Supporting Information

Self-discriminating and hierarchical assembly of racemic binaphthylbisbipyridines and silver ions: from metallocycles to gel nanofibers

Yabing He, Zheng Bian*, Chuanqing Kang and Lianxun Gao*

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Changchun, 130022, China. E-mail: bianzh@ciac.jl.cn, lxgao@ciac.jl.cn; Fax: +86 431 85697831; Tel: +86 85262265.

1. General Remarks

Melting points were measured with a hot-stage XT-4 microscope and were not corrected. ¹H NMR and ¹³C NMR spectra were obtained using a Bruker AV600 or AV400 spectrometer at 298 K. Tetramethylsilane (TMS) was used as internal standard in ¹H NMR experiments, and deuterated solvents as internal standard in ¹³C NMR experiments (CDCl₃, δ = 77.00 ppm; CD₃CN, δ _{CN} = 117.70 ppm). Mass spectra (ESI-MS) were recorded with a Thermo Finnigan LCQ instrument. Elemental analyses (C, H, N) were carried out with a VarioEL instrument. FTIR spectra were performed on a Bruke Vertex 70 infrared spectrometer at room temperature. TEM was performed on a JEOL JEM-1011 transmission electron microscope operated at an acceleration voltage of 100 kV. Samples were prepared by wiping a small amount of gel samples onto carbon-coated copper grid followed by naturally evaporating the solvent. SEM pictures were taken using an XL 30 ESEM FEG field emission scanning electron microscope with 20 kV operating voltage. PXRD patterns were recorded by Bruker D8 advance X-ray diffractometer with CuK_a 1 radiation source operated at 1.6 kW. X-ray crystallographic analysis was performed on a Bruker SMART APEX II CCD diffractometer with graphite-monochromated Mo-K_a radiation ($\lambda = 0.71073$ Å) operated at 2.0 kW (50 kV, 40 mA). The structures were solved by direct methods using the program SHELXL-97 and refined anisotropically by full matrix least squares on F^2 values with SHELXL-97. Hydrogen atoms were located from the expected geometry and were refined only isotropically.

2. Synthetic procedure and characterization of compound (rac)-1

Scheme S1 The synthetic route to compound (rac)-1.

To a degassed solution of 4-bromo-2,2'-bipyridine (0.57 g, 2.42 mmol) in toluene (45 mL) is added Pd(PPh₃)₄ (0.13 g, 0.11 mmol) under a nitrogen atmosphere. After the resulting mixture is stirred for 10 min at room temperature, (rac)-3,3'-bis(pinacolboryl)-2,2'-bis(methoxymethoxy)-1,1'-binaphhyl (0.72 g, 1.15 mmol) and 1M Na₂CO₃ (13.8 mL) are added sequentially into the mixture. Then the mixture is refluxed for 3 days under nitrogen. After removal of the solvent, the resulting residue is extracted with dichloromethane (50 mL \times 3), washed with brine (40 mL) and dried over anhydrous MgSO₄. Evaporation of the solvent gives a residue, which is purified by flash silica gel column chromatography (dichloromethane/ethyl acetate, 2/1) to afford pure (rac)-1 in 79% yield as a white solid (0.62 g, 0.91 mmol). M.p. 190-192 °C; FTIR (KBr, cm⁻¹): 1601, 1584, 1567, 1543, 1463, 1448, 1428, 1385, 1160, 1082, 1013, 992, 970, 931, 911, 848, 796, 747; ¹H NMR (CD₃CN, 600.1 MHz, 4.4 mM) δ (ppm): 8.865 (d, J = 1.2 Hz, 2H), 8.848 (d, J = 4.8 Hz, 2H), 8.773 (d, J = 4.2 Hz, 2H), 8.573 (d, J = 7.8 Hz, 2H), 8.276 (s, 2H), 8.126 (d, J = 7.8 Hz, 2H), 7.990 (td, J = 7.8 Hz, 1.8 Hz, 2H), 7.812 (dd, J = 5.4 Hz, 1.8 Hz, 2H), 7.580 (m, 2H), 7.483 (m, 2H), 7.446 (m, 2H), 7.309 (d, J = 9.0 Hz, 2H), 4.518 (d, J = 6.0 Hz, 2H), 4.457 (d, J = 6.0 Hz, 2H), 2.476 (s, 6H); ¹³C NMR (CDCl₃, 150.9 MHz) δ (ppm): 156.41, 155.99, 151.12, 149.24, 148.90, 148.13, 137.05, 134.18, 132.98, 131.08, 130.73, 128.23, 127.19, 126.51, 126.36, 125.63, 124.86, 123.88, 121.52, 121.35, 99.00, 56.13; MS (ESI) (*m/z*) Calcd. for C₄₄H₃₄N₄O₄: 682.3, Found: 683.5 ([M+1]+); Anal. Calcd. for C44H34N4O4: C, 77.40; H, 5.02; N, 8.21, Found: C, 77.36; H, 5.08; N, 8.22%.

3. Synthesis and characterization of complex (rac)-1•AgPF₆

A solution of AgPF₆ (0.1 mmol, 25.3 mg) and (*rac*)-**1** (0.1 mmol, 68.3 mg) in dry CH₃CN (20.0 mL) was stirred overnight in the dark, and the most part of solvents was removed under reduced pressure. The complex was precipitated with diethyl ether, filtered and dried (83.3 mg, 89%). Colorless rodlike single crystals were obtained by slow evaporation of a CH₃CN solution. FTIR (KBr, cm⁻¹): 1604, 1572, 1543, 1479, 1433, 1158, 1081, 1016, 968, 920, 840, 793, 749, 558; ¹H NMR (CD₃CN, 600.1 MHz, 4.4 mM) δ (ppm): 8.798 (m, 4H), 8.773 (s, 2H), 8.526 (d, *J* = 7.8 Hz, 2H), 8.337 (s, 2H), 8.140 (d, *J* = 8.4 Hz, 2H), 8.102 (m, 2H), 7.920 (m, 2H), 7.597 (m, 4H), 7.479 (m, 2H), 7.335 (d, *J* = 8.4 Hz, 2H), 4.544 (d, *J* = 6.0 Hz, 2H), 4.481 (d, *J* = 6.0 Hz, 2H), 2.514 (s, 6H); ¹³C NMR (CD₃CN, 150.9 MHz, 12.6 mM) δ (ppm): 153.51, 153.24, 150.55, 150.12, 149.79, 148.67, 138.24, 133.90, 132.14, 131.07, 130.56, 128.26, 127.21, 126.13, 125.71, 125.63, 125.29, 124.85, 122.26, 121.93, 98.70, 55.37; MS (ESI) (*m*/z): 683.28 ([**1**+H]⁺), 789.17 ([**1**•Ag]⁺ and [**1**₂•Ag₂]²⁺).

4. Comparison of FTIR spectra of ligand (*rac*)-1 with its silver complex (*rac*)-1•AgPF₆

Fig. S1 Comparison of FTIR spectra of complex (*rac*)-1•AgPF₆ with ligand (*rac*)-1.

5. ¹H NMR spectra of complexes of (*rac*)-1 and AgPF₆ with different metal / ligand ratios

Fig. S2 ¹H NMR spectra (CD₃CN, 600.1 MHz, 298 K) of complexes of (*rac*)-1 and AgPF₆ with different M/L ratios. a) AgPF₆/(*rac*)-1 = 1/1, [(*rac*)-1] = 4.4 mM; b) AgPF₆/(*rac*)-1 = 1/2, [(*rac*)-1] = 8.8 mM; c) AgPF₆/(*rac*)-1 = 2/1, [(*rac*)-1] = 4.4 mM.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

6. Mass spectrum of complex (S)-1•AgPF₆

Fig. S3 Positive ESI-MS spectrum of complex (*rac*)-1•AgPF₆ in CH₃CN (a) and mixed signals of $[1+Ag]^+$ (\blacklozenge) and $[1_2+Ag_2]^{2+}$ (\bigcirc) at *m*/*z* = 789.17 (b). *c* = 1 × 10⁻⁶ M.

7. Variable temperature ¹H NMR spectra of complex (*rac*)-1•AgPF₆ in CD₃CN

Fig. S4 VT-¹HNMR spectra of complex (*rac*)-**1**•AgPF₆ (400 MHz, CD₃CN, c = 9.0 mM). Lowering the temperature led to broader signals, resulting from a slower exchange process or the formation of the aggregated species.

8. Gel tests

A mixture of complex (*rac*)-1·AgPF₆ and the tested solvent (1.0 mL) were charged with a glass test tube (35 mm × 15 mm), which was capped and sonicated for a few minutes using sonoreactor (0.26 Wcm⁻¹, 40 kHz), and heated in an oil bath (T = 80 °C) until it turned into a clear solution (if soluble). After the solution was allowed to stand at room temperature (25 ± 5 °C) for 5 h, the state of the mixture was evaluated by the "stable to inversion of test tube" method. The complex (*rac*)-1·AgPF₆ can successfully gelate CH₃CN after screening common solvents. The minimum gel concentration (MGC) of complex (*rac*)-1·AgPF₆ in CH₃CN is 9.4 × 10⁻² M at room temperature.

Compounds	(<i>rac</i>)-1	(rac)-1•AgPF ₆
Empirical formula	$C_{44}H_{34}N_4O_4$	$C_{88}H_{68}N_8O_8Ag_2P_2F_{12}$
Formula weight	682.75	1871.18
Temperature (K)	185(2)	185(2)
Crystal system, Space group	Monoclinic, $P2_1/c$	Triclinic, P-1
Unit cell dimensions	<i>a</i> = 21.4815(13) Å	a = 8.6460(8) Å
	b = 12.1504(7) Å	b = 13.9854(13) Å
	c = 13.4906(8) Å	c = 18.4584(17) Å
	$\alpha = 90^{\circ}$	$\alpha = 89.7640(10)^{\circ}$
	$\beta = 99.2200(10)^{\circ}$	$\beta = 84.3230(10)^{\circ}$
	$\gamma = 90^{\circ}$	$\gamma = 74.2640(10)^{\circ}$
Volume (Å ³)	3475.7(4)	2137.2(3)
Z, Calculated density (Mg/m ³)	4, 1.305	1, 1.454
Absorption coefficient (mm ⁻¹)	0.085	0.582
<i>F</i> (000)	1432	948
Crystal size (mm)	0.30 x 0.25 x 0.21	0.38 x 0.22 x 0.14
θ range for data collection (°)	0.96 to 26.10	1.11 to 25.09
Limiting indices	$-20 \le h \le 26$,	$-9 \le h \le 10$,
	$-15 \le k \le 12$,	$-16 \le k \le 16$,
	$-16 \le l \le 16$	$-21 \le l \le 22$
Reflections collected / unique	$19104/6900 [R_{int} = 0.0571]$	$16807/7519 [R_{int} = 0.0343]$
Completeness to θ	26.10, 99.7%	25.09, 98.8%
Absorption correction	Semi-empirical from	Semi-empirical from
	equivalents	equivalents
Max. and min. transmission	0.978 and 0.970	0.9230 and 0.8093
Refinement method	Full-matrix least-squares on	Full-matrix least-squares on
	F^2	F^2
Data / restraints / parameters	6900/0/469	7519/14/570
Goodness-of-fit on F^2	0.993	0.964
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0458, wR_2 = 0.0928$	$R_1 = 0.0693, wR_2 = 0.2194$
R indices (all data)	$R_1 = 0.0987, wR_2 = 0.1201$	$R_1 = 0.0882, wR_2 = 0.2372$
Largest diff. peak and hole (e.Å ⁻³)	0.205 and -0.216	2.061 and -1.038
CCDC	787118	774705

9. Crystal data and structure refinement for (rac)-1 and (rac)-1•AgPF₆

10. ¹H NMR and ¹³C NMR spectra of (*rac*)-1 and (*rac*)-1•AgPF₆

