | 0.1839 |
| $R_{w}{ }^{b}$ | 0.0908 | 1.183 |
| $G O F^{c}$ | 1.048 |  |

To be continued Table S1.

| Compound | 4 | $5 \cdot 2 \mathrm{CHCl}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ |
| :--- | :--- | :--- |


| Empirical Formula | $\mathrm{C}_{54} \mathrm{H}_{74} \mathrm{Cu}_{7} \mathrm{~N}_{24} \mathrm{O}_{26}$ | $\mathrm{C}_{55} \mathrm{H}_{76} \mathrm{Cl}_{6} \mathrm{Cu}_{7} \mathrm{~N}_{20} \mathrm{O}_{29}$ |
| :--- | :--- | :--- |
| Formula Weight | 1920.22 | 2136.89 |
| Crystal System | triclinic | triclinic |
| Space Group | $P-1$ | $P-1$ |
| $a(\AA)$ | $11.638(2)$ | $13.717(7)$ |
| $b(\AA)$ | $13.075(3)$ | $14.320(9)$ |
| $c(\AA)$ | $13.262(3)$ | $14.657(3)$ |
| $\alpha\left({ }^{\circ}\right)$ | $100.86(3)$ | $62.46(6)$ |
| $\beta\left({ }^{\circ}\right)$ | $93.47(3)$ | $62.25(6)$ |
| $\gamma\left({ }^{\circ}\right)$ | $104.97(3)$ | $80.88(8)$ |
| $V\left(\AA^{3}\right)$ | $1901.8(7)$ | $2253.6(19)$ |
| $Z$ | 1 | 1 |
| $\rho_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ | 1.677 | 1.575 |
| $F(000)$ | 977 | 1086 |
| $\mu\left(\mathrm{MoK} \alpha, \mathrm{cm}^{-1}\right)$ | 2.011 | 1.879 |
| $R^{a}$ | 0.0638 | 0.1357 |
| $R_{w}{ }^{b}$ | 0.1042 | 0.1939 |
| $G O F^{c}$ | 1.085 | 1.192 |

$\left.{ }^{[a]} R=\Sigma\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right||\Sigma| F_{\mathrm{o}} \mid{ }^{[\mathrm{b}]} R_{\mathrm{w}}=\left\{w \Sigma\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma w\left|F_{\mathrm{o}}\right|^{2}\right\}\right\}^{1 / 2[\mathrm{cc}]} \mathrm{GOF}=\left\{\Sigma w\left(\left|F_{\mathrm{o}}\right|-\mid F_{\mathrm{c}}\right)^{2} /(M-N)\right\}^{1 / 2}$,
where $M$ is the number of reflections and $N$ is the number of parameters.


Figure S1. PXRD patterns for 1. (a) simulated; (b) a single-phase polycrystalline sample of 1; (c) a sample generated from immersing 2 into EtOH overnight; (d) a sample generated from immersing 3 into EtOH for 4 hours; (e) a sample generated from immersing 4 into EtOH overnight; (f) a sample generated from immersing 5 into EtOH overnight.


Figure S2. PXRD patterns for 2. (a) simulated; (b) a sample generated from immersing 1 into MeOH overnight; (c) a sample generated from exposing 1 to a MeOH vapor under pure $\mathrm{N}_{2}$ for 0.5 d ; (d) a sample generated from exposing 3 to a MeOH vapor under pure $\mathrm{N}_{2}$ for 0.5 d ; (e) a sample generated from immersing 3 into MeOH for 4 hours; (f) a sample generated from immersing 4 into MeOH overnight; (g) a sample generated from immersing 5 into MeOH overnight.


Figure S3. Molecular structure of 1 with $30 \%$ thermal ellipsoids. All H atoms are omitted for clarity. Symmetry code: A: $-x,-y+1,-z$.



Figure S4. Molecular structure of 2 with $30 \%$ thermal ellipsoids. All H atoms are omitted for clarity. Symmetry codes: A: $-x+y+1,-x+1, z ; \mathrm{B}: y+1 / 3,-x+y+2 / 3,-z+2 / 3 ; \mathrm{C}: x$ $-y+1 / 3, x-1 / 3,-z+2 / 3 ; \mathrm{D}:-y+1, x-y, z ; \mathrm{E}:-x+4 / 3,-y+2 / 3,-z+2 / 3$.


Figure S5. PXRD patterns for 3. (a) a sample generated from heating 1 at $140^{\circ} \mathrm{C}$ for 5 hours; (b) sample generated from heating 2 at $140^{\circ} \mathrm{C}$ for 5 hours; (c) a sample generated from heating 4 at $140{ }^{\circ} \mathrm{C}$ for 5 hours; (d) a sample generated from heating 5 at $140{ }^{\circ} \mathrm{C}$ for 5 hours; (e) a sample generated from immersing 3 into cyclohexanone overnight.


Figure S6. PXRD patterns for 4. (a) simulated; (b) a single-phase polycrystalline sample of 4; (c) a sample generated from immersing 1 into MeCN overnight; (d) a sample generated from immersing 2 into MeCN overnight; (e) a sample generated from immersing $\mathbf{3}$ in MeCN overnight; (f) a sample generated from immersing 5 into MeCN overnight.



Figure S7. Molecular structure of 4 with $30 \%$ thermal ellipsoids. All H atoms are omitted for clarity. Symmetry code: A: $-x+1,-y,-z+1$.


Figure S8. PXRD patterns for 5. (a) simulated; (b) a sample generated from immersing 1 into DMF/ $\mathrm{CHCl}_{3}$ overnight; (c) a sample generated from immersing 2 into $\mathrm{DMF} / \mathrm{CHCl}_{3}$ overnight; (d) a sample generated from immersing 3 into $\mathrm{DMF} / \mathrm{CHCl}_{3}$ overnight; (e) a sample generated from immersing 4 into DMF/ $\mathrm{CHCl}_{3}$ overnight.



Figure S9. Molecular structure of 5 with $30 \%$ thermal ellipsoids. All H atoms are omitted for clarity. Symmetry code: A: $-x,-y+2,-z+1$.

Compound 1


Compound 2


Compound 4
Compound 5


Figure S10. View of the movement of the OH and central Cu centres in complexes 1, 2, 4 and 5.
All other atoms are omitted for clarity.

Table S2. Polymerization of MMA catalysized by $1,2,3,4,5$ and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

| run ${ }^{\text {a }}$ | catalyst | Time <br> (h) | T <br> $\left({ }^{\circ} \mathrm{C}\right)$ | Solvent | $\frac{M M A}{\text { catalyst }}$ | Yield ${ }^{\text {b }}$ <br> (\%) | $\mathrm{M}_{\mathrm{n}}$ (g/mol) | $P D I I^{\text {c }}$ | Stereochemistry ${ }^{\mathrm{d}}{ }^{(\%}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | mm | mr | rr |
| 1 | 1 | 5 | 20 | EtOH | 300 | - | - | - |  |  |  |
| 2 | 1 | 5 | 40 | EtOH | 300 | - | - | - |  |  |  |
| 3 | 1 | 5 | 40 | EtOH | 600 | - | - | - |  |  |  |
| 4 | 1 | 5 | 60 | EtOH | 300 | - | - | - |  |  |  |
| 5 | 1 | 5 | 60 | EtOH | 600 | - | - | - |  |  |  |
| 6 | 1 | 5 | 80 | EtOH | 300 | - | - | - |  |  |  |
| 7 | 1 | 5 | 80 | EtOH | 600 | - | - | - |  |  |  |
| 8 | 2 | 5 | 20 | MeOH | 300 | - | - | - |  |  |  |
| 9 | 2 | 5 | 40 | MeOH | 300 | - | - | - |  |  |  |
| 10 | 2 | 5 | 40 | MeOH | 600 | - | - | - |  |  |  |
| 11 | 2 | 5 | 60 | MeOH | 300 | - | - | - |  |  |  |
| 12 | 2 | 5 | 60 | MeOH | 600 | - | - | - |  |  |  |
| 13 | 2 | 5 | 80 | MeOH | 300 | - | - | - |  |  |  |
| 14 | 2 | 5 | 80 | MeOH | 600 | - | - | - |  |  |  |
| 15 | 3 | 20 | R.T. | Cy-one | 600 | $<2$ | - | - |  |  |  |
| 16 | 3 | 5 | 40 | Cy-one | 300 | 94 | 22223 | 1.27 | 2 | 31 | 67 |
| 17 | 3 | 5 | 40 | Cy-one | 400 | 92 | 22515 | 1.29 | 3 | 31 | 66 |
| 18 | 3 | 5 | 40 | Cy-one | 500 | 88 | 25835 | 1.29 | 2 | 28 | 70 |
| 19 | 3 | 5 | 40 | Cy-one | 600 | 76 | 41269 | 1.28 | 3 | 30 | 67 |
| 20 | 3 | 5 | 40 | Cy-one | 900 | 64 | 51023 | 1.28 | 3 | 32 | 65 |
| 21 | 3 | 5 | 40 | Cy-one | 1200 | 60 | 36903 | 1.34 | 2 | 30 | 68 |
| 22 | 3 | 5 | 40 | Cy-one | 2200 | 54 | 57443 | 1.36 | 2 | 30 | 68 |
| 23 | 3 | 5 | 40 | Cy-one | 4000 | 37 | 96756 | 1.51 | 2 | 32 | 66 |
| 24 | 3 | 5 | 40 | Cy-one | 10000 | 20 | 120800 | 1.56 | 3 | 33 | 64 |
| 25 | 3 | 5 | 60 | Cy-one | 300 | 92 | 20539 | 1.15 | 3 | 28 | 69 |
| 26 | 3 | 5 | 60 | Cy-one | 400 | 90 | 17947 | 1.20 | 2 | 28 | 70 |
| 27 | 3 | 5 | 60 | Cy-one | 500 | 91 | 19862 | 1.29 | 3 | 32 | 65 |
| 28 | 3 | 5 | 60 | Cy-one | 600 | 86 | 22809 | 1.23 | 2 | 30 | 68 |
| 29 | 3 | 5 | 60 | Cy-one | 900 | 74 | 34576 | 1.29 | 3 | 34 | 63 |
| 30 | 3 | 5 | 60 | Cy-one | 1200 | 78 | 35197 | 1.38 | 3 | 33 | 64 |
| 31 | 3 | 5 | 60 | Cy-one | 2200 | 70 | 47247 | 1.51 | 3 | 34 | 63 |
| 32 | 3 | 5 | 80 | Cy-one | 300 | 92 | 18254 | 1.34 | 3 | 33 | 64 |


| 33 | 3 | 5 | 80 | Cy-one | 400 | 90 | 21602 | 1.37 | 3 | 34 | 63 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 34 | 3 | 5 | 80 | Cy-one | 500 | 88 | 22103 | 1.39 | 4 | 34 | 62 |
| 35 | 3 | 5 | 80 | Cy-one | 600 | 90 | 29306 | 1.40 | 4 | 35 | 61 |
| 36 | 3 | 5 | 80 | Cy-one | 900 | 79 | 33797 | 1.43 | 3 | 34 | 63 |
| 37 | 3 | 5 | 80 | Cy-one | 1200 | 69 | 45873 | 1.65 | 4 | 35 | 61 |
| 38 | 3 | 5 | 80 | Cy-one | 1500 | 90 | 42180 | 1.89 | 4 | 36 | 60 |
| 39 | 4 | 5 | 60 | MeCN | 300 | - | - | - |  |  |  |
| 40 | 4 | 5 | 60 | MeCN | 400 | - | - | - |  |  |  |
| 41 | 4 | 5 | 60 | MeCN | 600 | - | - | - |  |  |  |
| 42 | 4 | 20 | 60 | MeCN | 600 | <2 | - | - |  |  |  |
| 43 | 4 | 5 | 80 | MeCN | 300 | 25 | 278636 | 1.91 | 3 | 32 | 65 |
| 44 | 4 | 5 | 80 | MeCN | 400 | 29 | 285480 | 1.96 | 4 | 34 | 62 |
| 45 | 4 | 5 | 80 | MeCN | 600 | 41 | 217830 | 2.39 | 4 | 35 | 61 |
| 46 | 4 | 5 | 80 | MeCN | 900 | 77 | 146145 | 1.95 | 4 | 35 | 61 |
| 47 | 5 | 5 | 60 | DMF | 300 | - | - | - |  |  |  |
| 48 | 5 | 5 | 60 | DMF | 400 | - | - | - |  |  |  |
| 49 | 5 | 5 | 60 | DMF | 500 | - | - | - |  |  |  |
| 50 | 5 | 5 | 80 | DMF | 300 | - | - | - |  |  |  |
| 51 | 5 | 5 | 80 | DMF | 400 | - | - | - |  |  |  |
| 52 | 5 | 5 | 80 | DMF | 500 | - | - | - |  |  |  |
| 53 | 5 | 5 | 120 | DMF | 300 | 77 | 94367 | 2.32 | 6 | 38 | 56 |
| 54 | 5 | 5 | 120 | DMF | 400 | 53 | 88797 | 2.02 | 6 | 39 | 55 |
| 55 | 5 | 5 | 120 | DMF | 500 | 38 | 93149 | 1.84 | 5 | 37 | 58 |
| 56 | $1{ }^{\text {e }}$ | 5 | 40 | Cy-one | 100 | 32 | 98545 | 1.34 | 3 | 33 | 64 |
| 57 | $1 '$ | 5 | 40 | Cy-one | 300 | 40 | 71598 | 1.68 | 3 | 33 | 64 |
| 58 | $1 '$ | 5 | 40 | Cy-one | 400 | 41 | 82908 | 1.50 | 3 | 31 | 66 |
| 59 | 1 ' | 5 | 40 | Cy-one | 500 | 39 | 69854 | 1.81 | 4 | 33 | 63 |
| 60 | 1 ' | 5 | 40 | Cy-one | 600 | 37 | 82621 | 1.65 | 4 | 35 | 61 |
| 61 | 1 ' | 5 | 60 | Cy-one | 100 | 70 | 39369 | 1.37 | 3 | 31 | 66 |
| 62 | 1 ' | 5 | 80 | Cy-one | 100 | 62 | 30395 | 1.41 | 4 | 33 | 63 |
| 62 | 1' | 5 | 80 | Cy-one | 200 | 68 | 43599 | 1.46 | 4 | 35 | 61 |

(a) $\mathrm{V}_{\mathrm{MMA}}: \mathrm{V}_{\text {solvent }}=1: 4$; (b) yield: weight of polymer obtained/weight of monomer used; (c) Determined by GPC analysis in THF, calibrated to a polystyrene standard; (d) stereoregularity is based on ${ }^{1} \mathrm{H}$ NMR spectroscopic analyses; (e) $\mathbf{1}^{\mathbf{\prime}}=\mathbf{C u A C} \mathbf{C}_{2} \cdot \mathbf{H}_{\mathbf{2}} \mathbf{O}$

Table S3. Polymerization of MMA catalysized by complexes 1 and 2

| Entry $^{\mathrm{a}}$ | catalyst | Time (h) | $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | Solvent | $\frac{M M A}{\text { catalyst }}$ | Yield $^{\mathrm{b}}(\%)$ | $\mathrm{M}_{\mathrm{n}}(\mathrm{g} / \mathrm{mol})$ | PDI $^{\mathrm{c}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | $\mathbf{1}$ | 5 | 40 | Cy-one | 600 | 67 | 33657 | 1.27 |
| 2 | $\mathbf{1}$ | 5 | 40 | Cy-one | 900 | 65 | 47996 | 1.22 |
| 3 | $\mathbf{1}$ | 5 | 60 | Cy-one | 600 | 85 | 31034 | 1.20 |
| 4 | $\mathbf{1}$ | 5 | 60 | Cy-one | 900 | 69 | 33709 | 1.30 |
| 5 | $\mathbf{1}$ | 5 | 80 | Cy-one | 600 | 87 | 39820 | 1.33 |
| 6 | $\mathbf{1}$ | 5 | 80 | Cy-one | 900 | 76 | 49373 | 1.37 |
| 7 | $\mathbf{2}$ | 5 | 40 | Cy-one | 600 | 71 | 34573 | 1.24 |
| 8 | $\mathbf{2}$ | 5 | 40 | Cy-one | 900 | 66 | 46543 | 1.27 |
| 9 | $\mathbf{2}$ | 5 | 60 | Cy-one | 600 | 88 | 29879 | 1.28 |
| 10 | $\mathbf{2}$ | 5 | 60 | Cy-one | 900 | 74 | 34576 | 1.29 |
| 11 | $\mathbf{2}$ | 5 | 80 | Cy-one | 600 | 90 | 39965 | 1.37 |
| 12 | $\mathbf{2}$ | 5 | 80 | Cy-one | 900 | 78 | 48978 | 1.41 |
| 13 | $\mathbf{1}$ | 5 | 80 | DMF | 400 | - | - | - |
| 14 | $\mathbf{1}$ | 5 | 120 | DMF | 400 | 55 | 90021 | 2.11 |
| 15 | $\mathbf{2}$ | 5 | 40 | MeCN | 400 | - | - | - |
| 16 | $\mathbf{2}$ | 5 | 60 | MeCN | 400 | - | - | - |
| 17 | $\mathbf{2}$ | 5 | 80 | MeCN | 400 | 27 | 278970 | 2.09 |

(a) $\mathrm{V}_{\mathrm{MMA}}: \mathrm{V}_{\text {solvent }}=1: 4$; (b) yield: weight of polymer obtained/weight of monomer used; (c) Determined by GPC analysis in THF, calibrated to a polystyrene standard.


Figure S11. The TGA cures of crystals of 1, 2 and 3. All EtOH or MeOH solvent molecules of $\mathbf{1}$ and 2 were found to be removed below $140^{\circ} \mathrm{C}$.

