## **Electronic Supporting Information**

## for

## Visual Detection of Cobalt (II) Ion in Vitro and Tissue with

# a New Type of Leaf-Like Molecular Microcrystal

Shu Jun Zhen,<sup>*a*</sup> Feng Ling Guo,<sup>*a*</sup> Li Qiang Chen,<sup>*c*</sup> Yuan Fang Li,<sup>*a*</sup> Qing Zhang<sup>*a*</sup> and Cheng Zhi Huang<sup>\* a b</sup>

<sup>a</sup>Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, <sup>b</sup>College of Pharmaceutical Sciences, <sup>c</sup>College of Life Science, Southwest University, Chongqing 400715, PR China. E-mail: chengzhi@swu.edu.cn; Fax/Tel: (+86) 23 68254659.

### **Experimental Details**

**Reagents and materials.** All reagents were of analytical grade and used without further purification. PVP, with a molecular weight of 55000, was purchased from Sigma. *p*-Phenylenediamine (*p*-PDA) monomer was gotten from Sinopharm Group Chemical Regent Co, Ltd. (Shanghai, China). 0.1 g/mL PVP working solution and 0.3 g/mL *p*-PDA working solution were prepared respectively by directly dissolving in doubly distilled water under vigorous magnetic stirring, and homogeneous solution at room temperature was available as a consequence.

0.1 M stock solution of AgNO<sub>3</sub> was prepared by dissolving solid AgNO<sub>3</sub> in doubly distilled water and the working solution was obtained by diluting the stock solution to 0.01 M with water. Doubly deionized water (18.2 M $\Omega$ ) was used throughout the experiment and all glasswares were cleaned using concentrated nitric acid and subsequently rinsed with a copious amount of doubly deionized water.

**Apparatus.** Scanning electron microscopy (SEM) was applied to investigate the size and morphology of the newly prepared leaf-like P*p*PD microcrystals, and was carried out with a Hitachi (Tokyo, Japan) S-4800 scanning electron microscope at an accelerating voltage of 20 kV. FTIR spectra were measured on a Perkin Elmer Spectrum GX Fourier Transform Infrared (FTIR) Spectrometer (MA.USA) from 4000 to 500 cm<sup>-1</sup> at room temperature. X-ray photoelectron spectroscopy (XPS) analysis

was carried out on an ESCRLRB250X (America) cispectrometer with a standard Al K source (1486.6 eV) and X-ray powder diffraction (XRD) was measured on XD-3 system (Beijing Purkinje General Instrument Co. Ltd.) with Cu K $\alpha$  (1.5405 Å) radiation source under the operating voltage and current of 40 kV and 50 mA, respectively. UV-vis spectra were recorded on a Hitachi UV-3010 spectrophotometer at room temperature.

**Preparation of** *Pp***PD microcrystals.** The preparation of *Pp*PD microcrystals was very easy to do by using AgNO<sub>3</sub> as an oxidant and poly (-*N*-vinylpyrrolidone) (PVP) as a surfactant at room temperature. First, 1 mL of 0.1 g/mL PVP solution and 6 mL of 0.3 g/mL *p*-PDA solution were mixed with 2 mL doubly deionized water in a 50 mL conical flask, and the 1108  $\mu$ L of 10mM AgNO<sub>3</sub> was injected under shaking table running at room temperature for 3 hours. Then, the products were centrifuged and washed 3 times with double-distilled water and absolute ethanol. After that, the *Pp*PD microcrystals was suspended in distilled water, and transferred for the characterizations of SEM, FTIR or for the use of visual detection of Co<sup>2+</sup> and imaging in tissue.

**Experimental procedure.** To a 1.5 mL tube, solutions were added in the sequence of above-prepared 50  $\mu$ L 0.35g/L PpPD microcrystals solution and 50  $\mu$ L pH 6.12 Michaelis buffer. The mixture was vortexed and then an appropriate volume of water was added to make the initial volume of 500  $\mu$ L. At last, sample solution of Co<sup>2+</sup> was added and the mixture was got mixed thoroughly. After keeping still for 5 min, the mixture was transferred to UV measurements.

**Histopathology imaging and analysis.** Fish tissues including foregut and anus were fixed separately by immersion in 10% buffered formalin for 24 h, washed twice in phosphate buffered saline and transferred to 75% ethanol until processing. After dehydration and embedding in paraffin, tissues were step-sectioned to obtain longitudinal sections. Sections were pretreated by adding CoCl<sub>2</sub> solution and pure double-distilled water respectively for 12 h, and then incubated with PpPD mircocrystals for 2 h. At last, the fish tissue was washed several times with

double-distilled water. Histopathological observation of tissues was carried out with an Olympus BX-51 microscope (Tokyo, Japan), which was equipped with a highly numerical dark field condenser (U-DCW) and an Olympus DP72 digital camera (Tokyo, Japan). The analyst was blinded to sample identification and no less than triplex samples from each tissue were analyzed.

### Figures



**Fig. S1** (a) FTIR spectra of pure *p*-PDA. (b) The FTIR spectra after the P*p*PD microparticles interacted with Co<sup>2+</sup>.  $c_{PpPD}$ , 0.035 g/L;  $c_{co2+}$ , 0.05 mM. (c) FTIR spectra of the P*p*PD microparticles.  $c_{PVP}$ , 0.01 g/ mL;  $c_{p-PDA}$ , 0.03 g/mL;  $c_{AgNO3}$ , 1.1 mM.



**Fig. S2** The UV-vis spectra of pure *p*-PDA, the P*p*PD microparticle synthesized and the P*p*PD microparticle interacted with  $Co^{2+}$ , respectively. Curve 1 (green): Pure *p*-PDA; Curve 2 (purple): P*p*PD microparticles after interacted with  $Co^{2+}$ . *c*<sub>P*p*PD</sub>, 0.035

g/L;  $c_{co}^{2+}$ , 0.05 mM. Curve 3 (yellow): PpPD microparticles.  $c_{PVP}$ , 0.01 g/ mL;  $c_{p-PDA}$ , 0.03 g / mL,  $c_{AgNO3}$ , 1.10 mM.



**Fig. S3** Linear response of the absorbance of the P*p*PD microcrystals with the addition of Co<sup>2+</sup> (0.5-100  $\mu$ M). The linear regression equation is A = 0.193 + 0.036 c with the corresponding correlation coefficient (*r*) of 0.9930. *c*<sub>P*p*PD</sub>, 0.035 g/L; pH 6.12;  $\lambda$ , 454 nm.



Fig. S4 Etching effect of  $\text{Co}^{2+}$  on the PpPD microcrystals as displayed by dark-field light scattering images.  $c_{\text{Co}2+}$ , (A) 0.0 (B) 1.0 (C) 10.0 (D) 40.0 (E) 80.0 (F) 100.0  $\mu$ M;  $c_{PpPD}$ , 0.035 g/L. pH 6.12.



**Fig. S5** The absorbance change upon the addition of different metal ions.  $c_{PpPD}$ , 0.035 g/L; pH 6.12;  $\lambda$ , 454 nm. (The inset picture shows the color change of the P*p*PD microcrystals in presence of different metal ions with 0.05 mM concentration.)

### Table

| Wave number, cm <sup>-1</sup> | Assignments                                           |
|-------------------------------|-------------------------------------------------------|
| 3458, 3419, 3334              | N-H stretching vibrations of the -NH- group,          |
| 3036                          | Aromatic C-H stretching vibration                     |
| 1605                          | C=N stretching vibrations in the phenazine ring       |
| 1543                          | C=C stretching vibrations in the phenazine ring       |
| 1500                          | Stretching of the benzene ring                        |
| 1275                          | C–N stretching in the benzenoid                       |
| 1236                          | C–N stretching in the quinoid imine units (–C––N–)    |
| 1165, 1006                    | Aromatic C–H in plane bending mode                    |
| 835                           | C-H out-of-plane bending vibrations of benzene nuclei |
|                               | in the phenazine skeleton                             |

Table S1. FTIR peak Assignments in PpPD microcrystals