Organocatalytic Enantioselective Desymmetrization of Cyclic Enones *via* Phosphine Promoted [3+2] Annulations

Nathalie Pinto, Pascal Retailleau, Arnaud Voituriez and Angela Marinetti* Institut de Chimie des Substances Naturelles CNRS UPR 2301, Centre de Recherche de Gif 1 av. de la Terrasse, 91198 Gif sur Yvette, France

angela.marinetti@icsn.cnrs-gif.fr

Table of Contents :

- 1) General methods
- 2) Substrates
- 3) Phosphine promoted [3+2] cyclisations on enones 1.
- 4) NMRspectra and HPLC analysis

1) General methods

All reactions were run under argon by using standard techniques for manipulating airsensitive compounds. Anhydrous solvents were obtained by filtration through drying columns (THF, Et₂O, CH₂Cl₂). All reagents were of commercial quality and were used without further purification. Flash column chromatography was performed using 40-63 mesh silica. Nuclear magnetic resonance spectra (¹H, ¹³C, ³¹P) were recorded either on Brucker AV 500 or AV 300 spectrometers. IR spectra were recorded with a Perkin-Elmer FT-IR spectrophotometer. High resolution mass spectra (HRMS-ESI) were obtained on LCT Waters equipment. Optical rotations were determined with a JASCO P-1010 polarimeter. HPLC was performed at a column temperature of 30°C on a Waters 2695 Separations Module equipped with a diode array UV detector. Data are reported as follows: column type, eluent, flow rate, retention time.

2) Substrates

4-methylcyclohexanone, 4-*tert*-butylcyclohexanone, 4-phenylcyclohexanone and 4isopropylcyclohexanone are commercially available. The diarylidenecyclohexanones **1a,c,d,f,e** are known compounds.^{1,2} They have been prepared as shown hereafter. 2,4dibenzylidenebicyclo[3.1.0]hexan-3-one **4a** and 2,4-dibenzylidene-6methylbicyclo[3.1.0]hexan-3-one **4b** were prepared according to literature procedure.³

(2*E*,6*E*)-2,6-dibenzylidene-4-methylcyclohexanone **1a**. *Method A*: 4-methylcyclohexanone (10 mmol, 1.12 g) was dissolved in a mixture of ethanol (20 mL) and water (10 mL). Benzaldehyde (20 mmol, 2 mL) and NaOH [1M] (10 mL) were

then added at 0°C. The mixture was stirred at room temperature overnight. The yellow precipitate was filtrated and the desired compound was obtained as a yellow solid (2.27 g, 79%). ¹H NMR (500 MHz, CDCl₃) δ 7.81 (bs, 2H, C=CHC₆H₅), 7.50-7.25 (m, 10H), 3.07

¹ Frey, H. Synthesis **1992**, 387-390.

² Dimmock, J. R.; Padmanilayam, M. P.; Zello, G. A.; Nienaber, K. H.; Allen, T. M.; Santos, C. L.; De Clercq, E.; Balzarini, J.; Manavathu E. K.; Stables, J. P. *Eur. J. Med. Chem.*, **2003**, *38*, 169-177

³ Kearley, M. L.; Lahti, P. M. *Tetrahedron Lett.***1991**, *32*, 5869-5872 ; Kearley, M. L.; Ichimura, A. S.; Lahti, P. M. *J. Am. Chem. Soc.* **1995**, *117*, 5235-5244; Flaugh, M. E.; Crowell, T. A.; Farlow, D. S. *J. Org. Chem.* **1980**, *45*, 5399-5400.

 $(dd, {}^{2}J_{AB} = 16.0, {}^{3}J = 3.5 Hz, 2H, CHH), 2.52 (m, 2H, 2CHH), 1.89 (m, 1H, CHCH_3), 1.08 (d, {}^{3}J = 6.5 Hz, 3H, CHCH_3); {}^{13}C NMR (75 MHz, CDCl_3) \delta 190.3 (Cq), 137.3 (C=CHC_6H_5), 136.1 (Cq), 135.5 (Cq), 130.5 (CH), 128.7 (CH), 128.5 (CH), 36.6 (CH_2), 29.6 (CHCH_3), 21.8 (CHCH_3); IR: v_{max} = 2957, 1660, 1603, 1568, 1444, 1288, 1240, 1142, 931, 770, 755, 692 cm⁻¹; MS (ESI) <math>m/z$: 289 [M+H]⁺; Melting point: 96-97°C.

(2*E*,6*E*)-2,6-dibenzylidene-4-isopropylcyclohexanone **1b**. *Method A* was employed, starting from 4-isopropylcyclohexanone (1.6 mmol, 0.25 mL) and benzaldehyde (3.2 mmol, 0.35 mL). The product was obtained as a yellow solid (330 mg, 65%). ¹H NMR (500 MHz, CDCl₃) δ 7.8 (br, 2H), 7.50-7.30 (m, 10H), 3.06 (dd, *J* = 15.5, 3.0 Hz, 2H, CH₂), 2.60-2.55 (m, 2H, CH₂), 1.64 (m, *J* = 6.5 Hz, 1H, CH), 1.60-1.50 (m, 1H, CH), 0.91 (d, ³*J* = 7.0 Hz, 6H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 190.7 (Cq), 137.3 (C₆H₅C*H*=C), 136.2 (Cq), 135.8 (Cq), 130.5 (CH), 128.7 (CH), 128.6 (CH), 40.4 (CH), 31.7

(CH), 31.6 (CH₂), 19.9 (CH₃); **IR**: v_{max} = 1661, 1570, 1444, 1291, 1154, 775, 693 cm⁻¹; **MS** (**ESI**) m/z : 339 [M+Na]⁺; **Melting point**: 102-103°C.

(2*E*,6*E*)-2,6-dibenzylidene-4-*tert*-butylcyclohexanone **1c**. *Method A*: 4-*tert*-butylcyclohexanone (10 mmol, 1.54 g), was dissolved in a mixture of ethanol (20 mL) and water (10 mL). Benzaldehyde (20 mmol, 2 mL) and NaOH [1M] (10 mL) were

then added and the resulting mixture was heated at 50°C and stirred overnight. The yellow precipitate was filtrated and the desired compound was obtained as a yellow solid after crystallization in ethanol (1.79 g, 54%). ¹H NMR (500 MHz, CDCl₃) δ 7.80-7.75 (m, 2H), 7.50-7.30 (m, 10H), 3.17 (dd, J = 15.5, 2.0 Hz, 2H, CH₂), 2.50-2.40 (m, 2H, CH₂), 1.49 (m, 1H, CH), 0.95 (s, 9H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 190.8 (Cq), 137.0 (CH), 136.3 (Cq), 136.2 (Cq), 130.4 (CH), 128.7 (CH), 128.6 (CH), 44.5 (CH), 32.7 (Cq), 29.7 (CH₂), 27.4 (CH₃); **IR**: v_{max} = 2959, 1660, 1603, 1445, 1244, 1157, 983, 776, 693 cm⁻¹; **MS** (**ESI**) m/z : 353 [M+Na]⁺; **Melting point**: 137-138°C.

(2*E*,6*E*)-2,6-dibenzylidene-4-phenylcyclohexanone
1d. *Method A* was employed starting from 4-phenylcyclohexanone
(2.87 mmol, 500 mg) and benzaldehyde (5.74 mmol, 0.9 mL).
The product was obtained as a yellow solid from the crude

reaction mixture by filtration (958 mg, 96%). ¹H NMR (500 MHz, CDCl₃) δ 7.90-7.85 (m, 2H), 7.45-7.25 (m, 15H), 3.35-3.30 (m, 2H), 3.10-3.00 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 189.7 (Cq), 144.8 (Cq), 138.0 (CH), 135.9 (Cq), 135.2 (Cq), 130.6 (CH), 128.89 (CH), 128.87 (CH), 128.6 (CH), 126.99 (CH), 126.97 (CH), 41.0 (CH), 36.1 (CH₂); **IR**: v_{max} = 1733, 1660, 1598, 1443, 1288, 1146, 983, 750 691 cm⁻¹; **MS (ESI)** *m/z* : 373 [M+Na]⁺;**Melting point**: 134-135°C.

(2*E*,6*E*)-4-*tert*-butyl-2,6-bis(4-methoxybenzylidene) cyclohexanone **1e**. *Method A* was employed starting from 4-*tert*-butylcyclohexanone (10 mmol, 1.54 g) and 4-methoxybenzaldehyde (20 mmol, 2.4 mL). The product was obtained as a yellow solid (2.42 g,

62%). ¹**H** NMR (500 MHz, CDCl₃) δ7.73 (m, 2H), 7.45 (d, J = 8.5 Hz, 4H), 6.95 (d, J = 8.5 Hz, 4H), 3.85 (s, 6H, OMe), 3.15 (dd, J = 15.5, 2.5 Hz, 2H, CH₂), 2.44 (t, $J \sim 14$ Hz, 2H), 1.48 (tt, J = 13.0, 3.0 Hz, 1H), 0.97 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 190.5 (Cq), 160.0 (2Cq), 136.5 (CH), 134.4 (Cq), 132.3 (CH), 128.9 (Cq), 114.1 (CH), 55.4 (OCH₃), 44.5 (Cq), 32.6 (Cq), 29.7 (CH₂), 27.5 (CH₃); **IR**: v_{max} = 2951, 1664, 1507, 1291, 1254, 1169, 1029, 830, 770 cm⁻¹; **MS (ESI)** *m/z* : 413 [M+Na]⁺; **Melting point**: 171-172°C.

(2E,6E)-4-*tert*-butyl-2,6-bis(4-methylbenzylidene)cyclohexanone **1f**. *Method A* was employed with 4-*tert*butylcyclohexanone (10 mmol, 1.54 g) and 4methylbenzaldehyde (20 mmol, 2.35 mL)). The product

was obtained as a yellow solid (3.10 g, 87%). ¹H NMR (500 MHz, CDCl₃) δ 7.78 (m, 2H), 7.41 (d, *J* = 7.5 Hz, 4H), 7.25 (d, *J* = 7.5 Hz, 4H), 3.19 (d, *J* = 15.0 Hz, 2H), 2.46 (t, *J* ~ 14 Hz, 2H), 2.41 (s, 6H), 1.51 (t, *J* = 12.5 Hz, 1H), 0.99 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 190.7 (Cq), 138.9 (Cq), 136.9 (CH), 135.6 (Cq), 133.4 (Cq), 130.5 (CH), 129.3 (CH), 44.5 (CH), 32.7 (Cq), 29.7 (CH₂), 27.4 (C(*C*H₃)₃), 21.5 (CH₃); **IR**: v_{max}= 2961, 2358, 1663, 1573, 1315, 1174, 930, 817, 666 cm⁻¹; **MS (ESI)** *m/z* : 381 [M+Na]^{+;} **Melting point**: 156-157°C.

(bs, 8H), 3.09 (m, 2H), 2.41 (m, 2H), 1.47 (m, 1H), 0.94 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 190.2 (Cq), 136.6 (Cq), 135.8 (CH), 134.7 (Cq), 134.5 (Cq), 131.6 (CH), 128.9 (CH), 44.5 (CH), 32.7 (Cq), 29.6 (CH₂), 27.4 (CH₃); **IR**: v_{max} = 2958, 1663, 1577, 1558, 1404, 1241, 1092, 983, 928, 823, 704 cm⁻¹; **MS (ESI)** *m/z* : 421 [M+Na]⁺; **Melting point**: 177-178°C.

(2E,6E)-4-*tert*-butyl-2,6-bis(naphthalen-1-ylmethylene)cyclohexanone **1h**. *Method A* was employed starting from 4*tert*-butylcyclohexanone (10 mmol, 1.54 g) and 1naphthaldehyde (20 mmol, 2.7 mL). The product was obtained as a yellow solid (1.98 g, 46%). ¹H NMR (300

MHz, CDCl₃) δ 8.43 (m, 2H), 8.10-8.05 (m, 2H), 7.95-7.85 (m, 4H), 7.60-7.45 (m, 8H), 3.06 (dd, *J* = 15.0, 2.4 Hz, 2H), 2.38 (m, 2H), 1.53 (tt, *J* = 12.6, 3.3 Hz, 1H), 0.78 (s, 9H); ¹³C **NMR** (75 MHz, CDCl₃) δ 190.5 (Cq), 138.3 (Cq), 135.4 (CH), 133.7 (Cq), 133.3 (Cq), 132.2 (Cq), 129.0 (CH), 128.7 (CH), 126.9 (CH), 126.6 (CH), 126.3 (CH), 125.2 (CH), 124.9 (CH), 45.1 (CH), 32.7 (Cq), 29.9 (CH₂), 27.2 (CH₃); **IR**: v_{max}= 2955, 1593, 1231, 1196, 1156, 968, 861, 778 cm⁻¹; **MS** (**ESI**) *m/z* : 453 [M+Na]⁺; **Melting point**: 146-148°C.

(2E,6E)-4-tert-butyl-2,6-bis(naphthalen-2-

ylmethylene)cyclohexanone **1i**. *Method A* was employed with 4-*tert*-butylcyclohexanone (5 mmol, 770 mg) and 2-naphthaldehyde (10 mmol, 1.56 g). The product was obtained as a vellow solid (1.79 g.

83%). ¹**H** NMR (500 MHz, CDCl₃) δ 7.96 (bs, 4H), 7.90-7.80 (m, 6H), 7.60 (d, J = 8.5 Hz, 2H), 7.55-7.45 (m, 4H), 3.31 (d, J = 15.5 Hz, 2H), 2.58 (t, $J \sim 14$ Hz, 2H), 1.55-1.50 (m, 1H), 0.97 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 190.7 (Cq), 137.1 (CH), 136.6 (Cq), 133.8 (2Cq), 133.3 (Cq), 133.2 (Cq), 130.4 (CH), 128.6 (CH), 128.2 (CH), 127.8 (CH), 127.7 (CH), 127.0 (CH), 126.6 (CH), 44.7 (CH), 32.7 (Cq), 29.8 (CH₂), 27.4 (CH₃): **IR**: v_{max} = 2356, 1692, 1595, 1563, 1429, 1297, 992, 747, 724 cm⁻¹; **MS (ESI)** *m*/*z* : 453 [M+Na]⁺; **Melting point**: 191-193°C.

2H), 6.67 (d, J = 3.4 Hz, 2H), 6.53 (dd, J = 3.4, 1.8 Hz, 2H), 3.38 (dd, J = 16.5, 3.0 Hz, 2H), 2.41 (m, 2H), 1.65-1.55 (tt, J = 12.9, 3.6 Hz, 1H), 1.06 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 189.5 (Cq), 152.9 (Cq), 144.7 (CH), 133.3 (Cq), 123.4 (CH), 116.2 (CH), 112.4 (CH), 43.3 (CH), 32.2 (Cq), 29.4 (CH₂), 27.5 (CH₃); **IR**: v_{max} = 2959, 1596, 1477, 1307, 1239, 730 cm⁻¹; **MS (ESI)** m/z : 333 [M+Na]⁺; **Melting point**: 136-138°C.

3) Phosphine promoted [3+2] cyclisations on enones 1.

Procedure a: Ethyl 2,3 butadienoate (0,40 mmol) was added to a mixture of enones 1 (0.20 mmol) and cyclohexyldiphenyl phosphine (10 mol %, 0.020 mmol, 5.4 mg) in degazed toluene (0.7 mL) under argon atmosphere. The solution was stirred at 40°C until completion. The crude mixture was concentrated *in vacuo*. Diastereomeric ratios were measured by NMR on the crude mixture, based on integration of the C=CHPh signals at about 7.5 ppm. The final product was purified by flash chromatography on silica gel (5% EtOAc / heptanes).

Procedure b: Ethyl 2,3 butadienoate (0,30 mmol) was added to a mixture of enones 1 (0.15 mmol) and either FerroPHANE, **A**, or *t*-Bu-Binepine, **B** (10 mol %, 0.015 mmol) in degazed toluene (0.5 mL) under argon atmosphere. The solution was stirred at 80°C until completion. The crude mixture was concentrated *in vacuo*. Diastereomeric ratios were measured by NMR on the crude mixture, based on integration of the C=CHPh signals at about 7.5 ppm. The final product was purified by flash chromatography on silica gel (5% EtOAc / heptanes).

(E)-ethyl 7-benzylidene-9-methyl-6-oxo-4-phenylspiro[4.5]dec-1-ene-1-

carboxylate **2a**. *Procedure a* (catalyst CyPPh₂): 95% yield, 90/10 dr; Procedure b (catalyst (S,S)-FerroPHANE): 91% yield, 76% ee, 80/20 dr; Pale yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.57 (bs, 1H, C₆H₅C*H*=C), 7.35-7.10 (m, 10H), 6.91 (m, 1H, CH₂C*H*=C), 4.15-4.00

750, 696 cm⁻¹; **HRMS (ESI)** calcd. For C₂₇H₂₈NaO₃ [M+Na]⁺: 423.1936, found: 423.1921; **HPLC Analysis**: 76% ee [Daicel CHIRACEL IC, 10% *i*PrOH/*n*-heptane, 1mL/min, 300 nm, retention times: 19.8 min (major) and 34.8 min (minor)]. Minor diastereoisomer: selected ¹**H NMR** data (300 MHz, CDCl₃) δ 7.67 (bs), 6.99 (dd, *J* = 3.0, 2.0 Hz), 4.21 (dd, *J* = 11.1, 7.5 Hz), 1.40 (t, *J* = 13.0 Hz), 0.75 (d, *J* = 6.6 Hz).

(*E*)-ethyl 7-benzylidene-9-isopropyl-6-oxo-4-phenylspiro[4.5]dec-1-ene-1-carboxylate **2b**. *Procedure a* (catalyst CyPPh₂): 93% yield, 85/15 dr; *Procedure b* (catalyst (*S*,*S*)-FerroPHANE): 44% yield, 82% ee, 80/20 dr; Pale yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, *J* = 2.5 Hz, 1H), 7.40-7.15 (m, 10H), 7.00 (t, *J* = 2.0 Hz, 1H), 4.25-4.10 (m, 3H), 2.96

(ddd, J = 18.0, 10.0, 2.0 Hz, 1H), 2.80-2.75 (m, 2H), 2.24 (ddd, J = 15.5, 12.2, 3.0 Hz, 1H), 1.93 (dt, J = 13.5, 3.0 Hz, 1H), 1.69 (t, J = 13.0 Hz, 1H), 1.25 (t, J = 7.0 Hz, 3H), 1.20-1.10 (m, 1H), 0.57 (d, J = 6.5 Hz, 3H), 0.54 (d, J = 6.5 Hz, 3H), 0.30-0.20 (m, 1H); ¹³**C NMR** (75 MHz, CDCl₃) δ 205.4 (Cq), 163.8 (Cq), 143.5 (CH), 143.3 (Cq), 139.1 (Cq), 136.9 (Cq), 136.2 (Cq), 136.1 (CH), 130.4 (2CH), 128.9 (2CH), 128.5 (2CH), 128.4 (3CH), 127.4 (CH), 62.8 (Cq), 60.6 (CH₂), 55.9 (CH), 36.6 (CH), 35.8 (CH₂), 32.3 (CH), 31.8 (CH₂), 31.7 (CH₂), 19.6 (CH₃), 18.9 (CH₃), 14.2 (CH₃); **IR**: v_{max} = 2956, 2360, 1708, 1592, 1446, 1326, 1244, 1091, 1027, 911, 865 cm⁻¹; **HRMS (ESI)** calcd. For C₂₉H₃₂NaO₃ [M+Na]⁺: 451.2249, found: 451.2259; **HPLC Analysis**: 82% ee [Daicel CHIRACEL IA, 10% *i*PrOH/*n*-heptane, 1mL/min, 300 nm, retention times: 7.7 min (minor) and 10.2 min (major)]; Minor diastereoisomer: selected ¹**H NMR** data (500 MHz, CDCl₃) δ 7.68 (br), 7.04 (dd, J = 2.9, 1.95 Hz), 0.73 (dd, J = 7.0, 5.5 Hz).

(*E*)-ethyl 7-benzylidene-9-*tert*-butyl-6-oxo-4-phenylspiro[4.5]dec-1-ene-1-carboxylate **2c**. *Procedure a* (catalyst CyPPh₂): 92% yield, >95/5 dr; *Procedure b* (catalyst (*S*,*S*)-FerroPHANE): 98% yield, 92% ee, >95/5 dr; White solid; ¹H NMR (300 MHz, CDCl₃) δ 7.56 (d, *J* = 2.4 Hz, 1H), 7.30-7.10 (m, 10H), 6.95 (t, *J* = 2.7 Hz, 1H), 4.15-4.00 (m, 3H), 2.90 (ddd, *J* =

18.3, 9.6, 2.1 Hz, 1H), 2.83 (dt, J = 14.4, 3.0 Hz, 1H), 2.71 (ddd, J = 18.3, 8.1, 3.0 Hz, 1H), 2.15 (td, J = 15.0, 2.7 Hz, 1H), 1.92 (dt, J = 13.8, 2.7 Hz, 1H), 1.65 (t, J = 13.2 Hz, 1H), 1.18 (t, J = 6.9 Hz, 3H), 0.49 (s, 9H), 0.27 (tt, J = 13.0, 3.5 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 205.4 (Cq), 163.8 (Cq), 143.6 (CH), 143.3 (Cq), 139.0 (Cq), 137.4 (Cq), 136.2 (Cq), 135.9 (CH), 130.2 (2CH), 129.1 (2CH), 128.5 (2CH), 128.4 (2CH), 128.3 (CH), 127.4 (CH), 63.0 (Cq), 60.6 (CH₂), 55.8 (CH), 40.2 (CH), 35.8 (CH₂), 32.2 (Cq), 29.9 (CH₂), 29.2 (CH₂), 27.0

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

(3CH₃), 14.2 (CH₃); **IR**: v_{max} = 2946, 1697, 1667, 1588, 1370, 1327, 1243, 1232, 1162, 1095, 1027, 754, 697 cm⁻¹; **HRMS (ESI)** calcd. For C₃₀H₃₄NaO₃ [M+Na]⁺: 465.2406, found: 465.2397; **HPLC Analysis**: 92% ee [Daicel CHIRACEL IC, 10% *i*PrOH/*n*-heptane, 1mL/min, 300 nm, retention times: 16.4 min (major) and 40.0 min (minor)]; $[\alpha]_D^{24} = +290$ (c = 0.91, CHCl₃); **Melting point**: 128-130°C.

(*E*)-ethyl 7-benzylidene-6-oxo-1,9-diphenylspiro[4.5]dec-1-ene-2carboxylate 2d. *Procedure a* (catalyst CyPPh₂): 86% yield, 90/10 dr; *Procedure b* (catalyst (*S*,*S*)-FerroPHANE): 98% yield, 92% ee, 85/15 dr; White solid; ¹H NMR (500 MHz, CDCl₃) δ 7.79 (bs, 1H), 7.40-7.15 Ph (m, 13H), 7.02 (bs, 1H), 6.80 (d, *J* = 7.5 Hz, 2H), 4.30-4.20 (m, 3H),

3.05-2.90 (m, 2H), 2.85-2.75 (m, 2H), 2.24 (dd, J = 14.0, 13.0 Hz, 1H), 2.18 (d, J = 13.0 Hz, 1H), 1.65-1.60 (m, 1H), 1.33 (t, J = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 204.7 (Cq), 163.8 (Cq), 145.1 (Cq), 143.4 (Cq), 143.1 (CH), 138.9 (Cq), 136.9 (CH), 136.4 (Cq), 135.8 (Cq), 130.5 (2CH), 128.9 (2CH), 128.8 (2CH), 128.6 (2CH), 128.5 (3CH), 127.7 (CH), 126.8 (2CH), 126.5 (CH), 63.3 (Cq), 60.8 (CH₂), 56.2 (CH), 37.8 (CH), 37.2 (CH₂), 35.5 (CH₂), 35.2 (CH₂), 14.3 (CH₃); **IR**: v_{max} = 2932, 1697, 1592, 1371, 1327, 1240, 1151, 760, 747, 693 cm⁻¹; **HRMS (ESI)** calcd. For C₃₂H₃₀NaO₃ [M+Na]⁺: 485.2093, found: 485.2073; **HPLC Analysis**: 92% ee [Daicel CHIRACEL IA, 5% *i*PrOH/*n*-heptane, 1ml/min, 270 nm, retention times: 13.8 min (minor) and 18.4 min (major)]; **Melting point**: 165-166°C.

(E)-tert-butyl 7-benzylidene-9-methyl-6-oxo-4-phenylspiro[4.5]dec-

1-ene-1-carboxylate **3a**. *Procedure a* (catalyst CyPPh₂): 90% yield, 85/15 dr; *Procedure b* (catalyst (S,S)-FerroPHANE): 86% yield, 90% ee, 80/20 dr; White solid; ¹H NMR (300 MHz, CDCl₃) δ 7.57 (d, *J* = 2.4 Hz, 1H), 7.35-7.05 (m, 10H), 6.85 (t, *J* = 2.4 Hz, 1H), 3.98 (m, 1H), 2.86 (ddd, *J* = 17.7, 10.2, 2.1 Hz, 1H), 2.70-2.60 (m,

1H), 2.08 (ddd, J = 15.3, 12.6, 3.0 Hz, 1H), 1.83 (dt, J = 13.8, 3.0 Hz, 1H), 1.59 (t, J = 12.6 Hz, 2H), 1.37 (s, 9 H), 0.54 (d, J = 6.6 Hz, 3H), 0.35-0.25 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 205.1 (Cq), 163.1 (Cq), 144.6 (Cq), 142.8 (CH), 139.3 (Cq), 136.8 (Cq), 136.2 (Cq), 135.9 (CH), 130.4 (2CH), 128.6 (2CH), 128.44 (CH), 128.41 (4CH), 127.43 (CH), 81.2 (Cq), 62.9 (Cq), 56.5 (CH), 37.5 (CH₂), 36.7 (CH₂), 35.4 (CH₂), 28.2 (CH₃), 26.3 (CH), 22.0 (CH₃); **IR**: v_{max} = 2919, 1693, 1671, 1590, 1445, 1332, 1244, 1148, 1076, 1022, 847 cm⁻¹; **Melting point**: 142-144°C; **HRMS (ESI)** calcd. For C₂₉H₃₂NaO₃ [M+Na]⁺: 451.2249, found:

451.2256; **HPLC Analysis**: 90% ee [Daicel CHIRACEL IA, 5% *i*PrOH/*n*-heptane, 1mL/min, 300 nm, retention times: 7.4 min (minor) and 12.1 min (major)].

(*E*)-*tert*-butyl 7-benzylidene-9-isopropyl-6-oxo-4-phenylspiro[4.5]dec-1-ene-1-carboxylate **3b**. *Procedure a* (catalyst CyPPh₂): 91% yield, 70/30 dr; *Procedure b* (catalyst (S,S)-FerroPHANE): 43% yield, 86% ee, 70/30 dr; Pale yellow oil; *Selected data from the mixture of two diastereoisomers:* ¹H NMR (300 MHz, CDCl₃) δ

7.67 (d, J = 2.5 Hz, 1H), 7.45-7.15 (m, 10H), 6.98 (m, 1H), 4.09 (dd, J = 9.0, 8.5 Hz, 1H), 3.00-2.90 (m, 1H), 2.80-2.70 (m, 2H), 2.24 (td, J = 15.5, 2.5 Hz, 1H), 1.95 (broad d, J = 13.5 Hz, 1H), 1.73 (t, J = 13.5 Hz, 1H), 1.46 (s, 9H), 1.25-1.15 (m, 1H), 0.62 (d, J = 7.0 Hz, 3H), 0.58 (d, J = 6.5 Hz, 3H), 0.30-0.20 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 205.4 (Cq), 163.1 (Cq), 144.5 (Cq), 142.9 (CH), 137.1 (Cq), 136.3 (Cq), 135.9 (CH), 130.3 (2CH), 129.0 (2CH), 128.4 (4CH), 128.3 (CH), 127.3 (CH), 81.1 (Cq), 62.8 (Cq), 56.4 (CH), 36.3 (CH₂), 35.5 (CH), 32.3 (CH₂), 31.85 (CH), 31.78 (CH), 28.2 (CH₃), 19.6 (CH₃), 18.9 (CH₃); **IR**: $v_{max} = 2927$, 1702, 1674, 1591, 1366, 1161, 935, 754, 696 cm⁻¹; **HRMS (ESI)** calcd. For C₃₁H₃₆NaO₃ [M+Na]⁺: 479.2562, found: 479.2581; **HPLC Analysis**: 86% ee [Daicel CHIRACEL IA, 2% EtOH/*n*-heptane, 1mL/min, 300 nm, retention times: 11.3 min (minor) and 15.4 min (major)].

(*E*)-*tert*-butyl 7-benzylidene-9-tert-butyl-6-oxo-4-phenylspiro[4.5]dec-1-ene-1-carboxylate **3c**. *Procedure a* (catalyst CyPPh₂): 87% yield, 90/10 dr; *Procedure b* (catalyst (S,S)-FerroPHANE): 71% yield, 95% ee, 90/10 dr; Pale yellow solid; ¹H NMR (500 MHz,

CDCl₃) δ 7.65 (d, J = 1.5 Hz, 1H), 7.45-7.15 (m, 10H), 6.99 (br, 1H), 4.06 (t, J = 9.0 Hz, 1H), 2.95 (ddd, J = 18.0, 9.5, 2.0 Hz, 1H), 2.91 (m, 1H), 2.78 (ddd, J = 18.0, 8.0, 3.0 Hz, 1H), 2.21 (m, 1H), 1.99 (m, 1H), 1.75 (t, J = 13.0 Hz, 1H), 1.47 (s, 9H), 0.60 (s, 9H), 0.33 (m, 1H); ¹³C **NMR** (75 MHz, CDCl₃) δ 205.4 (Cq), 163.2 (Cq), 144.6 (Cq), 143.0 (CH), 139.3 (Cq), 137.6 (Cq), 136.3 (Cq), 135.8 (CH), 130.2 (2CH), 129.2 (2CH), 128.5 (4CH), 128.4 (CH), 127.4 (CH), 81.2 (Cq), 62.9 (Cq), 56.3 (CH), 39.9 (CH), 35.6 (CH₂), 32.3 (Cq), 29.9 (CH₂), 29.2 (CH₂), 28.3 (CH₃), 27.0 (CH₃); **IR**: v_{max} = 2965, 1701, 1586, 1365, 1253, 1161, 1105, 758, 691 cm⁻¹; **Melting point**: 123-126°C; **HRMS (ESI)** calcd. For C₃₂H₃₈NaO₃ [M+Na]⁺: 493.2719, found: 493.2713; **HPLC Analysis**: 95% ee [Daicel CHIRACEL IA, 5% *i*PrOH/*n*-heptane, 1ml/min, 300 nm, retention times: 6.5 min (minor) and 8.4 min (major)]. Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

(*E*)-tert-butyl 7-benzylidene-6-oxo-4,9-diphenylspiro[4.5]dec-1-ene-1carboxylate **3d**. *Procedure a* (catalyst CyPPh₂): 64% yield, 85/15 dr; White solid; ¹H NMR (500 MHz, CDCl₃) δ 7.79 (m, 1H), 7.40-6.95 (m, 15H), 6.82 (d, *J* = 7.5 Hz, 1H), 4.23 (dd, *J* = 10.0, 8.0 Hz, 1H), 3.00-2.90 (m, 2H), 2.90-2.70 (m, 2H), 2.25 (t, *J* = 13.5 Hz, 1H), 2.15-2.10

(m, 1H), 1.65-1.55 (m, 1H), 1.53 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 204.6 (Cq), 163.0 (Cq), 145.2 (Cq), 144.4 (Cq), 142.9 (CH), 139.1 (Cq), 136.8 (CH), 136.5 (Cq), 135.9 (Cq), 130.4 (CH), 128.9 (CH), 128.8 (CH), 128.6 (CH), 128.5 (CH), 127.7 (CH), 126.7 (CH), 126.5 (CH), 81.3 (Cq), 63.2 (Cq), 56.6 (CH), 37.6 (CH), 37.1 (CH₂), 35.3 (CH₂), 35.2 (CH₂), 28.3 (CH₃); **IR**: v_{max} = 3060, 2979, 1695, 1591, 1338, 1243, 1157, 1122, 945, 750, 692 cm⁻¹; **HRMS (ESI)** calcd. For C₃₄H₃₄NaO₃ [M+Na]⁺: 513.2406, found: 513.2406; HPLC Analysis: 90% ee [Daicel CHIRACEL IA, 5% EtOH/*n*-heptane, 1mL/min, 300 nm, retention times: 6.3 min and 7.3 min]; **Melting point**: 130-131°C.

(*E*)-ethyl 9-*tert*-butyl-7-(4-methoxybenzylidene)-4-(4methoxyphenyl)-6-oxospiro[4.5]dec-1-ene-1-carboxylate **2e**. *Procedure b* (catalyst (*S*,*S*)-FerroPHANE): 91% yield, 93% ee, >95/5 dr; Colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 7.63 (d, *J* = 2.1 Hz, 1H), 7.38 (d, *J* = 8.7 Hz, 2H), 7.12 (d, *J* = 8.4 Hz, 2H), 6.99 (t, *J* = 2.4 Hz, 1H), 6.92 (d, *J* = 6.9 Hz,

2H), 6.78 (d, J = 8.7 Hz, 2H), 4.20-4.05 (m, 3H), 3.83 (s, 3H), 3.75 (s, 3H), 2.95-2.85 (m, 2H), 2.76 (ddd, J = 18.3, 8.1, 3.0 Hz, 1H), 2.30-2.20 (m, 1H), 1.96 (dt, J = 13.5, 3.0 Hz, 1H), 1.70 (t, J = 13.2 Hz, 1H), 1.24 (t, J = 6.9 Hz, 3H), 0.61 (s, 9H), 0.43 (tt, J = 12.6, 3.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 205.2 (Cq), 163.9 (Cq), 159.9 (Cq), 158.9 (Cq), 143.5 (CH), 143.4 (Cq), 136.1 (CH), 135.2 (Cq), 132.2 (2CH), 131.3 (Cq), 130.1 (2CH), 128.8 (Cq), 114.0 (2CH), 113.9 (2CH), 62.7 (Cq), 60.5 (CH₂), 55.5 (CH₃), 55.4 (CH₃), 55.0 (CH), 40.0 (CH), 36.1 (CH₂), 32.2 (Cq), 29.8 (CH₂), 29.3 (CH₂), 27.2 (3CH₃), 14.2 (CH₃); **IR**: $v_{max} = 2953$, 2358, 1709, 1604, 1509, 1366, 1248, 1162, 1030, 830, 730 cm⁻¹; **HRMS (ESI)** calcd. For C₃₂H₃₈NaO₅ [M+Na]⁺: 525.2617, found: 555.2601; **HPLC Analysis**: 94% ee [Daicel CHIRACEL IA, 5% *i*PrOH/*n*-heptane, 1mL/min, 300 nm, retention times: 22.4 min (minor) and 43.8 min major)]; **[a]** $_{D}^{24} = +355$ (c = 1.23, CHCl₃).

(*E*)-ethyl 9-*tert*-butyl-7-(4-methylbenzylidene)-6-oxo-4-p-tolyl-spiro[4.5]dec-1-ene-1-carboxylate 2f. *Procedure b* (catalyst (*S*,*S*)-FerroPHANE): 77% yield, 90% ee, 95/5 dr; White solid;

¹**H NMR** (300 MHz, CDCl₃) δ 7.62 (d, J = 2.1 Hz, 1H), 7.30 (d, J = 8.1 Hz, 2H), 7.19 (d, J = 8.1 Hz, 2H), 7.09 (d, J = 8.4 Hz, 2H),

7.04 (d, J = 8.4 Hz, 2H), 7.01 (t, J = 2.4 Hz, 1H), 4.30-4.00 (m, 3H), 3.00-2.85 (m, 2H), 2.76(ddd, J = 18.0, 7.8, 3.0 Hz, 1H), 2.37 (s, 3H), 2.29 (s, 3H), 2.25-2.15 (m, 1H), 1.97 (dt, J = 13.5, 3.0 Hz, 1H), 1.70 (t, J = 13.2 Hz, 1H), 1.24 (t, J = 7.2 Hz, 3H), 0.58 (s, 9H), 0.37 (tt, J = 12.9, 3.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 205.5 (Cq), 163.9 (Cq), 143.5 (CH), 143.4 (Cq), 138.6 (Cq), 137.0 (Cq), 136.5 (Cq), 136.1 (CH), 136.0 (Cq), 133.4 (Cq), 130.4 (2CH), 129.2 (2CH), 129.1 (2CH), 129.0 (2CH), 62.8 (Cq), 60.6 (CH₂), 55.5 (CH), 40.0 (CH), 35.9 (CH₂), 32.3 (Cq), 29.9 (CH₂), 29.3 (CH₂), 27.1 (3CH₃), 21.5 (CH₃), 21.1 (CH₃), 14.2 (CH₃); **IR**: v_{max} = 2945, 1701, 1670, 1597, 1435, 1367, 1233, 1160, 1093, 1029, 813, 755 cm⁻¹; **Melting point**: 172-173°C; **HRMS (ESI)** calcd. For C₃₂H₃₈NaO₃ [M+Na]⁺: 493.2719, found: 493.2735; **HPLC Analysis**: 90% ee [Daicel CHIRACEL IA, 5% *i*PrOH/*n*-heptane, 1mL/min, 300 nm, retention times: 11.5 min (minor) and 17.9 min major)]; [α]_D²⁴ = +320 (c = 0.87, CHCl₃).

(*E*)-ethyl 9-tert-butyl-7-(4-chlorobenzylidene)-4-(4-chloro phenyl)-6-oxospiro[4.5]dec-1-ene-1-carboxylate **2g**. *Procedure b* (catalyst (*S*,*S*)-FerroPHANE): 86% yield, 86% ee, >95/5 dr; White solid; ¹H NMR (300 MHz, CDCl₃) δ 7.57 (d, J = 2.4 Hz, 1H), 7.36 (d, J = 8.7 Hz, 2H), 7.30 (d, J = 8.7 Hz, 2H), 7.23 (d, J = 8.5 Hz, 2H), 7.14 (d, J = 8.5 Hz, 2H), 7.00 (t, ³J = 2.5 Hz, 1H,

CH₂C*H*=C), 4.20-4.00 (m, 3H), 2.95-2.75 (m, 3H), 2.25 (m, 1H), 1.95 (dt, J = 13.8, 2.7 Hz, 1H), 1.72 (t, J = 13.2 Hz, 1H), 1.25 (t, J = 7.2 Hz, 3H), 0.59 (s, 9H), 0.29 (tt, J = 12.9, 2.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 204.8 (Cq), 163.7 (Cq), 143.3 (CH, Cq), 137.7 (Cq), 137.5 (Cq), 134.9 (CH), 134.5 (Cq), 134.4 (Cq), 133.2 (Cq), 131.5 (2CH), 130.4 (2CH), 128.8 (2CH), 128.6 (2CH), 62.8 (Cq), 60.7 (CH₂), 54.9 (CH), 40.5 (CH), 35.9 (CH₂), 32.3 (Cq), 29.8 (CH₂), 29.2 (CH₂), 27.1 (CH₃), 14.3 (CH₃); **IR**: v_{max} = 2942, 1704, 1587, 1491, 1369, 1235, 1163, 1089, 1013, 831, 760 cm⁻¹; **Melting point**: 145-147°C; **HRMS (ESI)** calcd. For C₃₀H₃₂NaCl₂O₃ [M+Na]⁺: 533.1626, found: 533.1608; **HPLC Analysis**: 86% ee [Daicel CHIRACEL IA, 5% *i*PrOH/*n*-heptane, 1mL/min, 300 nm, retention times: 11.6 min (minor) and 15.8 min major)]; **[a]**_D²⁴ = +280 (c = 1.0, CHCl₃).

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

(*E*)-ethyl 9-*tert*-butyl-4-(naphthalen-1-yl)-7-(naphthalen-1ylmethylene)-6-oxospiro[4.5]dec-1-ene-1-carboxylate **2h** *Procedure b* (catalyst (*S*,*S*)-FerroPHANE): 95% yield, 85% ee, 95/5 dr; Pale yellow oil; ¹H NMR (500 MHz, CDCl₃) δ

8.14 (d, J = 8.5 Hz, 1H), 7.95 (br, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.79 (dd, J = 12.5, 8.5 Hz, 2H), 7.72 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 7.0 Hz, 1H), 7.55-7.20 (m, 7H), 7.13 (t, J = 2.5 Hz, 1H), 6.95 (d, J = 7.0 Hz, 1H), 5.02 (t, J = 9.0 Hz, 1H), 4.30-4.20 (m, 2H), 3.22 (ddd, J = 18.5, 10.0, 2.0 Hz, 1H), 2.96 (ddd, J = 18.0, 7.5, 3.0 Hz, 1H), 2.28 (dt, J = 14.5, 2.8 Hz, 1H), 2.19 (dt, J = 14.0, 2.5 Hz, 1H), 1.97 (m, 1H), 1.75 (t, J = 13.0 Hz, 1H), 1.33 (t, J = 7.0 Hz, 3H), 0.37 (s, 9H), -0.1 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 206.4 (Cq), 163.9 (Cq), 143.5 (Cq), 143.2 (CH), 139.4 (Cq), 135.4 (Cq), 134.9 (CH), 134.1 (Cq), 133.6 (Cq), 133.4 (Cq), 132.7 (Cq), 131.6 (Cq), 128.9 (CH), 125.4 (CH), 125.3 (CH), 125.0 (CH), 124.5 (CH), 63.5 (Cq), 60.7 (CH₂), 50.0 (CH), 40.9 (CH), 37.8 (CH₂), 32.2 (Cq), 31.0 (CH₂), 29.1 (CH₂), 26.9 (CH₃), 14.4 (CH₃); **IR**: $v_{max} = 2954$, 1704, 1597, 1440, 1366, 1246, 1160, 1046, 907, 777, 728 cm⁻¹; **HRMS (ESI)** calcd. For C₃₈H₃₈KO₃ [M+K]⁺: 581.2458, found: 581.2482; **HPLC Analysis**: 81% ee [Daicel CHIRACEL IA, 5% *i*PrOH/*n*-heptane, 1mL/min, 300 nm, retention times: 10.9 min (minor) and 18.4 min major)]; **[a]p²⁴ = -20** (c = 1.2, CHCl₃).

(*E*)-ethyl 9-tert-butyl-4-(naphthalen-2-yl)-7-(naphthalen-2ylmethylene)-6-oxospiro[4.5]dec-1-ene-1-carboxylate **2i**. *Procedure b* (catalyst (*S*,*S*)-FerroPHANE): 72% yield, 90% ee, 95/5 dr; White solid; ¹H NMR (300 MHz, CDCl₃) δ 7.90-7.70 (m, 9H), 7.55-7.40 (m, 5H), 7.31 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.10 (t, *J* = 2.7 Hz, 1H), 4.35-4.15 (m, 3H), 3.14

(ddd, J = 18.0, 9.6, 2.1 Hz, 1H), 2.98 (m, 1H), 2.90 (ddd, J = 18.3, 7.8, 3.0 Hz, 1H), 2.40-2.30 (m, 1H), 2.11 (dt, J = 13.8, 2.7 Hz, 1H), 1.80 (t, J = 12.9 Hz, 1H), 1.30 (t, J = 7.2 Hz, 3H), 0.41 (s, 9H), 0.31 (dt, J = 12.9, 3.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 205.4 (Cq), 163.9 (Cq), 143.6 (CH), 143.4 (Cq), 137.7 (Cq), 136.6 (Cq), 136.2 (CH), 133.7 (Cq), 133.4 (Cq), 133.2 (Cq), 133.1 (Cq), 132.8 (Cq), 130.1 (CH), 128.4 (CH), 128.0 (3CH), 127.79 (CH), 127.75 (CH), 127.62 (CH), 127.59 (CH), 127.3 (CH), 126.8 (CH), 126.5 (CH), 126.3 (CH), 125.9 (CH), 63.2 (Cq), 60.7 (CH₂), 56.0 (CH), 40.3 (CH), 36.0 (CH₂), 32.1 (Cq), 30.1 (CH₂), 29.4 (CH₂), 26.9 (CH₃), 14.3 (CH₃); **IR**: v_{max} = 2956, 2359, 1706, 1585, 1366, 1241, 1162, 1097, 855, 818, 746, 668 cm⁻¹; **Melting point**: 165-166°C; **HRMS (ESI)** calcd. For C₃₈H₃₈NaO₃ [M+Na]⁺: 565.2719, found: 565.2736; **HPLC Analysis**: 90% ee [Daicel

CHIRACEL IA, 5% *i*PrOH/*n*-heptane, 1mL/min, 300 nm, retention times: 14.8 min (minor) and 27.8 min (major)]; $[\alpha]_D^{24} = +343$ (c = 0.88, CHCl₃).

(*E*)-ethyl 9-tert-butyl-4-(furan-2-yl)-7-(furan-2-ylmethylene)-6oxospiro[4.5]dec-1-ene-1-carboxylate **2j**. *Procedure b* (catalyst (*S*,*S*)-FerroPHANE): 57% yield, 92% ee, 75/25 dr; Yellow oil; ¹H **NMR** (300 MHz, CDCl₃) δ 7.54 (d, *J* = 1.5 Hz, 1H), 7.49 (d, *J* = 2.4 Hz, 1H), 7.29 (dd, *J* = 1.5, 0.6 Hz, 1H), 6.91 (t, *J* = 2.4 Hz, 1H), 6.62

(d, J = 3.3 Hz, 1H), 6.49 (dd, J = 3.3, 1.8 Hz, 1H), 6.28 (dd, J = 3.0, 1.8 Hz, 1H), 6.11 (d, J = 3.0 Hz, 1H), 4.20-4.00 (m, 3H), 3.18 (dt, J = 16.5, 3.0 Hz, 1H), 2.88 (ddd, J = 18.0, 10.5, 3.0 Hz, 1H), 2.77 (ddd, J = 18.0, 8.1, 3.0 Hz, 1H), 2.31 (ddd, J = 15.9, 13.2, 2.7 Hz, 1H), 2.03 (dt, J = 13.8, 2.7 Hz, 1H), 1.65 (t, J = 13.2 Hz, 1H), 1.19 (t, J = 7.2 Hz, 3H), 0.76 (s, 9H), 0.44 (tt, J = 12.9, 3.6 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 203.6 (Cq), 163.5 (Cq), 153.5 (Cq), 152.9 (Cq), 144.6 (CH), 143.8 (Cq), 142.6 (CH), 141.4 (CH), 133.1 (Cq), 123.5 (CH), 116.2 (CH), 112.4 (CH), 110.6 (CH), 108.1 (CH), 62.2 (Cq), 60.6 (CH₂), 49.0 (CH), 39.4 (CH), 34.7 (CH₂), 32.3 (Cq), 30.0 (CH₂), 29.4 (CH₂), 27.2 (CH₃), 14.1 (CH₃); **IR**: $v_{max} = 2960$, 1709, 1670, 1591, 1243, 1103, 735 cm⁻¹; **HRMS (ESI)** calcd. For C₂₆H₃₀NaO₅ [M+Na]⁺: 423.2171, found: 423.2176; **HPLC Analysis**: 92% ee [Daicel CHIRACEL IA, 5% *i*PrOH/*n*-heptane, 1mL/min, 330 nm, retention times: 22.3 min (minor) and 35.8 min (major)]; $[\alpha]_D^{24} = +166$ (c = 0.62, CHCl₃).

(*E*)-ethyl 4-benzylidene-3-oxo-5'-phenylspiro[bicyclo[3.1.0]hexane-2,1'cyclopent[2]ene]-2'-carboxylate **5a.** *Procedure b* (catalyst (*S*,*S*)-FerroPHANE): 63% yield, 83% ee, 95/5 dr; Orange oil; ¹H NMR (500 MHz, CDCl₃) δ 7.91 (m, 2H), 7.65-7.45 (m, 9H), 7.38 (t, *J* = 2.7 Hz, 1H),

4.33 (m, 2H), 4.08 (dd, J = 8.4, 6.0 Hz, 1H), 3.46 (ddd, J = 18.6, 8.4, 2.7 Hz, 1H), 3.06 (ddd, J = 18.9, 6.3, 2.7 Hz, 1H), 2.75-2.60 (m, 1H), 1.85-1.75 (m, 1H), 1.39 (t, J = 6.9 Hz, 3H), 1.17-1.10 (m, 1H), 0.03 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 209.1 (Cq), 163.9 (Cq), 146.2 (CH), 142.6 (Cq), 140.4 (Cq), 139.3 (Cq), 135.9 (Cq), 131.1 (CH), 130.1 (2CH), 129.1 (CH), 128.8 (2CH), 128.7 (2CH), 128.4 (2CH), 126.9 (CH), 67.0 (Cq), 60.6 (CH₂), 52.5 (CH), 40.0 (CH₂), 22.3 (CH), 20.2 (CH), 15.9 (CH₂), 14.1 (CH₃); **IR**: v_{max} = 2928, 1708, 1625, 1493, 1325, 1263, 1177, 1112, 1028, 755, 692 cm⁻¹; **HRMS (ESI)** calcd. For C₂₆H₂₄NaO₃ [M+Na]⁺: 407.1623, found: 407.1634; **HPLC Analysis**: 86% ee [Daicel CHIRACEL IA, 10% *i*PrOH/ *n*-heptane, 1mL/min, 300 nm, retention times: 6.8 min (major) and 7.8 min (minor)]; **[a]_p²⁴** = +11 (c = 1.6, CHCl₃).

(*E*)-ethyl 4-benzylidene-6-methyl-3-oxo-5'-phenylspiro[bicyclo[3.1.0] hexane-2,1'-cyclopent[2]ene]-2'-carboxylate **5b**. *Procedure b* (catalyst (*S*,*S*)-FerroPHANE): 66% yield, 83% ee, 95/5 dr; Orange oil; ¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, *J* = 7.5 Hz, 2H), 7.40-7.20 (m, 9H), 7.11 (t,

J = 2.5 Hz, 1H), 4.08 (m, 2H), 3.77 (dd, *J* = 9.0, 5.5 Hz, 1H), 3.24 (ddd, *J* = 19.0, 9.0, 2.5 Hz, 1H), 2.79 (ddd, *J* = 19.0, 5.5, 2.5 Hz, 1H), 2.23 (m, 1H), 1.25 (m, 1H), 1.14 (t, *J* = 7.0 Hz, 3H), 0.69 (d, *J* = 6.0 Hz, 3H), 0.13 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 209.8 (Cq), 163.9 (Cq), 146.0 (CH), 143.5 (Cq), 140.3 (Cq), 138.9 (Cq), 135.9 (Cq), 130.7 (CH), 130.1 (2CH), 129.1 (CH), 128.7 (4CH), 128.4 (2CH), 126.9 (CH), 67.9 (Cq), 60.6 (CH₂), 52.4 (CH), 40.5 (CH₂), 30.9 (CH), 29.0 (CH), 25.1 (CH) 16 9 (CH₃), 14.1 (CH₃); **IR**: ν_{max} = 2924, 1711, 1627, 1448, 1264, 1176, 1102, 1027, 732 cm⁻¹; **HRMS (ESI)** calcd. For C₂₇H₂₆NaO₃ [M+Na]⁺: 421.1780, found: 421.1786; **HPLC Analysis**: 83% ee [Daicel CHIRACEL IA, 10% *i*PrOH/*n*-heptane, 1mL/min, 270 nm, retention times: 7.9 min (major) and 10.9 min (minor)]; [*α*]_D²⁴ = +16 (c = 1.5, CHCl₃).

4) NMR spectra and HPLC analysis

(E)-ethyl 7-benzylidene-9-methyl-6-oxo-4-phenylspiro[4.5]dec-1-ene-1-carboxylate 2a

HPLC Analysis: Table 2, entry 1: 76% ee [Daicel CHIRACEL IC, 10% iPrOH/n-heptane, 1 mL/min, 300 nm]:

Channel Description	RT	Area	% Are a
PDA 200.0 to 400.0 nm at 2.4 nm	19.803	10794621	87.66
PDA 200.0 to 400.0 nm at 2.4 nm	34.861	1520031	12.34

(E)-ethyl 7-benzylidene-9-isopropyl-6-oxo-4-phenylspiro[4.5]dec-1-ene-1-carboxylate 2b

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

HPLC Analysis: Table 2, entry 2: 82% ee [Daicel CHIRACEL IA, 10% *i*PrOH/*n*-heptane, 1 mL/min, 300 nm]:

	Channel Description	RT	Area	% Are a
1	PDA 200.0 to 400.0 nm at 2.4 nm	7.704	13158655	49.77
2	PDA 200.0 to 400.0 nm at 2.4 nm	10.218	13278547	50.23

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

	Channel Description	RT	Area	% Are a
1	PDA 200.0 to 400.0 nm at 2.4 nm	7.715	1782482	9.02
2	PDA 200.0 to 400.0 nm at 2.4 nm	10.213	17989088	90.98

(*E*)-ethyl 7-benzylidene-9-tert-butyl-6-oxo-4-phenylspiro[4.5]dec-1-ene-1-carboxylate 2c

HPLC Analysis: Table 2, entry 3: 92% ee [Daicel CHIRACEL IC, 10% *i*PrOH/*n*-heptane, 1 mL/min, 300 nm]:

	Channel Description	RT	Area	% Are a
1	PDA 210.0 to 400.0 nm at 1.2 nm	16.394	16351895	95.28
2	PDA 210.0 to 400.0 nm at 1.2 nm	40.416	810224	4.72

(E)-ethyl 7-benzylidene-6-oxo-1,9-diphenylspiro[4.5]dec-1-ene-2-carboxylate 2d

HPLC Analysis: Table 2, entry 4: 92% ee [Daicel CHIRACEL IA, 5% *i*PrOH/*n*-heptane, 1 mL/min, 300 nm]:

	Channel Description	RT	Area	% Are a
1	PDA 200.0 to 400.0 nm at 2.4 nm	13.592	737717	4.40
2	PDA 200.0 to 400.0 nm at 2.4 nm	17.953	16040392	95.60

(E)-tert-butyl 7-benzylidene-9-methyl-6-oxo-4-phenylspiro[4.5]dec-1-ene-1-carboxylate 3a

HPLC Analysis: Table 2, entry 5: 90% ee [Daicel CHIRACEL IA, 5% *i*PrOH/*n*-heptane, 1 mL/min, 300 nm]:

	Channel Description	RT	Area	% Are a
1	PDA 200.0 to 400.0 nm at 2.4 nm	7.424	5664385	49.88
2	PDA 200.0 to 400.0 nm at 2.4 nm	12.356	5691881	50.12

	Channel Description	RT	Area	% Area
1	PDA 200.0 to 400.0 nm at 2.4 nm	7.423	1728420	5.05
2	PDA 200.0 to 400.0 nm at 2.4 nm	12.144	32512520	94.95

(E)-tert-butyl 7-benzylidene-9-isopropyl-6-oxo-4-phenylspiro[4.5]dec-1-ene-1-carboxylate **3b**

HPLC Analysis: Table 2, entry 6: 86% ee [Daicel CHIRACEL IA, 2% EtOH/*n*-heptane, 1 mL/min, 300 nm]:

	Channel Description	RT	Area	% Area
1	PDA 200.0 to 400.0 nm at 2.4 nm	11.339	1005994	6.88
2	PDA 200.0 to 400.0 nm at 2.4 nm	15.370	13608619	93.12

(*E*)-tert-butyl 7-benzylidene-9-tert-butyl-6-oxo-4-phenylspiro[4.5]dec-1-ene-1-carboxylate **3c**

HPLC Analysis: Table 2, entry 7: 95% ee [Daicel CHIRACEL IA, 5% *i*PrOH /*n*-heptane, 1 mL/min, 300 nm]:

	Channel Description	RT	Area	% Area
1	PDA 200.0 to 400.0 nm at 2.4 nm	6.543	251937	2.44
2	PDA 200.0 to 400.0 nm at 2.4 nm	8.399	10066251	97.58

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

(*E*)-ethyl 9-tert-butyl-7-(4-methoxybenzylidene)-4-(4-methoxybenyl)-6-oxospiro[4.5]dec-1-ene-1-carboxylate **2e**

HPLC Analysis: Table 3, entry 1: 94% ee [Daicel CHIRACEL IA, 5% *i*PrOH /*n*-heptane, 1 mL/min, 300 nm]:

(*E*)-ethyl 9-tert-butyl-7-(4-methylbenzylidene)-6-oxo-4-p-tolylspiro[4.5]dec-1-ene-1carboxylate **2f**

HPLC Analysis: Table 3, entry 2: 90% ee [Daicel CHIRACEL IA, 5% *i*PrOH /*n*-heptane, 1 mL/min, 300 nm]:

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

	Channel Description	RT	Area	% Are a
1	PDA 200.0 to 400.0 nm at 2.4 nm	11.468	16380182	50.51
2	PDA 200.0 to 400.0 nm at 2.4 nm	17.974	16048850	49.49

	Channel Description	RT	Area	% Are a
1	PDA 200.0 to 400.0 nm at 2.4 nm	11.549	44337	5.06
2	PDA 200.0 to 400.0 nm at 2.4 nm	18.275	832682	94.94

(*E*)-ethyl 9-tert-butyl-7-(4-chlorobenzylidene)-4-(4-chlorophenyl)-6-oxospiro[4.5]dec-1-ene-1-carboxylate 2g

HPLC Analysis: Table 3, entry 3: 86% ee [Daicel CHIRACEL IA, 5% *i*PrOH /*n*-heptane, 1 mL/min, 300 nm]:

	Channel Description	RT	Area	% Are a
1	PDA 200.0 to 400.0 nm at 2.4 nm	11.582	1611840	6.77
2	PDA 200.0 to 400.0 nm at 2.4 nm	15.819	22179564	93.23

(*E*)-ethyl 9-tert-butyl-4-(naphthalen-1-yl)-7-(naphthalen-1-ylmethylene)-6-oxospiro[4.5]dec-1-ene-1-carboxylate 2h

HPLC Analysis: Table 3, entry 4: 85% ee [Daicel CHIRACEL IA, 5% *i*PrOH /*n*-heptane, 1 mL/min, 300 nm]:

	Channel Description	RT	Area	% Area
1	PDA 200.0 to 400.0 nm at 2.4 nm	10.847	7717662	49.77
2	PDA 200.0 to 400.0 nm at 2.4 nm	18.388	7790542	50.23

	Channel Description	RT	Area	%Area
1	PDA 200.0 to 400.0 nm at 2.4 nm	10.806	511957	7.43
2	PDA 200.0 to 400.0 nm at 2.4 nm	18.372	6382117	92.57

(*E*)-ethyl 9-tert-butyl-4-(naphthalen-2-yl)-7-(naphthalen-2-ylmethylene)-6-oxospiro[4.5]dec-1-ene-1-carboxylate **2i**

HPLC Analysis: Table 3, entry 5: 90% ee [Daicel CHIRACEL IA, 5% *i*PrOH /*n*-heptane, 1 mL/min, 300 nm]:

	Channel Description	RT	Area	% Area
1	PDA 200.0 to 400.0 nm at 2.4 nm	14.906	200421	5.86
2	PDA 200.0 to 400.0 nm at 2.4 nm	27.973	3217497	94.14

(*E*)-ethyl 9-tert-butyl-4-(furan-2-yl)-7-(furan-2-ylmethylene)-6-oxospiro[4.5]dec-1-ene-1-carboxylate **2**j

HPLC Analysis: Table 3, entry 6: 92% ee [Daicel CHIRACEL IA, 5% *i*PrOH /*n*-heptane, 1 mL/min, 330 nm]:

	Channel Description	RT	Area	% Area
1	PDA 200.0 to 400.0 nm at 2.4 nm	22.187	76648	4.07
2	PDA 200.0 to 400.0 nm at 2.4 nm	35.697	1805197	95.93

(*E*)-ethyl 4-benzylidene-3-oxo-5'-phenylspiro[bicyclo[3.1.0]hexane-2,1'-cyclopent[2]ene]-2'-carboxylate **5a**

HPLC Analysis: product **5a**: 86% ee [Daicel CHIRACEL IA, 10% *i*PrOH /*n*-heptane, 1 mL/min, 300 nm]:

	Channel Description	RT	Area	% Area
1	PDA 200.0 to 400.0 nm at 2.4 nm	6.809	16734953	92.83
2	PDA 200.0 to 400.0 nm at 2.4 nm	7.860	1293277	7.17

(*E*)-ethyl 4-benzylidene-6-methyl-3-oxo-5'-phenylspiro[bicyclo[3.1.0]hexane-2,1'cyclopent[2]ene]-2'-carboxylate **5b**

HPLC Analysis: product **5b**: 83% ee [Daicel CHIRACEL IA, 10% *i*PrOH /*n*-heptane, 1 mL/min, 270 nm]:

