Supporting Information

Synthesis and coordination behaviors of P-stereogenic polymers

Hiroaki Imoto, Yasuhiro Morisaki,* Yoshiki Chujo*

Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.

E-mail: ymo@chujo.synchem.kyoto-u.ac.jp or chujo@chujo.synchem.kyoto-u.ac.jp

Contents:

1.	General and Materials	S-2
2.	Synthetic procedures and characterization data	S–3
3.	NMR spectra	S-11
4.	References	S–25

General

¹H (400 MHz) and ¹³C (100 MHz) NMR spectra were recorded on a JEOL EX 400 spectrometer, and samples were analyzed in CDCl₃ or DMF- d_7 using Me₄Si as an internal standard. ³¹P (161.9 MHz) NMR spectra were also recorded on a JEOL EX 400 spectrometer, and samples were analyzed in CDCl₃ or DMF- d_7 using H₃PO₄ as an external standard. The following abbreviations are used; s: singlet, d: doublet, t: triplet, m: multiplet, q: quartet, sep: septet, and br: broad. High-resolution mass spectra (HRMS) were obtained on a JEOL JMS-SX102A spectrometer. Enantiomeric purity was confirmed by a HPLC (TOSOH UV-8020) equipped with a Daicel Chiralcel OD-H column (0.46 cm × 25 cm) using 2-propanol/hexane as an eluent. Optical rotations were measured on a Rudolph Research Analytical AUTOPOL IV instrument using CHCl₃ as a solvent. Column chromatography was performed with Wakogel C-300 SiO₂. Elemental analysis was performed at the Microanalytical Center of Kyoto University.

Materials

THF was purchased and purified by passage through purification column under Ar pressure.¹ Dehydrated grade solvents of toluene and CHCl₃ were purchased and used without further purification. *N*,*N*,*N'*,*N'*-Tetramethylethylenediamine (TMEDA), (–)-sparteine, and 1,4-diazabicyclo[2.2.2]octane (DABCO) were purchased and distilled from KOH under Ar atmosphere. *sec*-BuLi (1.0 M in cyclohexane and *n*-hexane solution), BH₃·THF (1.0 M in THF), CuI, aqueous NH₃ (28%), NaH (60 wt% in mineral oil), triethyleneglycol bis(*p*-toluenesulfonate), PdCl₂(cod), and PtCl₂(cod) were purchased and used without purification. Compounds (*S*,*S*)-**1**-BH₃² and **4**³ were prepared by the procedure of the literature. All reactions were performed under Ar atmosphere using standard Schlenk techniques.

Synthesis of (S,S)-2-BH₃

A solution of (*S*,*S*)-**1**-BH₃ (1.09 g, 3.0 mmol) and PPh₃ (3.15 g, 12 mmol) in CH₂Cl₂ (30 mL) was cooled to -78 °C under Ar atmosphere. To the stirred solution, CBr₄ (3.58 g, 10.8 mmol) was added in one portion. After 15 minutes, the reaction mixture was allowed to gradually warm to room temperature. After stirring for additional 6 h at room temperature, the reaction mixture was evaporated. The residue was subjected to column chromatography on SiO₂ with hexane/EtOAc (v/v = 1:1). The solvent was removed in vacuo, and recrystallization from toluene and hexane gave (*S*,*S*)-**2**-BH₃ (1.18 g, 2.4 mmol, 80%) as a colorless solid.

 $R_f = 0.80$ (hexane/EtOAc: v/v = 1:1); $[\alpha]^{26}{}_{D}$ 48.4 (*c* 0.5 in CHCl₃); ¹H NMR (CDCl₃, 400 MHz δ 0.7 (br q, $J_{\text{HB}} = 129.8$ Hz, -B H_3 , 6H), 1.85 (m, -PC H_2 -, 2H), 2.17 (m, -PC H_2 -, 2H), 2.50 (m, -PC H_2 -, 4H), 3.19 (m, -C H_2 Br, 2H), 3.50 (m, -C H_2 Br, 2H), 7.40-7.51 and 7.54-7.61 (m, -C₆ H_5 , 10H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 19.0 (d, $J_{\text{CP}} = 34.6$ Hz, -PC H_2 -), 24.3 (s, -CH₂Br), 30.2 (d, $J_{\text{CP}} = 30.5$ Hz, -PC H_2 -), 125.1 (d, -C₆ H_5 , $J_{\text{CP}} = 50.0$ Hz), 129.3 (-C₆ H_5), 131.9 (-C₆ H_5), 132.3 (-C₆ H_5) ppm; ³¹P{¹H}NMR (CDCl₃, 161.9 MHz) δ +18.1 ppm. HRMS (FAB) calcd. for C₁₈H₂₈B₂Br₂P₂ [M]⁺: 486.0219, found 486.0204. Anal. calcd. for C₁₈H₂₈B₂Br₂P₂: C 44.32; H 5.79; found: C 44.10; H 5.79.

Synthesis of (S,S)-3-BH₃

A solution of (S,S)-2-BH₃ (732 mg, 1.5 mmol) and NaN₃ (390 mg, 6.0 mmol) in DMF (5.0 mL) was stirred at room temperature under Ar atmosphere. After stirring overnight, the reaction mixture was treated with saturated NH₄Claq and extracted with EtOAc (30 mL × 3). The organic layer was dried over MgSO₄. MgSO₄ was removed by filtration, and the solvent was removed in vacuo. The residue was subjected to column chromatography on SiO₂ with hexane/EtOAc (v/v = 1:1). The solvent was removed in vacuo, the compound was purified by preparative HPLC (CHCl₃) and recrystallization from toluene and hexane to obtain (*S*,*S*) -3-BH₃ (276.0 mg, 0.67 mmol, 45%) as a colorless solid.

 $R_f = 0.80$ (hexane/EtOAc: v/v = 1:1); $[\alpha]^{26}{}_{D}$ 42.9 (*c* 0.5 in CHCl₃); ¹H NMR (CDCl₃, 400 MHz δ 0.7 (br q, $J_{\text{HB}} = 122.5$ Hz, -B H_3 , 6H), 1.87 (m, -PC H_2 -, 2H), 2.04-2.26 (m, -PC H_2 -, 6H), 3.31 (m, -C H_2 N₃, 2H), 3.57 (m, -C H_2 N₃, 2H), 7.46-7.51 (m, -C₆ H_5 , 4H), 7.52-7.67 (m, -C₆ H_5 , 6H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 19.3 (d, $J_{\text{CP}} = 35.4$ Hz, -PC H_2 -), 25.8 (d, -PC H_2 - $J_{\text{CP}} = 33.8$ Hz, -PC H_2 -), 45.7 (-C H_2 N₃), 125.7 (d, $J_{\text{CP}} = 55.2$ Hz, -C₆ H_5), 129.3 (-C₆ H_5), 131.9 (-C₆ H_5), 132.3 (-C₆ H_5) ppm; ³¹P{¹H}NMR (CDCl₃, 161.9 MHz) δ +16.0 ppm. HRMS (FAB) calc. for C₁₈H₂₈N₆P₂B₂ [M-H]⁺ 411.1959, found 411.1961. Anal. calcd. for C₁₈H₂₈N₆P₂B₂: C 52.47; H 6.85; N 20.40, found: C 52.24; H 6.92; N; 20.11.

Synthesis of polymer 5-BH₃

A solution of (*S*,*S*)-**3**-BH₃ (61.8 mg, 0.15 mmol), 9,9-didodecyl-2,7-diehynylfluorene (**4**) (82.6 mg, 0.15 mmol), and Cu(MeCN)₄PF₆ (5.6 mg, 0.015 mmol) in DMF (1.5 mL) was stirred at 50 °C under Ar atmosphere. After stirring for 6 h, the reaction mixture was poured into 1% aqeous NH₃ and extracted with CHCl₃ (30 mL × 3). The organic layer was washed with 2 N HCl and brine, and then, it was dried over MgSO₄. MgSO₄ was removed by filtration, and the solvent was dried in vacuo. Reprecipitation from CHCl₃ and hexane gave polymer **5**-BH₃ (85.4 mg, 0.089 mmol, 59%) as a pale yellow solid.

 $[\alpha]^{26}{}_{D}$ 15.9 (*c* 0.5 in CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ 0.24-1.32 (m, -BH₃ and dodecyl-*H*), 1.78 (br, -PCH₂-), 1.90-2.18 (br, -PCH₂-), 2.55 and 2.74 (br, -PCH₂-), 4.47 and 4.68 (br, -CH₂-triazole-), 7.30-7.82 (m, -*Ar*) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 14.1, 19.4 (d, J_{cp} = 37.1 ppm, -PCH₂-), 22.6, 23.9, 26.8 (d, J_{CP} = 35.5 Hz, -PCH₂-), 29.2-30.1, 31.8, 40.5, 44.7 (-CH₂-triazole-), 55.4 (fluorene), 119.9-120.2, 124.3-124.9, 129.0-129.2, 131.9-132.4, 140.8, 148.0, 151.6 ppm; ³¹P {¹H} NMR (CDCl₃, 161.9 MHz) δ +16.1 ppm.

Synthesis of polymer 5-Pt

A solution of polymer **5**-BH₃ (48.1 mg, 0.05 mmol) and DABCO (56.1 mg, 0.50 mmol) in CHCl₃ (5.0 mL) was stirred at 50 °C under Ar atmosphere. After stirring for 6 h, the reaction mixture was poured into hexane under Ar atmosphere, and the solvent was removed with a syringe. The residue was solved in CHCl₃ (5.0 mL). To the CHCl₃ solution was added PtCl₂(cod) (18.7 mg, 0.05 mmol) under Ar atmosphere. After stirring for 12 h, the reaction mixture was poured into hexane to obtain polymer complex **5**-Pt as a pale yellow solid (38.0 mg, 0.032 mmol, 63%).

 $[\alpha]^{25}{}_{D}$ 40.2 (*c* 0.5 in CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ 0.64 (br -C₁₂H₂₅), 0.82 (br -C₁₂H₂₅), 0.94-1.26 (br -C₁₂H₂₅), 2.04 (br, -PCH₂-), 3.16 (br, -PCH₂-), 4.98 (br, -CH₂-triazole-), 7.37 (br, -*Ar*), 7.51-7.72 (br, -*Ar*), 7.78 (br, -*Ar*), 7.97 (br, -*Ar*) ppm; ³¹P{¹H}NMR (CDCl₃, 161.9 MHz) δ +42.2 (*J*_{P-Pt} = 3577 Hz) ppm.

Synthesis of polymer 5-Cu

A solution of polymer **5**-BH₃ (28.9 mg, 0.03 mmol), DABCO (33.6 mg, 0.30 mmol) in CHCl₃ (3.0 mL) was stirred at 50 °C. After stirring for 6 h, the reaction mixture was poured into hexane under Ar atmosphere, and the solvent was removed with a syringe. The residue was solved in DMF (3.0 mL), and Cu(MeCN)₄PF₆ was added to the DMF solution. After stirring for 12 h, the reaction mixture was poured into toluene to obtain polymer **5**-Cu as a pale yellow solid (25.3 mg, 0.022 mmol, 73%).

 $[\alpha]^{25}{}_{D}$ 8.4 (*c* 0.5 in CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ 0.60-1.45 (br $-C_{12}H_{25}$), 1.93-2.48 (br, -PCH₂-), 4.87 (br, -CH₂-triazole-), 7.11-8.30 (br, -*Ar*), 8.94 (br, -*Ar*) ppm; ³¹P{¹H}NMR (CDCl₃, 161.9 MHz) δ -8.1, -145.7 (sep, *J*_{PF} = 710.7 Hz) ppm.

Synthesis of model compound (S,S)-M1-BH₃

A solution of (S,S)-**3**-BH₃ (124.0 mg, 0.30 mmol), phenylacetylene (110 mL, 1.0 mmol), and Cu(MeCN)₄PF₆ (11.2 mg, 0.03 mmol) in DMF (3.0 mL) was stirred at 50 °C under Ar atmosphere. After stirring for 6 h, the reaction mixture was poured into 1% NH₃aq and extracted with CHCl₃ (30 mL × 3). The organic layer was washed with 2 N HCl and brine, and it was dried over MgSO₄. MgSO₄ was removed by filtration, and the solvent was dried in vacuo. The residure was purified by reprecipitation from CHCl₃ and hexane, following recrystallization from toluene and hexane gave (*S*,*S*)-**M1**-BH₃ (135.1 mg, 0.22 mmol, 73%) as a colorless solid.

[α]²⁶_D 9.9 (*c* 0.5 in CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ 0.75 (br q, $J_{\text{HB}} = 98.6$ Hz, -BH₃, 6H), 1.61 (m, -PCH₂-, 2H), 2.00 (m, -PCH₂-, 2H), 2.52 (m, -PCH₂-, 2H), 2.69 (m, -PCH₂-, 2H), 4.43 (m, -CH₂-triazole, 2H), 4.63 (m, -CH₂-triazole, 2H), 7.3-7.5 (m, -Ar, 18H), 7.61 (s, triazole-H, 2H), 7.68 (d, J = 7.2 Hz, -Ar, 2H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 19.2 (s, -PCH₂-), 26.7 (d, $J_{\text{CP}} = 34.6$ Hz, -PCH₂-), 44.7 (-CH₂-triazole-), 100.5, 120.3, 125.7, 128.2, 128.8, 129.2, 129.3, 129.3, 130.2, 131.8, 132.4, 147.6 ppm; ³¹P{¹H}NMR (CDCl₃, 161.9 MHz) δ +16.1 ppm. HRMS (ESI) calc. for C₃₄H₄₀N₆P₂B₂ [M+H]⁺ 617.3054, found 617.3049.

Synthesis of model compound (S,S)-M1-BH₃

A solution of (S,S)-M1-BH₃ (24.6 mg, 0.04 mmol), DABCO (44.8 mg, 0.40 mmol) in toluene (4.0 mL) was stirred at 50 °C. After stirring for 6 h, the reaction mixture was poured into hexane under Ar atmosphere, and the solvent was removed with a syringe. The residue was solved in CH₂Cl₂ (3.0 mL), and PtCl₂(cod) (15.0 mg, 0.04 mmol) was added to the CH₂Cl₂ solution. After stirring for 12 h, the reaction mixture was subjected to reprecipitation from CH₂Cl₂ and hexane to obtain polymer (*S*,*S*)-M1-Pt as a colorless solid (29.8 mg, 0.035 mmol, 87%).

 $[\alpha]^{26}{}_{D}$ 39.6 (*c* 0.5 in DMF); ¹H NMR (CDCl₃, 400 MHz) δ 2.2-2.5 (m, -PC*H*₂-), 3.16 (m, -PC*H*₂-, 4H), 4.89 (m, -C*H*₂-triazole, 4H), 7.35 (m, -*Ar*, 14H), 7.63 (m, -*Ar*, 2H), 7.75 (s, triazole-*H*, 2H), and 7.92 (m, -*Ar*, 4H) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 25.8 (d, *J*_{CP} = 34.5 Hz, -PCH₂-), 26.7 (d, *J*_{CP} = 34.6 Hz, -PCH₂-), 45.7 (-CH₂-triazole-), 100.1, 124.7-125.8, 128.3-130.0, 128.2, 132.7-132.9, 147.9 ppm; ³¹P{¹H}NMR (CDCl₃, 161.9 MHz) δ +41.3 (*J*_{PPt} = 3556) ppm. HRMS (ESI) calc. for C₃₄H₃₄N₆Cl₂P₂Pt [M+Na]⁺ 876.1243, found 876.1230.

Synthesis of model compound (S,S)-M1-Cu

A solution of (*S*,*S*)-**M1**-BH₃ (43.1 mg, 0.07 mmol), DABCO (78.4 mg, 0.70 mmol) in toluene (3.0 mL) was stirred at 50 °C. After stirring for 6 h, the reaction mixture was poured into hexane under Ar atmosphere, and the solvent was removed with a syringe. The residue was solved in DMF (3.0 mL), and Cu(MeCN)₄PF₆ (26.1 mg, 0.07 mmol) was added to the DMF solution. After stirring for 12 h, the solvent was removed in vacuo. The residue was purified by reprecipitation from CHCl₃ and hexane to obtain polymer (*S*,*S*)-**M1**-Cu as a colorless solid (24.0 mg, 0.030 mmol, 43%).

 $[\alpha]^{25}{}_{D}$ 39.6 (*c* 0.5 in CHCl₃); ¹H NMR (CDCl₃, 400 MHz) δ 2.16 (br, -PCH₂-), 4.85 (m, -CH₂-triazole), 5.06 (m, -CH₂-triazole), 7.3-7.5, 7.75, 7.82, 8.84 (s, triazole-*H*) ppm; ³¹P{¹H}NMR (CDCl₃, 161.9 MHz) δ –9.2, –145.8 (sep, J_{PF} = 710.7 Hz) ppm. HRMS (ESI) calc. for C₃₄H₃₄N₆P₃F₆Cu [M-PF₆]⁺ 651.1611, found 651.1601.

Figure S1. ¹H NMR spectrum (400 MHz) of (S,S)-2-BH₃ in CDCl₃.

Figure S2. 13 C NMR spectrum (100 MHz) of (*S*,*S*)-2-BH₃ in CDCl₃.

Figure S3. 31 P NMR spectrum (161.9 MHz) of (*S*,*S*)-2-BH₃ in CDCl₃.

Figure S4. ¹H NMR spectrum (400 MHz) of (S,S)-**3**-BH₃ in CDCl₃.

Figure S5. 13 C NMR spectrum (100 MHz) of (*S*,*S*)-**3**-BH₃ in CDCl₃.

Figure S6. 31 P NMR spectrum (161.9 MHz) of (*S*,*S*)-**3**-BH₃ in CDCl₃.

Figure S7. ¹H NMR spectrum (400 MHz) of 5-BH₃ in CDCl₃.

Figure S8. ¹³C NMR spectrum (100 MHz) of 5-BH₃ in CDCl₃.

Figure S10. ¹H NMR spectrum (400 MHz) of 5-Pt in CDCl₃.

Figure S11. ³¹P NMR spectrum (161.9 MHz) of 5-Pt in CDCl₃.

Figure S12. ¹H NMR spectrum (400 MHz) of **5**-Cu in DMF- d_7 .

Figure S13. ³¹P NMR spectrum (161.9 MHz) of 5-Cu in DMF- d_7 .

Figure S14. ¹H NMR spectrum (400 MHz) of (S,S)-M1-BH₃ in CDCl₃.

Figure S15. ¹³C NMR spectrum (100 MHz) of (S,S)-M1-BH₃ in CDCl₃.

Figure S17. ¹H NMR spectrum (400 MHz) of (S,S)-M1-Pt in CDCl₃.

Figure S18. ¹³C NMR spectrum (100 MHz) of (S,S)-M1-Pt in CDCl₃.

Figure S20. ¹H NMR spectrum (400 MHz) of (S,S)-M1-Cu in DMF- d_7 .

Figure S21. ³¹P NMR spectrum (161.9 MHz) of (S,S)-M1-Cu in DMF- d_7 .

Figure S22. (a) ³¹P and (b) ¹H NMR spectra of (*S*,*S*)-**M1**-BH₃ (in CDCl₃), (*S*,*S*)-**M1**-Pt (in CDCl₃), and (*S*,*S*)-**M1**-Cu (in DMF- d_7).

Figure S23. (a) ³¹P and (b) ¹H NMR spectra of **5**-BH₃ (in CDCl₃), **5**-Pt (in CDCl₃), and **5**-Cu (in DMF- d_7). This is the same figure as "Fig.1" in the manuscript.

References

- 1. Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518-1520.
- 2. Morisaki, Y.; Imoto, H.; Tsurui, K.; Chujo, Y. Org. Lett. 2009, 11, 2241-2244.
- 3. Lee, S. H.; Nakamura, T.; Tsutsui, T. Org. Lett. 2001, 3, 2005-2007.