Supporting Information for

Ligand influence in the selective gold-mediated synthesis of allenes

Pierrick Nun, Sylvain Gaillard, Alexandra M. Z. Slawin and Steven P. Nolan*

EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, KY16 9ST, St Andrews, United Kingdom

snolan@st-andrews.ac.uk

Table of contents

General informations	S2
Preparation and characterization of complexes 4 and 6	S2
Crystallographic datas for 4 and 6	S3
Preparation and characterization of propargylic acetates 1a-k	S3
Preparation and characterization of allenes 3a-k	S5
NMR spectra	S9

General considerations

All reageants and solvents were used as purchased. NMR spectra were recorded on a 400 MHz Varian Gemini spectrometer. High Resolution Mass Spectrometry analyses were performed by St Andrews analytical services.

Preparation of complexes 4 and 6:

[(IPr)Au(pyr)]BF₄ (4): Complex 4 was prepared according to litterature procedure.¹ ¹H NMR (400 MHz, CDCl₃): δ 8.06 (t, J = 7.8 Hz, 1H, CH^{pyr}), 7.88-7.84 (m, 2H, CH^{pyr}), 7.65-7.60 (m, 2H, CH^{pyr}), 7.56 (t, J = 7.8 Hz, 2H, CH^{Ar}), 7.48 (s, 2H, CH^{Imidazole}), 7.33 (d, J = 7.8 Hz, 2H, CH^{Ar}), 2.53 (septuplet, J = 6.9 Hz, 4H, CH^{IPr}), 1.31 (d, J = 6.9 Hz, 12H, CH₃^{IPr}), 1.26 (d, J = 6.9 Hz, 12H, CH₃^{IPr}).¹³C NMR (100 MHz, CDCl₃): δ 167.3 (C, C^{carbene}), 150.6 (CH, C^{pyr}), 145.7 (C, C^{Ar}), 142.3 (CH, C^{Pyr}), 133.4 (C, C^{Ar}), 131.4 (CH, C^{Ar}), 127.6 (CH, C^{Pyr}), 125.1 (CH, C^{Ar}), 124.6 (CH, C^{Imidazole}), 29.0 (CH, C^{IPr}), 24.9 (CH₃, C^{IPr}), 24.1 (CH₃, C^{IPr}). Anal calcd for C₃₂H₄₁AuBF₄N₃ : C, 51.15; H, 5.50; N, 5.59. Found : C, 51.46; H, 5.78; N, 5.38.

X-Ray analysis : Ball and stick representation of 4:

Selected bond distances (Å) and angles (deg), for 4: Au1-C1, 1.988(5); Au1-N31, 2.065(4); C1-Au1-N31, 177.2(18);

[(**IPr**)**Au**(**Et**₃**N**)]**BF**₄(**6**): In a scintillation vial, [(IPr)AuOH]² **5** (100 mg, 1 equiv, 0.166 mmol) was dissolved in benzene (2 mL) and Et₃N•HBF₄ was added (31.4 mg, 1 equiv, 0.166 mmol). The mixture was stirred overnight at room temperature, then concentrated under vacuo. Pentane was added and the mixture filtered to isolate **6** as a white powder (115.6 mg, 90%). ¹H NMR (400 MHz, CDCl₃): δ 7.55-7.49 (m, 2H, CH^{Ar}), 7.48 (s, 2H, CH^{Imidazole}), 7.30 (d, J = 7.8 Hz, 4H, CH^{Ar}), 2.66 (q, J = 7.2 Hz, 6H, CH₂) 2.47 (septuplet, J = 6.9 Hz, 4H, CH^{IPr}), 1.25 (d, J = 3.4 Hz, 12H, CH₃^{IPr}), 1.23 (d, J = 3.4 Hz, 12H, CH₃^{IPr}), 0.79 (t, J = 7.2 Hz, 9H, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 169.4 (C, C^{carbene}), 145.7 (C, C^{Ar}), 133.6 (C, C^{Ar}), 131.2 (CH, C^{Ar}), 124.8 (CH, C^{Ar}), 124.4 (CH, C^{Imidazole}), 52.0 (CH₂), 28.9 (CH, C^{IPr}), 24.5 (CH₃, C^{IPr}), 24.2 (CH₃, C^{IPr}), 11.0 (CH₃, Et₃N). Anal calcd for C₃₃H₅₁AuBF₄N₃: C, 51.24; H, 6.65; N, 5.43. Found : C, 51.07; H, 6.42; N, 5.40.

X-Ray analysis : Ball and stick representation of 6 :

Selected bond distances (Å) and angles (deg), for **6** : Au1-C1, 1.987(7); Au1-N21, 2.104(6); C1-Au1-N21, 176.2(3).

Crystallographic data for 4 and 6 :

	4	6
Formula	$C_{32}H_{41}AuN_3BF_4\bullet CH_2Cl_2$	C33H52AuN3BF4
$M/g.mol^{-1}$	836.38	774.55
Crystal system	Monoclinic	Orthorhombic
Space group	P2 ₁	Pnma
a/ Å	9.473(2)	19.742(4)
b/ Å	17.138(4)	16.997(3)
<i>c</i> / Å	11.355(3)	10.3318(19)
β/ °	90.00	90.00
$V/ Å^3$	1767.3(7)	3466.9(11)
Ζ	2	4
$\rho_{\text{calcd}}/\text{g.cm}^{-3}$	1.572	1.484
μ (Mo K α)/ mm ⁻¹	4.361	4.290
<i>T</i> / K	93(2)	93(2)
Number of reflections	11013	20777
Number of unique reflections	5892	3290
R _{int}	0.0332	0.0643
<i>R</i> 1, w <i>R</i> 2 (I > 2σ (I))	0.0271, 0.0572	0.0427, 0.1092
R1, w $R2$ (all data)	0.0283, 0.0581	0.0474, 0.1111
GOF	1.036	1.258

Preparation of propargylic acetates 1:

Propargylic acetates **1a**, ³ **1b**, ³ **1c**, ³ **1d**, ³ **1f**, ³ **1h**, ⁴ **1j**, ⁵ **1k**, ⁵ were prepared according to literature procedures.

Compounds 1e, 1g, 1i:

Alkynylation: In an oven-dried round-bottom flask, the alkyne (13 mmol,1.3 equiv) and 1.6M *n*BuLi (12 mmol, 1.2 equiv) were added to THF (20 mL) and stirred for 20 min under nitrogen at -78° C. The aldehyde (10 mmol, 1 equiv) was added and the reaction mixture stirred for 20 min. The mixture was then allowed to warm up to room temperature, quenched with a saturated aqueous NH₄Cl solution, and extracted with diethyl ether. The combined

organic layers were washed with brine, dried with magnesium sulfate, filtered, and evaporated to give the crude propargylic alcohol which was engaged in the next step without further purification.

Acylation: The propargylic alcohol (10 mmol, 1 equiv), 1,2-dichloroethane (DCE) (30 mL), 4-dimethylaminopyridine (DMAP) (0.360 g, 3.0 mmol, 0.3 equiv), Et₃N (5.6 mL, 40 mmol, 4 equiv), and Ac₂O (1.8 mL, 20 mmol, 2 equiv) were added in turn to a round-bottom flask. The reaction mixture was stirred at romm temperature for 3h, quenched with a saturated aqueous NH₄Cl solution, and extracted with diethyl ether. The combined organic layers were washed with brine, dried with magnesium sulfate, filtered, and evaporated to give a crude product that was purified by flash chromatography on silica gel.

1-(2-chlorophenyl)hept-2-ynyl acetate (1e): The above general procedure gave the title product (1.1 g, 85%), after flash column chromatography on silica gel (Pentane/Et₂O 95/5).

¹**H** NMR (400 MHz, CDCl₃): δ 7.79-7.75 (m, 1H), 7.40-7.36 (m, 1H), 7.34-7.28 (m, 2H), 6.73 (t, J = 2.1 Hz, 1H), 2.27 (dt, J = 2.1 Hz, J = 7.0 Hz, 2H), 2.11 (s, 3H), 1.57-1.48 (m, 2H), 1.45-1.35 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 169.2, 135.0, 133.2, 129.9, 129.5, 129.3, 126.9, 88.5, 75.7, 63.1, 30.3, 21.8, 20.6, 18.4, 13.4. HRMS calculated for C₁₅H₁₈O₂Cl : 265.0995. Found : 265.1003.

1-(2-bromophenyl)hept-2-ynyl acetate (1g): The above general procedure gave the title product (1.36 g, 88%), after flash column chromatography on silica gel (Pentane/Et₂O 95/5). ¹**H NMR (400 MHz, CDCl₃):** δ 7.78 (dd, J = 1.7 Hz, J = 7.7 Hz, 1H), 7.57 (dd, J = 1.2 Hz, J = 8.0 Hz, 1H), 7.36 (dt, J = 7.7 Hz, J = 1.3 Hz, 1H), 7.24- 7.19 (m, 1H), 6.66 (t, J = 2.1 Hz, 1H), 2.27 (dt, J = 2.1 Hz, J = 7.0 Hz, 2H), 2.11 (s, 3H), 1.57-1.48 (m, 2H), 1.46-1.35 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H).¹³**C NMR (100 MHz, CDCl₃):** δ 169.4, 136.7, 133.0, 130.3, 129.6, 127.6, 123.4, 88.9, 75.8, 65.6, 30.4, 21.9, 20.9, 18.5, 13.6. **HRMS** calculated for C₁₅H₁₇O₂Na⁷⁹Br : 331.0310 Found : 331.0313.

5-bromo-1-phenylpent-2-ynyl acetate (1i): The above general procedure gave the title product (1.07g, 76%), after flash column chromatography on silica gel (Pentane/Et₂O 95/5). ¹**H NMR (400 MHz, CDCl₃):** δ 7.55-7.50 (m, 2H), 7.42-7.34 (m, 2H), 6.45 (t, J = 2.0 Hz, 1H), 3.46 (t, J = 7.3 Hz, 2H), 2.85 (dt, J = 2.0 Hz, J = 7.3 Hz, 2H), 2.10 (s, 3H), 1.57-1.48 (m, 2H), 1.46-1.35 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H). ¹³**C NMR (100 MHz, CDCl₃):** δ 169.9, 137.0, 128.9, 128.6, 127.7, 84.7, 78.9, 65.8, 29.1, 23.3, 21.1.**HRMS** calculated for C₁₃H₁₃O₂Na⁸¹Br: 304.9976. Found: 304.9973.

Synthesis of allenes 3 :

Conditions A: In a vial, a solution of propargylic acetate (0.2 mmol) in dichloromethane (1 mL) was added to a solution of [(IPr)AuOH] (4.10^{-3} mmol, 2.4 mg) and Et₃N•HBF₄ (6.10^{-3} mmol, 1.2 mg) in dichloromethane (1 mL). The reaction mixture was stirred at 40°C during 30 min, then concentrated under vacuum. Et₂O was added and the solution filtered over a plug of silica (~1 cm). Filtrate was concentrated to afford the desired allene.

Conditions B: In a vial, a solution of propargylic acetate (0.2 mmol) in 1,2-dichloroethane (1 mL) was added to a solution of [(IPr)AuOH] (4.10^{-3} mmol, 2.4 mg) and Et₃N•HBF₄ (6.10^{-3} mmol, 1.2 mg) in 1,2-dichloroethane (1 mL). The reaction mixture was stirred at 80°C during 60 min, then concentrated under vacuum. The crude product was then purified by flash chromatography on silica gel using pentane/Et₂O as eluant.

Conditions C: In a vial, a solution of propargylic acetate (0.2 mmol) in dichloromethane (1 mL) was added to a solution of [(IPr)AuOH] (4.10^{-3} mmol, 2.4 mg) and Pyr•HBF₄ (6.10^{-3} mmol, 1.2 mg) in dichloromethane (1 mL). The reaction mixture was stirred at 40°C during 30 min, then concentrated under vacuum. The crude product was then purified by flash chromatography on silica gel using pentane/Et₂O as eluant.

1-phenylhepta-1,2-dien-3-yl acetate³ (**3a**): General procedure using conditions A yielded 42.8 mg (93%) of the title compound. ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.40 (m, 2H), 7.36-7.30 (m, 2H), 7.26- 7.20 (m, 1H), 6.59 (t, J = 3.1 Hz, 1H), 2.37-2.31 (m, 2H), 2.15 (s, 3H), 1.51-1.34 (m, 4H), 0.90 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 196.8, 168.8, 134.0, 128.8, 128.1, 127.9, 127.0, 104.6, 31.6, 28.4, 22.3, 21.2, 14.0.

1-*o***-tolylhepta-1,2-dien-3-yl acetate (3b):** General procedure using conditions A yielded 43.5 mg (89%) of the title compound.¹**H NMR (400 MHz, CDCl₃):** δ 7.52 (d, *J* = 6.2 Hz, 2H), 7.24-7.13 (m, 3H), 6.82 (t, *J* = 3.1 Hz, 1H), 2.4 (s, 3H), 2.37-2.30 (m, 2H), 2.15 (s, 3H), 1.53-1.35 (m, 4H), 0.90 (t, *J* = 7.2 Hz, 3H).¹³**C NMR (100 MHz, CDCl₃):** δ 197.6, 168.8, 136.0, 132.1, 130.7, 128.3, 128.0, 126.8, 126.4, 102.1, 31.6, 28.5, 22.4, 21.2, 19.9, 14.0. **HRMS** calculated for C₁₆H₂₀O₂Na : 267.1361. Found : 267.1360.

1-*p***-tolylhepta-1,2-dien-3-yl acetate³ (3c):**General procedure using conditions A yielded 42 mg (86%) of the title compound. ¹**H NMR (400 MHz, CDCl₃):** δ 7.31 (d, *J* = 7.8 Hz, 2H), 7.14 (d, *J* = 7.8 Hz, 2H), 6.56 (t, *J* = 3.1 Hz, 1H), 2.35-2.30 (m, 2H), 2.34 (s, 3H), 2.14 (s,

3H), 1.51-1.35 (m, 4H), 0.89 (t, J = 7.1 Hz, 3H).¹³C NMR (100 MHz, CDCl₃): δ 196.1, 168.7, 138.0, 131.0, 129.4, 127.8, 126.9, 104.4, 31.6, 28.4, 22.2, 21.3, 21.1, 13.9.

1-(4-methoxyphenyl)hepta-1,2-dien-3-yl acetate³ (3d): General procedure using conditions A yielded 51 mg (98%) of the title compound.¹H NMR (400 MHz, CDCl₃): δ 7.36 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 6.55 (t, J = 3.1 Hz, 1H), 3.81 (s, 3H), 2.36-2.29 (m, 2H), 2.14 (s, 3H), 1.49-1.32 (m, 4H), 0.89 (t, J = 7.1 Hz, 3H).¹³C NMR (100 MHz, CDCl₃): δ 195.5, 169.0, 159.8, 129.3, 126.8, 126.5, 114.3, 104.3, 55.5, 31.8, 28.5, 22.4, 21.3, 14.1.

1-(2-chlorophenyl)hepta-1,2-dien-3-yl acetate (3e):General procedure using conditions A yielded 50.8 mg (96%) of the title compound.¹H NMR (400 MHz, CDCl₃): δ 7.66 (d, *J* = 7.6 Hz, 1H), 7.34 (dd, *J* = 1.5 Hz, *J* = 7.6 Hz, 1H), 7.27-7.13 (m, 2H), 7.05 (t, *J* = 3.0 Hz, 1H), 2.38-2.30 (m, 2H), 2.16 (s, 3H), 1.53-1.32 (m, 4H), 0.90 (t, *J* = 7.1 Hz, 3H).¹³C NMR (100 MHz, CDCl₃): δ 198.4, 168.7, 133.2, 131.7, 129.8, 129.4, 129.1, 127.4, 127.1, 100.7, 31.6, 28.4, 22.3, 21.2, 14.0. HRMS calculated for C₁₅H₁₈O₂Cl: 265.0995. Found : 265.1005.

1-(4-fluorophenyl)hepta-1,2-dien-3-yl acetate (3f): General procedure using conditions A yielded 47.1 mg (95%) of the title compound.¹H NMR (400 MHz, CDCl₃): δ 7.43-7.37 (m, 2H), 7.02 (t, *J* = 8.7 Hz, 2H), 6.55 (t, *J* = 3.1 Hz, 1H), 2.37-2.28 (m, 2H), 2.15 (s, 3H), 1.50-1.34 (m, 4H), 0.89 (t, *J* = 7.1 Hz, 3H).¹³C NMR (100 MHz, CDCl₃): δ 196.5, 168.7, 161.1 (d, *J* = 247.5 Hz), 130.1 (d, *J* = 3.3Hz), 129.5 (d, *J* = 8.2 Hz), 127.0, 115.7 (d, *J* = 21.9 Hz), 103.5, 31.6, 28.4, 22.3, 21.2, 14.0. HRMS calculated for C₁₅H₁₈O₂F : 249.1291. Found: 249.1296.

1-(2-bromophenyl)hepta-1,2-dien-3-yl acetate (3g):General procedure using conditions B yielded, after flash chromatography on silica gel (Pentane/Et₂O 97/3), 50.7 mg (82%) of the title compound.¹H NMR (400 MHz, CDCl₃): δ 7.66 (dd, J = 1.7 Hz, J = 7.8 Hz, 1H), 7.53 (dd, J = 1.2 Hz, J = 8.0 Hz, 1H), 7.31-7.26 (m, 1H), 7.12-7.06 (m, 1H), 7.04 (t, J = 3.0 Hz, 1H), 2.36-2.30 (m, 2H), 2.16 (s, 3H), 1.51-1.35 (m, 4H), 0.90 (t, J = 7.2 Hz, 3H).¹³C NMR (100 MHz, CDCl₃): δ 198.5, 168.6, 133.4, 133.1, 129.6, 129.3, 127.7, 127.4, 123.6, 103.3, 31.6, 28.4, 22.3, 21.2, 14.0. HRMS calculated for C₁₅H₁₇O₂Na⁷⁹Br: 331.0310 Found: 331.0303.

1-(4-(trifluoromethyl)phenyl)hepta-1,2-dien-3-yl acetate (3h): General procedure using conditions B yielded, after flash chromatography on silica gel (Pentane/Et₂O 97/3), 50.1 mg (84%) of the title compound.¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 8.2 Hz, 2H), 7.52 (d, J = 8.2 Hz, 2H), 6.60 (t, J = 3.0 Hz, 1H), 2.37-2.31 (m, 2H), 2.16 (s, 3H), 1.50-1.35 (m, 4H), 0.90 (t, J = 7.1 Hz, 3H).¹³C NMR (100 MHz, CDCl₃): δ 198.6, 168.5, 137.9, 129.4, 128.1, 127.9, 127.5, 125.7, 103.3, 31.6, 28.4, 22.3, 21.1, 13.9. HRMS calculated for C₁₆H₁₇O₂F: 298.1181. Found: 298.1180.

5-bromo-1-phenylpenta-1,2-dien-3-yl acetate (3i): General procedure using conditions B yielded, after flash chromatography on silica gel (Pentane/Et₂O 95/5), 41.6 mg (74%) of the title compound.¹H NMR (400 MHz, CDCl₃): δ 7.47-7.43 (m, 2H), 7.36-7.31 (m, 2H), 7.29-7.23 (m, 1H), 6.70 (t, *J* = 2.8 Hz, 1H), 3.47 (t, *J* = 7.1 Hz, 2H), 2.95-2.85 (m, 2H), 2.17 (s, 3H).¹³C NMR (100 MHz, CDCl₃): δ 196.7, 168.6, 133.2, 128.8, 128.5, 128.2, 123.7, 105.8, 35.6, 28.2, 21.1. HRMS calculated for C₁₃H₁₃O₂Na⁸¹Br: 304.9976. Found: 304.9975.

4,4-dimethyl-1-phenylpenta-1,2-dien-3-yl acetate (3j): General procedure using conditions B yielded, after flash chromatography on silica gel (Pentane/Et₂O 95/5), 37.7 mg (82%) of the title compound.¹H NMR (400 MHz, CDCl₃): δ 7.47-7.40 (m, 2H), 7.36-7.30 (m, 2H), 7.26-7.20 (m, 1H), 6.61 (s, 1H), 2.17 (s, 3H), 1.15 (s, 9H).¹³C NMR (100 MHz, CDCl₃): δ 195.4, 168.4, 134.2, 128.7, 128.0, 127.9, 126.7, 105.1, 35.2, 28.0, 21.0. HRMS calculated for C₁₅H₁₈O₂Na: 253.1204. Found: 249.1199.

3-ethyl-1-phenylhepta-1,2-dienyl acetate (**3k**): General procedure using conditions C yielded, after flash chromatography on silica gel (Pentane/Et₂O 97/3), 36.7 mg (71%) of the title compound.¹H NMR (**400 MHz, CDCl₃**): δ 7.33-7.30 (m, 4H), 7.25-7.18 (m, 1H), 6.60 (t, *J* = 3.0 Hz, 1H), 2.27 (s, 3H), 2.25-2.17 (m, 4H), 1.56-1.47 (m, 4H), 1.40-1.29 (m, 4H), 1.11 (t, *J* = 7.3 Hz, 3H), 0.88 (t, *J* = 7.3 Hz, 3H).¹³C NMR (**100 MHz, CDCl₃**): δ 192.2, 168.9, 133.9, 128.5, 127.3, 124.3, 124.3, 122.6, 33.9, 29.7, 27.4, 22.6, 21.2, 14.0, 12.2. HRMS calculated for C₁₇H₂₂O₂Na: 281.1517. Found: 281.1512.

References

- (1) de Frémont, P.; Marion, N.; Nolan, S. P. J. Organomet. Chem. 2009, 694, 551-560.
- (2) Gaillard, S.; Slawin, A. M. Z.; Nolan, S. P. Chem. Commun. 2010, 46, 2742-2744.
- (3) Marion, N.; Diez-Gonzalez, S.; de Frémont, P.; Noble, A. R.; Nolan, S. P. Angew. *Chem. Int. Ed.* 2006, 45, 3647-3650.
- (4) Yu, M.; Zhang, G.; Zhang, L. Org. Lett. 2007, 9, 2147-2150.
- (5) Marion, N.; Carlqvist, P.; Gealageas, R.; de Frémont, P.; Maseras, F.; Nolan, S. P. *Chem. Eur. J.* 2007, *13*, 6437-6451.

S11

ò

30 220 210 200 190 180 170 160 140 130

