Supporting Information

Chiral Phosphine-Squaramide as Enantioselective Catalyst for the Intramolecular Morita-Baylis-Hillman Reaction

Hong-Liang Song^a, Kui Yuan^a and Xin-Yan Wu^{*ab}

^aKey Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, P, R, China

^bState Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, P, R, China

E-mail: xinyanwu@ecust.edu.cn; Tel: 86 21 64252011; Fax: 86 21 64252758

1. General Information	S2
2. Synthesis of Chiral Phosphine-Squaramide Catalysts	S2
3. General Procedure for Enantioselective MBH Reaction	S3
4. References	S4
5. HPLC Spectra for the MBH Products	S5
6. ¹ H NMR, ¹³ C NMR and ³¹ P NMR Spectra of the Catalysts	S19

1. General Information

Melting points were taken without correction. Optical rotations were measured on a WZZ-2A digital polarimeter at the wavelength of the sodium D-line (589 nm). ¹H NMR spectra were referenced to tetramethylsilane (d, 0.00 ppm) using CDCl₃ as solvent. ¹³C NMR spectra were referenced to solvent carbons (77.0 ppm for CDCl₃). ³¹P NMR spectra were referenced to an external H₃PO₄ signal (0.0 ppm). IR spectra were recorded on Nicolet Magna-I 550 spectrometer. High Resolution Mass spectra (HRMS) were recorded on Micromass GCT with Electron Ionization (EI) resource. HPLC analysis was performed on Waters 510 with 2487 detector using Daicel Chiralcel OD-H, Chiralpak AS-H or Chiralpak AD-H column.

Toluene, *n*-hexane and ether were freshly distilled from sodium-benzophenone. Dichloromethane, chloroform, acetonitrile were freshly distilled from CaH₂. Methanol, ethanol and isopropanol were distilled from magnesium. Thin-layer chromatography (TLC) was performed on 10-40 μ m silica gel plates. Column chromatography was performed using silica gel (300-400 mesh) eluting with ethyl acetate, petroleum ether and CH₂Cl₂.

2. Synthesis of Chiral Phosphine-Squaramide Catalysts

General procedure: To a solution of the squarate 2^1 (0.59 mmol, 1.2 eq.) in CH₂Cl₂ (4 mL) was added dropwise a solution of (*R*,*R*)-2-amino-1-(diphenylphosphino)-cyclohexane (1)² (140 mg, 0.49 mmol) in CH₂Cl₂ (4 mL). The reaction mixture was stirring at room temperature or under reflux (monitoring by TLC), then the resulting solution was concentrated and purified by silica gel column chromatography to give the phosphine-squaramide **3**.

part in DMSO- d_6 residual peak), 1.86 (s, 1H), 1.68-1.48 (m, 4H), 1.39-1.28 (m, 3H), 1.23-1.11 (m, 2H), 0.83 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 189.6, 181.9, 176.7, 170.8, 136.3 (d, J = 12.8 Hz), 134.9 (d, J = 15.8 Hz), 134.5 (d, J = 21.2 Hz), 132.6 (d, J = 18.4 Hz), 129.0, 128.3-128.1 (m), 69.4, 56.8 (d, J = 15.7 Hz), 40.4 (d, J = 15.7 Hz), 34.8 (d, J = 6.9 Hz), 27.6 (d, J = 3.8 Hz), 25.1 (d, J = 4.2 Hz), 24.5, 15.8; ³¹P NMR (CDCl₃, 202 MHz): δ -6.50; IR (KBr, cm⁻¹): y 3251, 3050, 2931, 2855, 1802, 1704, 1604, 1520, 1494, 1479, 1434, 1384, 1344, 1117, 1091, 1024, 999, 869, 883,

742, 699, 508; HRMS Calcd for C₂₄H₂₆NO₃P ([M]⁺): 407.1650, Found: 407.1669.

White solid, 69% yield. M.p.: 74.4-76.6 °C. $[\alpha]_D^{30} = \pm 25.7$ (*c* 1.5, CH₂Cl₂). ¹H NMR (DMSO-*d*₆, 400 MHz, rt): δ 8.89 (d, J = 9.0 Hz, 0.5H), 8.46 (d, J = 9.1 Hz, 0.5H), 7.48-7.31 (m, 10H), δ 5.25 (heptet, J = 6.2 Hz, 0.5H), δ 5.08 (heptet, J = 6.2 Hz, 0.5H), 3.92-3.82 (m, 0.5H), 3.43-3.33 (m, 0.5H, part in water peak), 2.58-2.50 (m, 1H, part in DMSO-*d*₆ residual peak), 1.89-1.86 (m, 1H), 1.70-1.45 (m, 4H), 1.38 (dd, J = 11.8 Hz, 6.2Hz, 3H), 1.31 (q, J = 3.2 Hz, 3H), 1.24-1.06 (m, 2H), 0.86-0.78 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 189.7, 181.7, 176.6, 171.1, 136.3 (d, J = 13.0Hz), 135.1 (d, J = 16.1 Hz), 134.4 (d, J = 20.8 Hz), 132.5 (d, J = 18.4 Hz), 129.0, 128.4-128.1 (m), 60.3, 56.7 (d, J = 16.4 Hz), 40.2 (d, J = 16.1 Hz), 35.0 (d, J = 7.0 Hz), 27.7 (d, J = 3.4 Hz), 25.2 (d, J = 4.3 Hz), 22.9-22.8 (m), 20.9, 14.1; ³¹P NMR (CDCl₃, 162 MHz): δ -6.77 (major), -7.39 (minor); IR (KBr, cm⁻¹): v 3251, 3051, 2980, 2932, 2855, 1801, 1703, 1601, 1520, 1480, 1434, 1412, 1387, 1332, 1094, 908, 808, 742, 698, 509; HRMS Calcd for C₂₅H₂₈NO₃P ([M]⁺): 421.1807, Found: 421.1815.

White solid, 39% yield. $[\alpha]_D^{17} = + 21.0$ (*c* 0.69, CH₂Cl₂). ¹H NMR (DMSO-*d*₆, 400 MHz, rt): δ 8.90 (d, *J* = 8.9 Hz, 0.5H), 8.54 (d, *J* = 9.1 Hz, 0.5H), 7.53-7.27 (m, 15H), 5.71 (s, 1H), 5.52 (s, 1H), 3.90-3.80 (m, 0.5H), 3.41-3.32 (m, 0.5H, part in water peak), 2.55-2.50 (m, 1H, part in DMSO-*d*₆

residual peak), 1.88-1.82 (m, 1H), 1.68-1.44 (m, 4H), 1.23-1.03 (m, 2H), 0.89-0.74 (m, 1H); ¹H NMR (DMSO- d_6 , 400 MHz, 333K): δ 8.71 (s, 0.5H), 8.38 (s, 0.5H), 7.45-7.27 (m, 15H), 5.71 (s, 1H), 5.53 (s, 1H), 3.88 (s, 0.5H), 3.41 (s, 0.5H), 2.57-2.50 (m, 1H, part in DMSO- d_6 residual peak), 1.86 (s, 1H), 1.70-1.48 (m, 4H), 1.25-1.07 (m, 2H), 0.88 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 189.6, 182.3, 176.4, 171.0, 136.5 (d, J = 12.8 Hz), 135.2 (d, J = 16.2 Hz), 134.5 (d, J = 21.0 Hz), 132.9 (d, J = 19.1 Hz), 129.1 (d, J = 4.4 Hz), 128.9, 128.8, 128.6 (d, J = 3.1 Hz), 128.5 (d, J = 6.5 Hz), 128.3 (d, J = 7.6 Hz), 74.5, 57.3 (d, J = 16.6 Hz), 40.6 (d, J = 15.8 Hz), 34.9 (d, J = 6.8 Hz), 28.0 (d, J = 5.4 Hz), 25.3 (d, J = 4.9 Hz), 24.7; ³¹P NMR (CDCl₃, 162 MHz): δ -6.78 (major), -7.53 (minor); HRMS (ESI) Calcd for C₂₉H₂₈NO₃PNa ([M+Na]⁺): 492.1704, Found: 492.1708.

3. General Procedure for the Enantioselective Intramolecular MBH Reaction

Phosphine-Squaramide **3a** (2.4 mg, 0.006 mmol) and EtOH (1.0 mL) were added to a vessel containing substrate **4** (0.20 mmol) and stirred at 25° C. After the reaction was completed (monitoring by TLC), the solvent was removed under reduced pressure and the residue was

purified by column chromatography on silica gel to afford the intramolecular MBH adduct **5** and the ee values were determined by HPLC analysis using chiral column.³

4. References

- 1 N. Fu, A. D. Allen, S. Kobayashi, T. T. Tidwell and S. Vukovic, J. Org. Chem. 2008, 73, 1768-1773.
- 2 (a) A. Caiazzo, S. Dalili and A. K. Yudin, Org. Lett., 2002, 4, 2597-2600; (b) Y.-Q. Fang and E. N. Jacobsen, J. Am. Chem. Soc., 2008, 130, 5660-5661; (c) K. Yuan, L. Zhang, H.-L. Song, Y. Hu and X.-Y. Wu, Tetrahedron Lett., 2008, 49, 6262-6264.
- 3 The analytical data of the intramolecular MBH products **4** could be found in our recent publication: J.-J. Gong, K. Yuan, H.-L. Song, and X.-Y. Wu, *Tetrahedron*, 2010, **66**, 2439-2443.

5. HPLC Spectra for the MBH Products

遵计

峰号 峰名 保留时间 峰高 峰面积 含量 98324.961 4341880.000 49.6548 1 20.452 44.533 4402254.500 50.3452 2 56373.234 154698.195 100.0000 萬计 8744134.500

遵计

-+-2	-=-11		• = F U	-= 00-07	0 #	
1		7.777	332568.656	4218205.000	50.0763	
Z		21.233	111346.500	4205348.500	49.9237	
黄计			443915.156	8423553.500	100.0000	_

峰号	峰名	保留时间	峰高	峰面积	含量
1		14.892	14475.043	308946.156	4.0699
2		16.482	309 095 . 875	7282146.500	95.9302
遵计			323570.918	7591092.656	100.0000

峰号	峰名	保留时间	峰高	峰面积	含量
1		11.755	190892.094	4169246.750	49.9537
2		27.162	91167.531	4176967.250	50.0463
黄计			282059.625	8346214.000	100.0000

6. ¹H NMR, ¹³C NMR and ³¹P NMR Spectra of Catalyst 3a-c

