Electronic Supplementary Information

Room-temperature nickel-catalysed cross-couplings of aryl chlorides

with arylzincs

Ning Liu, Li Wang and Zhong-Xia Wang*

CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China. Fax: 86 551 3601592; Tel: 86 551 3603043; E-mail: zxwang@ustc.edu.cn

Scheme S1. Synthesis of complexes Ia-IV

Experimental Section

General

All reactions were performed under nitrogen atmosphere using standard Schlenk and vacuum line techniques. Solvents were distilled under nitrogen over sodium (toluene), sodium/benzophenone (THF, Et₂O and n-hexane) and degassed prior to use. NMP and DMA was dried over 4Å molecular sieves, fractionally distilled under reduced pressure and stored

under nitrogen atmosphere. 2-(Ph₂P)C₆H₄N=CHPh,¹ (DME)NiCl₂,² Ph₂P(S)H,³ Ph₂POH⁴ and Ph(Et)POH⁴ were prepared according to the reported methods. *n*-BuLi was purchased from Acros Organics and used as received. CDCl₃, purchased from Cambridge Isotope Laboratories, Inc., was degassed and stored over 4Å molecular sieves. Zinc dust was purchased from Acros Organics. 2-Furyllithium was prepared from furan by direct lithiation using *n*-BuLi.⁵ PhLi, *p*-MeC₆H₄Li, *o*-MeC₆H₄Li and *p*-Me₂NC₆H₄Li were prepared from corresponding aryl bromides and Li according to literature.⁶ *p*-EtO₂CC₆H₄ZnBr, *p*-EtO₂CC₆H₄ZnI and *p*-MeC₆H₄ZnI was prepared according to the procedure reported in literature.^{7,8} NMR spectra were recorded on a Bruker av300 spectrometer at ambient temperature. The chemical shifts of the ¹H and ¹³C NMR spectra were referenced to TMS or internal solvent resonances. MS data were recorded on an Agilent6890/Micromass GCT-MS spectrometer (EI) or a Thermo Finnigan LCQ Advantage Max ion trap mass spectrometer (ESI). Elemental analysis was performed by the Analytical Center of the University of Science and Technology of China.

1. Synthesis and characterization of compounds 2-5 and nickel complexes I-IV

Synthesis of 2-(Ph₂P)C₆H₄NHCH(Ph)P(O)Ph₂ (2a)

A mixture of 2-(Ph₂P)C₆H₄N=CHPh (0.41 g, 1.12 mmol), Ph₂POH (0.24 g, 1.19 mmol) and toluene (15 mL) was stirred overnight at room temperature and then refluxed for 2 hours. The resulting solution was cooled to room temperature, and added hexane (10 mL) to form white precipitate. The precipitate was collected by filtration and dried in vacuo to afford white solid (0.5 g, 78%), mp 184–187 °C. ¹H NMR (CDCl₃): δ 5.26 (dd, *J* = 9.3, 16.5 Hz, 1H, CH), 5.64 (q, *J* = 8.7 Hz, 1H, Ar), 6.47 (dd, *J* = 5.4, 8.1 Hz, 1H, Ar), 6.53 (t, *J* = 7.5 Hz, 1H, Ar), 6.64 (t, *J* = 6.3 Hz, 1H, Ar), 6.94–6.97 (m, 2H, Ar), 6.98–7.06 (m, 6H, Ar), 7.08–7.26 (m, 11H, Ar), 7.36–7.42 (m, 4H, Ar), 7.57–7.63 (m, 2H, Ar). ¹³C NMR (CDCl₃): δ 57.93 (d, *J* = 75.2 Hz),

111.66, 118.65, 121.33 (d, J = 9.2 Hz), 127.69, 128.15, 128.31, 128.46, 128.61, 128.91, 130.56, 131.79, 131.90, 132.00, 132.18, 132.30, 132.64, 133.71, 133.89, 133.96, 134.14, 134.40, 134.77, 135.17, 135.26, 148.71 (dd, J = 12.1, 18.7 Hz). ³¹P NMR (CDCl₃): δ –26.41, 26.37. Anal. Calcd for C₃₇H₃₁NOP₂: C, 78.29; H, 5.50; N, 2.47. Found: C, 77.95; H, 5.53; N, 2.17.

Synthesis of 2-(Ph₂P)C₆H₄NHCH(Ph)P(O)(Ph)Et (2b)

A mixture of 2-(Ph₂P)C₆H₄N=CHPh (0.46 g, 1.26 mmol), Ph(Et)POH (0.20 g, 1.30 mmol) and toluene (15 mL) was stirred overnight at room temperature and then refluxed for 6 hours. Solvent was removed in vacuo, and Et₂O (10 mL) was added into the residue with vigorous stirring until white precipitate generated. The precipitate was collected by filtration and dried in vacuo to give white solid (0.52 g, 80%), mp 124–128 °C. ¹H NMR (CDCl₃): δ 0.87–1.05 (m, 6H, CH₃), 1.68-1.87 (m, 4H, CH₂), 4.72 (dd, J = 7.5, 13.9 Hz, 1H, CH), 4.83 (dd, J = 9.3, 16.8 Hz, 1H, CH), 5.32 (q, J = 7.6 Hz, 1H, Ar), 5.76 (q, J = 7.5 Hz, 1H, Ar), 6.33 (dd, J = 5.3, 7.5 Hz, 1H, Ar), 6.41 (dd, J = 5.3, 7.8 Hz, 1H, Ar), 6.52 (t, J = 7.3 Hz, 2H, Ar), 6.60 (t, J =5.8 Hz, 1H, Ar), 6.68 (t, J = 6 Hz, 1H, Ar), 6.86 (d, J = 5.7 Hz, 2H, Ar), 6.91–7.05 (m, 7H, Ar). 7.07–7.72 (m. 31H, Ar). ¹³C NMR (CDCl₃): δ 5.21 (d, J = 4.6 Hz), 5.42 (d, J = 4.5 Hz), 18.37 (d, J = 4.5 Hz), 19.31, 57.66 (d, J = 71 Hz), 59.05 (d, J = 72 Hz), 111.54 (d, J = 18.7Hz), 118.53 (d, J = 8.5 Hz), 127.54, 127.73, 128.25, 128.37, 128.43, 128.65, 129.00 (d, J = 7.5 Hz), 130.33 (d, J = 14.8 Hz), 131.39 (d, J = 8.1 Hz), 131.80, 132.03, 133.70, 133.96, 134.10, 134.21, 134.26, 134.35, 134.96, 135.26, 135.62, 148.90 (dd, J = 14.9, 29.9 Hz). ³¹P NMR (CDCl₃): δ –24.82, 37.77, 38.26. Anal. Calcd for C₃₃H₃₁NOP₂: C, 76.29; H, 6.01; N, 2.70. Found: C, 75.93; H, 6.21; N, 2.77.

Synthesis of [Ni(Cl){2-(Ph₂P)C₆H₄NCH(Ph)P(O)Ph₂}] (Ia)

To a stirred solution of **2a** (0.50 g, 0.88 mmol) in THF (15 mL) was added dropwise *n*-BuLi (0.36 mL, a 2.5 M solution in hexanes, 0.90 mmol) at about -80 °C. The resulting mixture was warmed to room temperature and stirred for 4 h. This solution was added dropwise to a stirred suspension of (DME)NiCl₂ (0.20 g, 0.91 mmol) in THF (10 mL) at about -80 °C. The mixture was warmed to room temperature and stirred overnight. Volatiles were removed in vacuo and the residue was dissolved in toluene. The resulting solution was filtered and the filtrate was concentrated to afford brown powder (0.38 g, 65%), mp 246–248 °C. ¹H NMR (CDCl₃): δ 4.62 (d, *J* = 7.5 Hz, 1H, CH), 6.08 (t, *J* = 6.6 Hz, 1H, Ar), 6.15 (t, *J* = 7.2 Hz, 1H, Ar), 6.81 (t, *J* = 8.5 Hz, 2H, Ar), 6.99–7.23 (m, 8H, Ar), 7.26–7.31 (m, 3H, Ar), 7.35–7.44 (m, 3H, Ar), 7.54 –7.69 (m, 5H, Ar), 7.79–7.91 (m, 4H, Ar), 8.19-8.25 (m, 2H, Ar). ¹³C NMR (CDCl₃): δ 64.62 (d, *J* = 85.2 Hz), 112.59 (d, *J* = 12.8 Hz), 114.05 (d, *J* = 7.5 Hz), 117.49, 118.22, 125.42, 126.74, 127.82, 127.96, 128.11, 128.40, 128.48, 128.68 (d, *J* = 6.3 Hz), 128.87, 129.25 (d, *J* = 11.7 Hz), 130.84, 132.27 (d, *J* = 9.4 Hz), 132.76, 133.23, 133.35, 133.55 (d, *J* = 10.6 Hz), 135.94, 163.58. ³¹P NMR (CDCl₃): δ 24.91, 58.79. Anal. Calcd for C₃₇H₃₀NOP₂NiCl: C, 67.26; H, 4.58; N, 2.12. Found: C, 67.07; H, 4.55, N, 1.92.

Synthesis of [Ni(Cl){2-(Ph₂P)C₆H₄NCH(Ph)P(O)(Ph)Et}] (IIb)

To a stirred solution of **2b** (0.60 g, 1.15 mmol) in THF (15 mL) was added dropwise *n*-BuLi (0.47 mL, 2.5 M solution in hexanes, 1.17 mmol) at about -80 °C. The resulting mixture was warmed to room temperature and stirred for 4 h. This solution was added dropwise to a stirred suspension of (DME)NiCl₂ (0.26 g, 1.18 mmol) in THF (10 mL) at about -80 °C. The mixture was warmed to room temperature and stirred overnight. Volatiles were removed in

vacuo and the residue was dissolved in toluene. The solution was filtered and the filtrate was concentrated. Et₂O added into the concentrated filtrate to form brown crystals of **2b** (0.36 g, 51%), mp 229–232 °C. ¹H NMR (CDCl₃): δ 0.69–0.79 (m, 3H, CH₃), 1.42–1.70 (m, 2H, CH₂), 4.30 (dd, *J* = 1.9, 6.5 Hz, 1H, CH), 5.99 (dd, *J* = 5.5, 8.6 Hz, 1H, Ar), 6.14 (t, *J* = 6.1 Hz, 1H, Ar), 6.79 (dd, *J* = 7.3, 14.1 Hz, 2H, Ar), 7.23–7.55 (m, 9H, Ar), 7.64 (s, 3H, Ar), 7.83–7.99 (m, 6H, Ar), 8.29-8.44 (m, 2H, Ar). ¹³C NMR (CDCl₃): δ 4.88, 19.88 (d, *J* = 67 Hz), 65.64 (d, *J* = 80.4 Hz), 112.62 (d, *J* = 12.2 Hz), 113.86, 127.81, 128.49, 128.70, 128.86, 129.13, 129.75, 130.27, 130.84, 131.29, 131.42, 132.70, 132.91, 133.03, 133.24, 133.44, 133.59, 136.95, 163.91. ³¹P NMR (CDCl₃): δ 24.83, 71.33. Anal. Calcd for C₃₃H₃₀NOP₂NiCl: C, 64.69; H, 4.94; N, 2.29. Found: C, 64.76; H, 5.15, N, 2.19.

Synthesis of 2-(Ph₂P)C₆H₄NHCH(Ph)P(S)Ph₂ (3)

A mixture of 2-(Ph₂P)C₆H₄N=CHPh (0.40 g, 1.09 mmol), Ph₂PSH (0.24 g, 1.10 mmol) and toluene (15 mL) was stirred overnight at room temperature and then refluxed for 2 h. The resulting solution was cooled to room temperature. Hexane (10 mL) was added to the solution to form white precipitate. The precipitate was collected by filtration and dried in vacuo to afford white solid (0.52 g, 81%), mp 174–177 °C. ¹H NMR (CDCl₃): δ 2.35 (s, PhC*H*₃), 5.41 (dd, *J* = 9.4, 12.4 Hz, 1H, CH), 6.39 (q, *J* = 8.9 Hz, 1H, Ar), 6.50–6.61 (m, 2H, Ar), 6.75–6.79 (m, 1H, Ar), 6.84–6.88 (m, 2H, Ar), 6.97 (t, *J* = 7.7 Hz, 2H, Ar), 7.03–7.09 (m, 2H, Ar), 7.14–7.17 (m, 1H, Ar), 7.19–7.39 (m, 12H, Ar), 7.41–7.49 (m, 3H, Ar), 7.68–7.79 (m, 2H, Ar), 8.01–8.13 (m, 1H, Ar). ¹³C NMR (CDCl₃): δ 57.51 (d, *J* = 60 Hz), 111.62, 118.23, 127.61, 127.64, 127.81, 128.01, 128.48, 128.55, 128.68, 128.74, 128.83, 128.97, 130.34, 131,64, 131.70, 131.82, 132.11, 132.24, 132.47, 133.98, 134.13, 134.23, 134.48. ³¹P NMR: δ –25.69, 47.19. Anal. Calcd for C₃₇H₃₁NSP₂·0.7C₇H₈: C, 77.64; H, 5.69; N, 2.16. Found: C, 77.72; H, 5.69; N, 2.27.

Synthesis of [Ni(Cl){2-(Ph₂P)C₆H₄NCH(Ph)P(S)Ph₂}] (II)

To a stirred solution of $3.0.7C_7H_8$ (0.37 g, 0.57 mmol) in THF (15 mL) was added dropwise *n*-BuLi (0.24 mL, 2.5 M solution in hexanes, 0.60 mmol) at about -80 °C. The resulting mixture was warmed to room temperature and stirred for 4 h. This solution was added to a stirred suspension of (DME)NiCl₂ (0.13 g, 0.59 mmol) in THF (10 mL) at about -80 °C. The mixture was warmed to room temperature and stirred overnight. Volatiles were removed in vacuo and the residue was dissolved in toluene. The solution was filtered and the filtrate was concentrated to form red crystals (0.315 g, 69%), mp 205–207 °C. ¹H NMR (CDCl₃): δ 2.35 (s, PhCH₃), 5.37 (d, *J* = 9.2 Hz, 1H, CH), 6.23 (s, 2H, Ar), 6.92 (d, *J* = 9.2 Hz, 2H, Ar), 7.00–8.18 (m, 27H, Ar). ¹³C NMR (CDCl₃): δ 70.79 (d, *J* = 74.4 Hz), 112.94 (d, *J* = 13.3 Hz), 113.95 (d, *J* = 6.7 Hz), 127.86 (d, *J* = 2.1 Hz), 128.12 (d, *J* = 3.1 Hz), 128.21, 128.39 (d, *J* = 2.7 Hz), 128.48, 128.63 (d, *J* = 3 Hz), 128.76, 129.23, 129.39, 130.71, 132.17 (d, *J* = 9.1 Hz), 132.65, 132.80, 132.94, 133.15, 133.38, 133.46, 133.52, 133.59, 134.88, 164.89 (d, *J* = 17.8 Hz). ³¹P NMR (CDCl₃): δ 21.72, 55.40. Anal. Calcd for C₃₇H₃₀NSP₂NiCl·1.3C₇H₈: C, 69.51; H, 5.11; N, 1.76. Found: C, 69.50; H, 5.23; N, 1.88.

Synthesis of 2-[Ph₂P(O)]C₆H₄N=CHPh (4)

A solution of 2-(Ph₂P)C₆H₄N=CHPh (0.60 g, 1.64 mmol) in THF (15 mL) was cooled to 0 °C. To the solution was added dropwise H₂O₂ (0.23 mL, 30% w/w, 2.03 mmol) and resulting mixture was stirred at 0 °C for 1.5 h. Solvents were removed in vacuo. To the residue was added Et₂O with vigorous stirring until white precipitate generated. The precipitate was collected by filtration and dried in vacuo to yield white solid (0.59 g, 94%), mp 100–101 °C.

¹H NMR (CDCl₃): δ 7.02 (dd, J = 5.1, 7.7 Hz, 1H, Ar), 7.26–7.42 (m, 12H, Ar), 7.58 (t, J = 7.7 Hz, 1H, Ar), 7.79 (dd, J = 7.0, 12.3 Hz, 4H, Ar), 7.96–8.03 (m, 1H, Ar), 8.09 (s, 1H, CH). ¹³C NMR (CDCl₃): δ 118.52 (d, J = 7.8 Hz), 125.99 (d, J = 11.4 Hz), 128.26, 128.42, 128.67, 128.86, 129.38, 131,47, 131.51, 131.84, 132.12, 132.26, 132.41, 133.91, 134.60 (d, J = 7.9Hz), 153.56, 160.71. ³¹P NMR (CDCl₃): δ 23.67. Anal. Calcd for C₂₅H₂₀NOP: C, 78.73; H, 5.29; N, 3.67. Found: C, 78.90; H, 5.60; N, 3.61.

Synthesis of 2-[Ph₂P(S)]C₆H₄N=CHPh (5)

A mixture of 2-(Ph₂P)C₆H₄N=CHPh (0.50 g, 1.37 mmol), S₈ (0.044 g, 1.37 mmol) and toluene (15 mL) was refluxed for 2 h and then cooled to room temperature. Volatiles were removed in vacuo and the residue was dissolved in Et₂O. The solution was concentrated and added hexane to give pale yellow powder (0.48 g, 88%), mp 119–121 °C. ¹H NMR (CDCl₃): δ 1.20 (t, *J* = 7.0 Hz, Et₂O), 3.47 (q, *J* = 7.0 Hz, Et₂O), 6.99 (dd, *J* = 5.2, 7.5 Hz, 1H, Ar), 7.25–7.41 (m, 12H, Ar), 7.56 (t, *J* = 7.5 Hz, 1H, Ar), 7.84-7.96 (m, 5H, Ar), 8.08 (s, 1H, CH). ¹³C NMR (CDCl₃): δ 118.67 (d, *J* = 7.4 Hz), 125.81 (d, *J* = 12.9 Hz), 128.14, 128.31, 128.49, 129.33, 130.98 (d, *J* = 2.8 Hz), 131.69, 132.15, 132.30, 133.62 (d, *J* = 2.3 Hz), 134.72, 134.87, 153.87, 160.37. ³¹P NMR (CDCl₃): δ 38.52. Anal. Calcd for C₂₅H₂₀NSP·0.25Et₂O: C, 75.07; H, 5.45; N, 3.37. Found: C, 74.86; H, 5.21; N, 3.33.

Synthesis of [Ni(Cl){2-(Ph₂P(O))C₆H₄NCH(Ph)PPh₂}] (III)

A solution of compoud **4** (0.30 g, 0.78 mmol) in THF (15 mL) was cooled to about -80 °C. To the solution was added dropwise a THF solution of Ph₂PLi [prepared in situ from Ph₂PH (0.14 g, 0.79 mmol) and BuⁿLi (0.32 mL, 2.5 M solution in hexane, 0.80 mmol) in THF (5 mL)] with stirring. The mixture was warmed to room temperature and stirred for 12 h. The resulting solution was added dropwise into a stirred suspension of (DME)NiCl₂ (0.18 g, 0.81 mmol) in THF (10 mL) at about -80 °C. The mixture was warmed to room temperature and stirred overnight. Volatiles were removed in vacuo, and the residue was dissolved in toluene. The resulting solution was filtered. Et₂O was added into the filtrate to form brown powder (0.33 g, 59%), mp 166–170 °C. Anal. Calcd for C₃₇H₃₀NOP₂NiCl·0.5C₇H₈: C, 68.82; H, 4.85; N, 1.98. Found: C, 68.87; H, 5.19, N, 1.98. ESI-MS: *m/z* 665 [M–Cl+CH₃CN]⁺ (The sample was dissolved in CH₃CN), 624 [M–Cl]⁺.

Synthesis of [Ni(Cl){2-(Ph₂P(S))C₆H₄NCH(Ph)PPh₂}] (IV)

A mixture of compoud 5·0.25Et₂O (0.33 g, 0.79 mmol) in THF (15 mL) was cooled to about -80 °C. To the solution was added a THF solution of Ph₂PLi [prepared in situ from Ph₂PH (0.15 g, 0.80 mmol) and *n*-BuLi (0.32 mL, 2.5 M solution in hexane, 0.80 mmol) in THF (5 mL)] with stirring. The mixture was warmed to room temperature and stirred for 12 h. The resulting solution was added dropwise into a stirred suspension of (DME)NiCl₂ (0.18 g, 0.81 mmol) in THF (10 mL) at about -80 °C. The mixture was warmed to room temperature and stirred overnight. Volatiles were removed in vacuo, and the residue was dissolved in toluene. The resulting solution was filtered and the filtrate was concentrated to give red crystals (0.39 g, 63%), mp 186–188 °C. Anal. Calcd for C₃₇H₃₀NSP₂NiCl·1.1C₇H₈: C, 68.99; H, 5.03; N, 1.80. Found: C, 69.15; H, 5.10; N, 1.83. ESI-MS: *m*/z 676 [M+1]⁺.

2. X-Ray crystallography

Single crystals of complex **II** were mounted in Lindemann capillaries under nitrogen. Diffraction data were collected at 295(2) K on a Oxford diffraction Gemini S Ultra diffractometer using Cu-K_a radiation ($\lambda = 1.54184$ Å). The structure was solved by direct methods using SHELXS-97 program⁹ and refined against F^2 by full-matrix least-squares using SHELXL-97 program.¹⁰ Hydrogen atoms were placed in calculated positions. Crystal data and experimental details of the structure determination are listed in Table S1.

	1		1
empirical formula	C ₃₇ H ₃₀ ClNNiP ₂ S	$D_{\text{calcd}} (\text{gcm}^{-3})$	1.386
fw	676.78	<i>F</i> (000)	1400
crystal system	monoclinic	μ (mm ⁻¹)	3.360
space group	P 21/c	no. of reflns collected	25396
<i>a</i> (Å)	9.535(5)	no. of indep reflns (R_{int})	5072 (0.0322)
<i>b</i> (Å)	22.010(5)	restraints/params	12/388
<i>c</i> (Å)	15.523(5)	goodness of fit on F^2	0.999
β (deg)	95.316(5)	final <i>R</i> indices ^{<i>a</i>} $[I > 2\sigma(I)]$	R1 = 0.0492 w $R2 = 0.1216$
$V(\text{\AA}^3)$	3244(2)	<i>R</i> indices (all data)	R1 = 0.0608 w $R2 = 0.1276$
Ζ	4	largest diff peak and hole $[e.Å^{-3}]$	1.823, -0.499

Table S1. Details of the X-ray structure determination of complex II

^{*a*} $R1 = \Sigma \left\| Fo \right\| - \left| Fc \right\| / \Sigma \left| Fo \right|; \quad wR2 = \left[\Sigma w (Fo^2 - Fc^2)^2 / \Sigma w (Fo^4) \right]^{1/2}$

Figure S1. Molecular structure of complex II (30% thermal ellipsoids)

The structure of complex **Ia** have been reported by us,¹ but the spectral and analytical data of the complex were not provided then due to minor sample amount. In this study the complex was obtained in gram scale and was characterized by NMR spectroscopy and

elemental analysis.

3. General procedure for the Negishi cross-coupling

(1) Reaction of PhZnCl with p-MeOC₆H₄Cl catalyzed by complex Ia

A Schlenk tube was charged with *p*-MeOC₆H₄Cl (0.071 g, 0.5 mmol), NMP (1.5 mL) and a solution of complex **Ia** (0.02 mL, 0.05 M solution in THF, 0.001 mmol). To the stirred mixture PhZnCl solution (1.5 mL, 0.5 M solution in THF, 0.75 mmol) was added by syringe. The reaction mixture was stirred at room temperature for 24 h. Water (10 mL) and several drops of hydrochloric acid were successively added. The mixture was extracted with Et₂O (3 × 10 mL). The combined organic phases were dried over anhydrous Na₂SO₄, concentrated by rotary evaporation, and purified by column chromatography (silica gel, eluted using 3% CH₃COOEt-petroleum ether) to afford *p*-MeOC₆H₄Ph (0.09 g, 98 %).

Other reactions of arylzinc chlorides with aryl chlorides followed the same procedure.

(2) Reaction of p-EtOOCC₆H₄ZnBr with p-PhC(O)C₆H₄Cl catalysed by complex Ia

p-EtOOCC₆H₄ZnBr was prepared according to the procedure described in literature.⁷ After reaction completed, THF was removed *in vacuo*. The residue was washed with Et₂O to remove $C_{10}H_{8}$. Then THF was added to prepare a about 0.5 M solution of *p*-EtOOCC₆H₄ZnBr in THF.

A Schlenk tube was charged *p*-PhC(O)C₆H₄Cl (0.108 g, 0.5 mmol), NMP (1.5 mL), and complex **Ia** (16.5mg, 0.025 mmol). To the stirred mixture *p*-EtOOCC₆H₄ZnBr solution (1.5 mL, 0.5 M solution in THF, 0.75 mmol) was added by syringe. Then the reaction mixture was stirred at room temperature for 12 h. Water (10 mL) and several drops of hydrochloric acid were successively added. The resulting mixture was extracted with Et₂O (3×10 mL), and the combined organic layers were dried over anhydrous Na₂SO₄. The Na₂SO₄ was removed by filtration and washed with Et₂O. The resulting Et₂O solution was concentrated by rotary evaporation, and the residue was purified by column chromatography (silica gel, eluted using 5 % CH₃COOEt-petroleum ether) to afford 4-EtOOCC₆H₄C₆H₄C(O)Ph-4' (0.124 g, 75 %).

p-EtOOCC₆H₄ZnI and p-MeC₆H₄ZnI were prepared by reaction of corresponding aryl

iodide with activated Zn.⁸ Their coupling reactions with aryl chlorides followed the same

Spectral data of the cross-coupling products

(1) 4-Methoxybiphenyl¹¹

OMe OMe

¹H NMR (CDCl₃): δ 3.87 (s, 3H, CH₃), 7.01 (d, *J* = 8.8 Hz, 2H, C₆H₄), 7.33 (t, *J* = 7.5 Hz, 1H, Ph), 7.45 (t, *J* = 7.8 Hz, 2H, Ph), 7.54–7.61 (m, 4H, Ph+C₆H₄).

(2) 4-Methylbiphenyl¹¹

¹H NMR (CDCl₃): δ 2.35 (s, 3H, CH₃), 7.20 (d, *J* = 8.1 Hz, 2H, C₆H₄), 7.28 (d, *J* = 7.3 Hz, 1H, Ph), 7.37 (t, *J* = 7.5 Hz, 2H, Ph), 7.46 (d, *J* = 8.1 Hz, 2H, C₆H₄), 7.54 (d, *J* = 7.7 Hz, 2H, Ph).

(3) (4'-Methylbiphenyl-4-yl)(phenyl)methanone¹¹

¹H NMR (CDCl₃): δ 2.28 (s, 3H, CH₃), 7.15 (d, *J* = 7.8 Hz, 2H, Ar), 7.33–7.48 (m, 5H, Ar), 7.55 (d, *J* = 8.4 Hz, 2H, Ar), 7.71 (d, *J* = 7.9 Hz, 2H, Ar), 7.75 (d, *J* = 8.1 Hz, 2H, Ar).

(4) 4'-Methylbiphenyl-4-carbonitrile¹¹

¹H NMR (CDCl₃): δ 2.29 (s, 3H, CH₃), 7.16 (d, *J* = 7.9 Hz, 2H, C₆H₄), 7.36 (d, *J* = 8.2 Hz, 2H, C₆H₄), 7.50–7.57 (m, 4H, C₆H₄).

(5) 4-Methyl-4'-(trifluoromethyl)biphenyl¹¹

¹H NMR (CDCl₃): δ 2.40 (s, 3H, CH₃), 7.26 (d, *J* = 8 Hz, 2H, C₆H₄), 7.48 (d, *J* = 8.1 Hz, 2H, C₆H₄), 7.65 (s, 4H, C₆H₄).

(6) 2-*p*-Tolylpyridine¹¹

¹H NMR (CDCl₃): δ 2.39 (s, 3H, CH₃), 7.15–7.19 (m, 1H, pyridyl), 7.27 (d, *J* = 7.9 Hz, 2H, C₆H₄), 7.66–7.73 (m, 2H, pyridyl), 7.88 (d, *J* = 8.2 Hz, 2H, C₆H₄), 8.66 (dt, *J* = 1.4, 4.8 Hz, 1H, pyridyl).

(7) N,N-Diethyl-4'-methylbiphenyl-4-carboxamide¹¹

¹H NMR (CDCl₃): δ 1.20 (b, 6H, CH₃), 2.39 (s, 3H, CH₃), 3.34 (b, 2H, CH₂), 3.54 (b, 2H, CH₂), 7.25 (d, *J* = 7.9 Hz, 2H, C₆H₄), 7.42 (d, *J* = 8.3 Hz, 2H, C₆H₄), 7.49 (d, *J* = 8.1 Hz, 2H, C₆H₄), 7.59 (d, *J* = 8.3 Hz, 2H, C₆H₄).

(8) Ethyl 4'-methylbiphenyl-4-carboxylate¹¹

¹H NMR (CDCl₃): δ 1.26 (t, *J* = 7.1 Hz, 3H, CH₃), 2.24 (s, 3H, CH₃), 4.25 (q, *J* = 7.1 Hz, 2H, CH₂), 7.09 (d, *J* = 8.1 Hz, 2H, C₆H₄), 7.35 (d, *J* = 8 Hz, 2H, C₆H₄), 7.47 (d, 2H, *J* = 8.2 Hz, C₆H₄), 7.95 (d, 2H, *J* = 8.2 Hz, C₆H₄).

(9) 4-Methoxy-4'-methylbiphenyl¹¹

¹H NMR (CDCl₃): δ 2.28 (s, 3H, CH₃), 3.73 (s, 3H, OCH₃), 6.86 (d, *J* = 8.8 Hz, 2H, C₆H₄), 7.12 (d, *J* = 7.9 Hz, 2H, C₆H₄), 7.35 (d, *J* = 8.1 Hz, 2H, C₆H₄), 7.41 (d, *J* = 8.8 Hz, 2H, C₆H₄).

(10) (4'-Methylbiphenyl-2-yl)(phenyl)methanone¹¹

¹H NMR (CDCl₃): δ 2.24 (s, 3H, CH₃), 7.00 (d, *J* = 7.5 Hz, 2H, Ar), 7.15 (d, *J* = 7.7 Hz, 2H, Ar), 7.27 (t, *J* = 7.8 Hz, 2H, Ar), 7.36–7.59 (m, 5H, Ar), 7.66 (d, *J* = 8.1 Hz, 2H, Ar).

(11) 2-Methoxy-4'-methylbiphenyl¹¹

¹H NMR (CDCl₃): δ 2.29 (s, 3H, CH₃), 3.69 (s, 3H, CH₃), 6.86 (d, *J* = 8.1 Hz, 1H, C₆H₄), 6.93 (d, *J* = 7.4 Hz, 1H, C₆H₄), 7.12 (d, *J* = 7.8 Hz, 2H, C₆H₄), 7.21 (d, *J* = 7.3 Hz, 2H, C₆H₄), 7.33 (d, *J* = 8 Hz, 2H, C₆H₄).

(12) Methyl 2-methoxy-5-(p-methylphenyl)benzoate

¹H NMR (CDCl₃): δ 2.40 (s, 3H, CH₃), 3.93 (s, 3H, CH₃), 3.95 (s, 3H, CH₃), 7.05 (d, *J* = 8.7 Hz, 1H, Ar), 7.25 (d, *J* = 8.1 Hz, 2H, Ar), 7.47 (d, *J* = 8.1 Hz, 2H, Ar), 7.69 (dd, *J* = 2.4, 8.6 Hz, 1H, Ar), 8.03 (d, *J* = 2.4 Hz, 1H, Ar). ¹³C NMR (CDCl₃): δ 21.10, 52.11, 56.19, 112.50, 120.27, 126.57, 129.59, 130.04, 131.73, 133.28, 136.87, 136.91, 158.40, 166.76. HR-MS (EI): *m*/*z* 256.1101 [M]⁺, calcd for C₁₆H₁₆O₃ 256.1099.

(13) (2'-Methylbiphenyl-4-yl)(phenyl)methanone¹¹

¹H NMR (CDCl₃): δ 2.19 (s, 3H, CH₃), 7.11–7.18 (m, 4H, Ar), 7.28-7.50 (m, 5H, Ar), 7.73-7.77 (m, 4H, Ar).

(14) Ethyl 2'-methylbiphenyl-4-carboxylate¹¹

¹H NMR (CDCl₃): δ 1.30 (t, *J* = 7.1 Hz, 3H, CH₃), 2.14 (s, 3H, CH₃), 4.29 (q, *J* = 7.1 Hz, 2H, CH₂), 7.09–7.16 (m, 4H, C₆H₄), 7.27 (d, *J* = 8.1 Hz, 2H, C₆H₄), 7.99 (d, *J* = 8.1 Hz, 2H, C₆H₄).

(15) N,N-Diethyl-2'-methylbiphenyl-4-carboxamide¹¹

¹H NMR (CDCl₃): δ 1.20 (b, 6H, CH₃), 2.26 (s, 3H, CH₃), 3.34 (b, 2H, CH₂), 3.56 (b, 2H, CH₂), 7.21–7.26 (m, 4H, C₆H₄), 7.33 (d, J = 8.1 Hz, 2H, C₆H₄), 7.43 (d, J = 8.1 Hz, 2H, C₆H₄).

(16) 4'-Methoxy-2-methylbiphenyl¹¹

¹H NMR (CDCl₃): δ 2.27 (s, 3H, CH₃), 3.83 (s, 3H, OCH₃), 6.94 (d, *J* = 8.7 Hz, 2H, C₆H₄), 7.21–7.26 (m, 6H, C₆H₄).

(17) 2'-Methylbiphenyl-4-carbonitrile¹²

¹H NMR (CDCl₃): δ 2.13 (s, 3H, CH₃), 7.17 (d, *J* = 7.5 Hz, 1H, C₆H₄), 7.25 (d, *J* = 7.5 Hz, 2H, C₆H₄), 7.31-7.37 (m, 3H, C₆H₄), 7.61 (d, *J* = 8.5 Hz, 2H, C₆H₄).

(18) 2-(4-(Trifluoromethyl)phenyl)furan¹¹

¹H NMR (CDCl₃): δ 6.49 (dd, J = 1.8, 3.3 Hz, 1H, furyl), 6.74 (d, J = 3.3 Hz, 1H, furyl),

7.49 (s, 1H, furyl), 7.61 (d, *J* = 8.6 Hz, 2H, C₆H₄), 7.73 (d, *J* = 8.5 Hz, 2H, C₆H₄).

(19) Ethyl 4-(furan-2-yl)benzoate¹¹

¹H NMR (CDCl₃): δ 1.29 (t, *J* = 7.1 Hz, 3H, CH₃), 4.27 (q, *J* = 7.1 Hz, 2H, CH₂), 6.38 (dd, *J* = 1.8, 3.4 Hz, 1H, furyl), 6.65 (d, *J* = 3.4 Hz, 1H, furyl), 7.39 (d, *J* = 1.8 Hz, 1H, furyl), 7.60 (d, *J* = 8.3 Hz, 2H, C₆H₄), 7.94 (d, *J* = 8.3 Hz, 2H, C₆H₄).

(20) 4-(Furan-2-yl)benzonitrile¹¹

¹H NMR (CDCl₃): δ 6.43 (dd, J = 1.7, 3.3 Hz, 1H, furyl), 6.71 (d, J = 3.3 Hz, 1H, furyl), 7.43 (s, 1H, furyl), 7.54 (d, J = 8.6 Hz, 2H, C₆H₄), 7.63 (d, J = 8.1 Hz, 2H, C₆H₄).

(21) N,N-Dimethylbiphenyl-4-amine¹¹

¹H NMR (CDCl₃): δ 2.86 (s, 6H, CH₃), 6.69 (d, *J* = 8.8 Hz, 2H, Ar), 7.11-7.17 (m, 1H, Ar), 7.26-7.31 (m, 2H, Ar), 7.39–7.47 (m, 4H, Ar).

(22) 4'-Methoxy-N,N-dimethylbiphenyl-4-amine¹¹

MeO-

¹H NMR (CDCl₃): δ 2.97 (s, 6H, NCH₃), 3.82 (s, 3H, OCH₃), 6.79 (d, *J* = 8.8 Hz, 2H, C₆H₄), 6.94 (d, *J* = 8.8 Hz, 2H, C₆H₄), 7.46 (t, *J* = 8.5 Hz, 4H, C₆H₄).

(23) 1,4-Di(*p*-methylphenyl)benzene¹²

¹H NMR (CDCl₃): δ 2.40 (s, 6H, CH₃), 7.26 (d, *J* = 7.2 Hz, 4H, C₆H₄), 7.53 (d, *J* = 8 Hz, 4H, C₆H₄), 7.64 (s, 4H, C₆H₄).

(24) 1,4-Di(o-methylphenyl)benzene¹¹

¹H NMR (CDCl₃): δ 2.35 (s, 6H, CH₃), 7.25–7.32 (m, 8H, C₆H₄), 7.37 (s, 4H, C₆H₄).

(25) 4-[4-(4-dimethylaminophenyl)phenyl]-N,N-dimethylaniline ¹³ Me₂N \longrightarrow NMe₂

¹H NMR (CDCl₃): δ 3.00 (s, 12H, NMe), 6.82 (d, *J* = 8.8 Hz, 4H, C₆H₄), 7.55 (d, *J* = 8.8 Hz, 4H, C₆H₄), 7.59 (s, 4H, C₆H₄).

(26) 1,2-Di(*p*-methylphenyl)benzene¹¹

¹H NMR (CDCl₃): δ 2.32 (s, 6H, CH₃), 7.04 (s, 8H, C₆H₄), 7.40 (s, 4H, C₆H₄).

(27) 4-[2-(4-dimethylaminophenyl)phenyl]-N,N-dimethylaniline¹⁴

¹H NMR (CDCl₃): δ 2.99 (s, 12H, NMe), 6.69 (d, J = 8 Hz, 4H, C₆H₄), 7.15 (d, J = 6.9 Hz, 4H, C₆H₄), 7.37-7.48 (m, 4H, C₆H₄).

(28) 1,3,5-tris(*p*-tolyl)benzene¹⁵

¹H NMR (CDCl₃): δ 2.29 (s, 9H, CH₃), 7.16 (d, *J* = 7.8 Hz, 6H, C₆H₄), 7.48 (d, *J* = 7.9 Hz, 6H, C₆H₄), 7.63 (s, 3H, C₆H₃).

(29) Ethyl 4-(4-benzoylphenyl)benzoate¹⁶

¹H NMR (CDCl₃): δ 1.42 (t, *J* = 7.1 Hz, 3H, Me), 4.40 (q, *J* = 7.1 Hz, 2H, CH₂), 7.50 (t, *J* = 7.5 Hz, 2H, Ph), 7.58-7.62 (m, 1H, Ph), 7.71 (t, *J* = 7.9 Hz, 4H, Ph+C₆H₄), 7.82-7.84 (m, 2H, C₆H₄), 7.90 (d, *J* = 8.5 Hz, 2H, C₆H₄), 8.23 (d, *J* = 8.5 Hz, 2H, C₆H₄).

(30) Ethyl 4-(4-cyanophenyl)benzoate¹⁷

¹H NMR (CDCl₃): δ 1.42 (t, *J* = 7.1 Hz, 3H, Me), 4.41 (q, *J* = 7.1 Hz, 2H, CH₂), 7.65 (d, *J* = 8.6 Hz, 2H, C₆H₄), 7.73 (q, *J* = 7.7 Hz, 4H, C₆H₄), 8.15 (d, *J* = 8.6 Hz, 2H, C₆H₄).

References

- 1 K. Sun, L. Wang, Z.-X. Wang, Organometallics, 2008, 27, 5649–5656.
- 2 L. G. L. Ward, Inorg. Synth., 1971, 13, 154–164.
- 3 D. Semenzin, G. Etemad-Moghadam, D. Albouy, O. Diallo, M. Koenig, J. Org. Chem., 1997, **62**, 2414–2422.
- 4 T. K. Olszewski, B. Boduszek, S. Sobek, H. Kozłowski, *Tetrahedron*, 2006, **62**, 2183–2189.
- 5 B. J. Wakefield, Organolithium Methods, Academic Press, London, 1988.
- 6 H. Gilman, E. A. Zoellner, W. M. Selby, J. Am. Chem. Soc. 1933, 55, 1252–1257.

7 L. Zhu, R. M. Wehmeyer, and R. D. Rieke, J. Org. Chem., 1991, 56, 1445-1453.

- 8 Z. Dong, G. Manolikakes, J. Li, P. Knochel, *Synthesis*, 2009, 681–686.
- 9 G. M. Sheldrick, Acta Crystallogr. Sect. A, 1990, 46, 467–473.
- 10 G. M. Sheldrick, *SHELXL97*, *Programs for structure refinement*, Universität Göttingen, 1997.
- 11 L. Wang, Z.-X. Wang, Org. Lett., 2007, 9, 4335–4338.
- 12 C.-H. Xi, Y.-B. Zhou, W.-Z. Chen, J. Org. Chem., 2008, 73, 8497–8501.
- 13 T. Magai, T. Namiki, H. Nakada, T. Wakimoto, T. Murayama, Jpn. Kokai Tokkyo Koho JP 03162484 A 19910712, 1991.
- 14 T. Kanamaru, N. Kikuchi, K. Suzuki, M. Matsumoto, Jpn. Kokai Tokkyo Koho JP 02134642 A 19900523, 1990.
- 15 N.Yoshikai, H. Matsuda, E. Nakamura, J. Am. Chem. Soc., 2009, 131, 9590–9599.
- 16 I. Sapountzis, W. Lin, C. C. Kofink, C. Despotopoulou, P. Knochel, *Angew. Chem., Int. Ed.* 2005, **44**, 1654–1658.
- 17 G. Manolikakes, P. Knochel, Angew. Chem., Int. Ed. 2009, 48, 205-209.

Scanned NMR spectra

