Supporting Information

Effects of Haloniums on Gold-catalyzed Ring Expansion of 1-oxirany-1-alkynylcyclopropanes

Hsuan-Hung Liao and Rai-Shung Liu*

Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan, ROC Taipei, Taiwan, ROC

rsliu@mx.nthu.edu.tw

Contents:

(I). Experimental procedures for synthesis of cyclopropyloxirane (1b).		
(III). Spectral Data for Compounds	.S4	
(II). Experimental Procedures for Catalytic Operations	.S3	
(I). Experimental procedures for synthesis of cyclopropyloxirane (1b)	.S2	

(a) General Procedure

Unless otherwise noted, all reactions were carried out under a nitrogen atmosphere in oven-dried glassware using standard syringe, cannula and septa apparatus. Toluene, benzene, tetrahydrofuran (THF) and Et₂O were dried with sodium, benzophenone and distilled before use. DMF, CH₂Cl₂ and TMEDA was dried over CaH₂ and distilled before use.

(b). Experimental procedures for synthesis of cyclopropyloxirane (1b)

(b-1). Synthesis of 1-(2-cyclopropylethynyl)benzene (s-1).

 $Pd(PPh_3)_2Cl_2$ (210 mg, 2 mol%), CuI (114 mg, 4 mol%), and PhI (2.0 ml, 15.75 mmol) were dissolved in 30 ml of Et₃N. A solution of cyclopropylacetylene (1.0 g, 15 mmol) in 5 ml Et₃N was added dropwise into the mixture under N₂ and stirred at rt. When the reaction was complete as monitored by TLC, a brown precipitate appeared. Filtration, rotary evaporation, and flash chromatography on silica gel afforded **s-1** (1.98 g, 13.95 mmol, 93 %) as a liquid.

(b-2). Synthesis of 1-(2-phenylethynyl)cyclopropanecarbaldehyde (s-2).

To a solution of **s-1** (1.4 g, 9.8 mmol) in anhydrous THF (20 ml) cooled to 0 $^{\circ}$ C was added *n*-BuLi (4.7 ml, 2.5 M in Hexane, 1.2 eq). The resulting mixture was stirred during a 1h period before the addition of DMF (0.83 ml, 1.2 eq). The reaction mixture was extracted with ethyl acetate, washed with water, dried over MgSO4, and concentrated under reduced pressure. The residues were chromatographed through a silica gel column (hexane/ethyl acetate = 10/1) to afford compound **s-2** (1.16 g, 6.57 mmol, 67 %) as colorless oil.

(b-3). Synthesis of 1-(2-(1-(hept-1-enyl)cyclopropyl)ethynyl)benzene (s-3).

To a THF solution (20 mL) of hexyl(triphenyl)phosphonium bromide (3.35 g, 7.84 mmol) at 0 $^{\circ}$ C was added *n*-BuLi (2.5 mL, 2.5 M, 2.87 ml), and the mixture was stirred at 0 $^{\circ}$ C for 1.0 h. To this solution was added s-2 (1.11 g, 6.53 mmol), and the mixture was stirred at rt for 1 h. The solution was quenched with water and concentrated in vacuo. The organic layer was extracted with diethyl ether, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column

chromatographed (hexane) over a silica gel column to give the olefination product (major *cis*- isomer) **s-3** as a colorless oil (1.81 g, 7.21 mmol, 86 %).

(b-4). Synthesis of 2-pentyl-3-(1-(2-phenylethynyl)cyclopropyl)oxirane (1b).

To a CH₂Cl₂ solution (25 ml) of **s-3** (700 mg, 2.77 mmol) was added *m*-chloroperbenzoic acid (717 g, 4.15 mmol), and the mixtures were stirred for 1.5 h at 0 °C. The resulting solution was quenched with an aqueous NaHCO₃ solution, extracted with diethyl ether, and dried over anhydrous MgSO₄ and concentrated in vacuo. The resulting mass was filtered through a small basic Al₂O₃ bed, then concentrated in vacuo, and eluted through a Et₃N-pretreated silica column (hexane/ethyl acetate = 25/1) to separate two isomers and afforded compound **1b** (major *cis*- isomer, 527 mg, 1.96 mmol, 71 %) as colorless oil.

(II). Experimental Procedures for Catalytic Operations.

(a). Catalytic cyclization of cyclopropyloxirane (1a).

A solution of PicAuCl₂ (3 mol%) in dichloromethane (3.0 mL) was added compound **1a** (80 mg, 0.30 mmol), PPh₃O(4.17mg, 5 mol%) and H₂O (5.4×10^{-3} ml, 2 eq) dropwise at 25 °C and the solution was stirred for 1 min. Then NCS(39.3mg, 1 eq) was added and the solution kept stirring for another 10 min. The resulting solution was filtered through a celite bed, and eluted through a silica gel column (hexane/ethyl acetate = 20/1) to give compound **6a** (58 mg, 0.18 mmol, 60 %) as a colorless oil.

(b). Catalytic cyclization of 5-bromo-2-pentyl-4-phenyl-3-oxabicyclo-[4.2.0]oct-4-en-6-ol (5b).

A solution of AuCl₃ (5 mol%) in dichloromethane (3.0 mL) was added compound **1b** (80 mg, 0.30 mmol), PPh₃O(4.17mg, 5 mol%), NBS(63mg, 1.2eq) and H₂O (5.4×10^{-3} ml, 2 eq) dropwise at 25 °C and the solution was stirred for 30 min. The resulting solution was filtered through a celite bed, and eluted through a silica gel column (hexane/ethyl acetate = 10/1) to give compound **5b** (71 mg, 0.204 mmol, 68 %) as a colorless oil.

(III) Spectral Data for Compounds

Spectra data for 2-pentyl-3-(1-(2-*p*-tolylethynyl)cyclopropyl)oxirane (1a)

Colorless oil; IR (neat, cm⁻¹): 3078(m), 2210(w), 1961(s), 1598(m), 1251(s); ¹H NMR (400 MHz, CDCl₃): δ 7.24 (d, *J* = 8.0 Hz, 2 H), 7.06 (d, *J* = 8.0 Hz, 2 H), 3.25 (d, *J* = 4.0 Hz, 1 H), 2.98-2.93 (m, 1 H), 2.31 (s, 3 H), 1.78-1.70 (m, 2 H), 1.55-1.40 (m, 2 H), 1.38-1.29 (m, 4 H), 1.17-1.02 (m, 4 H), 0.96-0.84 (m, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 137.7, 131.5 128.9, 120.3, 91.0, 78.0, 58.7, 57.1, 31.7, 27.2, 26.3, 22.6, 21.3, 14.0, 13.4, 13.2, 11.0; HRMS calcd for C₁₉H₂₄O: 268.1827, found: 268.1829.

Spectra data for 2-pentyl-3-(1-(phenylethynyl)cyclopropyl)oxirane (1b)

Colorless oil; IR (neat, cm⁻¹): 3312(m), 3070(s), 2947(m), 2150(m), 1454(s); ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.34 (m, 2 H), 7.26-7.24 (m, 3 H), 3.26 (d, *J* = 4.0 Hz, 1 H), 2.96 (td, *J* = 6.0, 4.0 Hz, 1 H), 1.81-1.69 (m, 2 H), 1.57-1.51 (m, 1 H), 1.40-1.29 (m, 5 H), 1.63-1.04 (m, 2 H), 0.97-0.90 (m, 2 H), 0.87 (t, *J* = 6.8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 131.6, 128.1, 127.7, 123.5, 91.8, 79.9, 58.6, 57.1, 31.7, 27.2, 26.3, 22.6, 13.9, 13.5, 13.3, 11.0; HRMS calcd for C₁₈H₂₂O: 254.1671, found: 254.1670.

Spectra data for 2-(1-((4-methoxyphenyl)ethynyl)cyclopropyl)-3-pentyloxirane (1c)

Colorless oil; IR (neat, cm⁻¹): 3066(m), 2210(w), 1961(s), 1598(m), 1204(s); ¹H NMR (400 MHz, CDCl₃): δ 7.29 (d, J = 8.8 Hz, 2 H), 6.78 (d, J = 9.2 Hz, 2 H), 3.77 (s, 3 H), 3.25 (d, J = 4.0 Hz, 1 H), 2.95 (td, J = 6.4, 4.0 Hz, 1 H), 1.78-1.70 (m, 2 H), 1.56-1.50

(m, 1 H), 1.38-1.31 (m, 5 H), 1.13-1.02 (m, 2 H), 0.92-0.95 (m, 5 H); 13 C NMR (100 MHz, CDCl₃): δ 159.0, 132.8 115.4, 113.6, 90.0, 77.6, 58.5, 56.9, 55.0, 31.6, 27.1, 26.2, 22.5, 13.8, 13.3, 13.0, 10.9; HRMS calcd for C₁₉H₂₄O₂: 284.1776, found: 284.1774.

Spectra data for 4-((1-(3-pentyloxiran-2-yl)cyclopropyl)ethynyl)benzonitrile (1d)

Colorless oil; IR (neat, cm⁻¹): 3078(m), 2210(w), 1961(s), 1598(m), 1251(s); ¹H NMR (400 MHz, CDCl₃): δ 7.55-7.53 (m, 2 H), 7.42-7.40 (m, 2 H), 3.24-3.23 (d, *J* = 4.0 Hz, 1 H), 2.98-2.94 (m, 1 H), 1.74-0.99 (m, 15 H); ¹³C NMR (100 MHz, CDCl₃): δ 131.9, 131.7, 128.3, 118.3, 110.9, 96.9, 76.6, 58.4, 56.6, 31.1, 27.1, 26.2, 22.4, 13.8, 13.5, 11.0; HRMS calcd for C₁₉H₂₁NO: 279.1623, found: 279.1627

Spectra data for 2-(1-((4-fluorophenyl)ethynyl)cyclopropyl)-3-pentyloxirane (1e)

Colorless oil; IR (neat, cm⁻¹): 3148(m), 2210(w), 1961(s), 1598(m), 1495(s); ¹H NMR (400 MHz, CDCl₃): δ 7.32 (dd, *J* = 8.4, 5.2 Hz, 2 H), 6.94 (t, *J* = 8.4 Hz, 2 H), 3.23 (d, *J* = 4.0 Hz, 1 H), 2.95 (td, *J* = 6.2, 4.0 Hz, 1 H), 1.77-1.69 (m, 2 H), 1.56-1.51 (m, 1 H), 1.37-1.30 (m, 4H), 1.14-1.01 (m, 3H), 0.91-0.90 (m, 2H), 0.86 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 162.0 (d, *J* = 247.0 Hz), 133.3 (d, *J* = 9.0 Hz), 119.4 (d, *J* = 3.0 Hz), 115.3 (d, *J* = 22.0 Hz), 91.4, 76.8, 58.5, 56.9, 31.6, 27.1, 26.2, 22.5, 13.8, 13.4, 13.1, 10.9; HRMS calcd for C₁₈H₂₁FO: 272.1576, found: 272.1575.

Spectra data fo 2-(1-((4-chlorophenyl)ethynyl)cyclopropyl)-3-pentyloxirane(1f)

Colorless oil; IR (neat, cm⁻¹): 3031(m), 2267(w), 1961(s), 1598(m), 1251(s); ¹H NMR

(400 MHz, CDCl₃): δ 7.28-7.21 (m, 4 H), 3.23-3.22 (d, *J* = 4.0 Hz, 1 H), 2.95-2.94 (m, 1 H), 1.75-0.95 (m, 15 H); ¹³C NMR (100 MHz, CDCl₃): δ 133.6, 132.7 128.4, 121.9, 92.9, 76.8, 58.5, 56.9, 31.6, 27.2, 26.3, 22.5, 13.9, 13.5, 13.3, 11.0; HRMS calcd for C₁₈H₂₁ClO: 288.1281, found:288.1287.

Spectra data for 2-pentyl-3-(1-(thiophen-2-ylethynyl)cyclopropyl)oxirane (1g)

Colorless oil; IR (neat, cm⁻¹): 3078(m), , 1961(s), 1598(m);

¹H NMR (400 MHz, CDCl₃): δ7.17-7.09 (m, 2 H), 6.92-6.90 (m, 1 H), 3.24-3.23 (d, J = 4.0 Hz, 1 H), 2.95-2.94 (m, 1 H), 1.77-0.91 (m, 15 H); ¹³C NMR (100 MHz, CDCl₃): δ131.4, 126.7, 126.3, 123.5, 95.7, 71.1, 58.6, 56.8, 31.7, 27.2, 26.2, 22.5, 13.9, 13.6, 13.4, 11.2; HRMS calcd for C₁₆H₂₀OS:260.1235, found: 260.1227

Spectra data for 2-pentyl-3-(1-(thiophen-3-ylethynyl)cyclopropyl)oxirane(1h)

Colorless oil; IR (neat, cm⁻¹): 3034(m), , 1961(s), 1598(m); ¹H NMR (400 MHz, CDCl₃): δ 7.33-7.32 (m, 1 H), δ 7.21-7.20 (m, 1 H), 7.03-7.01 (m, 1 H), 3.24-3.23 (d, *J* = 4.0 Hz, 1 H), 2.97-2.93 (m, 1 H), 1.76-1.06 (m, 15 H); ¹³C NMR (100 MHz, CDCl₃): δ 129.8, 128.0, 124.9, 122.3, 91.2, 72.9, 58.5, 56.9, 31.6, 27.1, 26.2, 22.5, 13.9, 13.4, 13.1,10.9; HRMS calcd for C₁₆H₂₀OS: 260.1235, found:260.1242.

Spectra data for 2-(1-(benzo[b]thiophen-2-ylethynyl)cyclopropyl)-3-pentyloxirane(1i)

Colorless oil; IR (neat, cm⁻¹): 3028(m), 2210(w), 1958(s), 1598(m), 1251(s); ¹H NMR (400 MHz, CDCl₃): δ 7.72-7.66 (m, 2 H), δ 7.33-7.23 (m, 3 H), 3.27-3.26 (m, 1 H), 2.98-2.96 (m, 1 H), 1.74-0.90 (m, 15 H); ¹³C NMR (100 MHz, CDCl₃): δ 139.8,139.0,128.2,125.1,124.5 123.5, 123.4, 121.8, 97.9, 71.5, 58.6, 56.8, 31.7, 27.2, 26.3, 22.5, 13.9, 13.8, 13.6, 11.3; HRMS calcd for C₂₀H₂₂OS: 310.1391,

found:.310.1385.

Spectra data for 2-((1-(3-pentyloxiran-2-yl)cyclopropyl)ethynyl)furan (1j)

Colorless oil; IR (neat, cm⁻¹): 3078(m), 1961(s), 1598(m); ¹H NMR (400 MHz, CDCl₃): δ 7.30 (m, 1 H), 6.46-6.45 (m, 1 H), 6.33-6.32 (m, 1 H), 3.20-3.19 (d, *J* = 4.0 Hz, 1 H), 2.91-2.87 (td, *J* = 8.0 Hz, 4.0 Hz, 1 H), 1.75-0.79 (m, 15 H); ¹³C NMR (100 MHz, CDCl₃): δ 142.9, 137.1, 114.4, 110.5, 96.1, 79.3, 58.5, 56.5, 31.6, 27.1, 26.2, 13.8, 13.6, 13.4, 11.0; HRMS calcd for C₁₆H₂₀O₂: 244.1463, found:244.1478.

Spectra data for 2-methyl-3-(1-(phenylethynyl)cyclopropyl)oxirane (1k)

Colorless oil; IR (neat, cm⁻¹): 3080(m), 2953(m), 2099(m), 2144(m), 1495(s); ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.35 (m, 2 H), 7.27-7.24 (m, 3 H), 3.24 (d, *J* = 4.0 Hz, 1 H), 3.09 (qd, *J* = 5.2, 4.0 Hz, 1 H), 1.45 (d, *J* = 5.2 Hz, 3 H), 1.17-1.05 (m, 2 H), 0.98-0.89 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 131.7, 128.2, 127.8, 123.5, 91.7, 78.0, 57.0, 45.1, 13.6, 13.2, 13.1, 11.0; HRMS calcd for C₁₄H₁₄O: 198.1045, found: 198.1043.

Spectra data for 2-methyl-3-(1-(thiophen-2-ylethynyl)cyclopropyl)oxirane (11)

Colorless oil; IR (neat, cm⁻¹): 3078(m), 1961(s), 1598(m); ¹H NMR (400 MHz, CDCl₃): δ 7.17-7.10 (m, 2 H), 6.92-6.90 (m, 1 H), 3.28-3.22 (m, 1 H), 3.11-3.05 (m, 1 H), 1.44-1.43 (d, *J* = 4.0 Hz, 3 H), 1.23-0.92 (m, 4 H); ¹³C NMR (100 MHz, CDCl₃): δ 131.6, 126.7, 126.3, 123.5, 95.6, 70.9, 56.8, 54.2, 13.6, 13.3, 13.0, 11.1; HRMS calcd for C₁₂H₁₂OS: 204.0609, found:204.0615.

Spectra data for 2,2-dimethyl-3-(1-(phenylethynyl)cyclopropyl)oxirane (1m)

Colorless oil; IR (neat, cm⁻¹): 3081(m), 2911(m), 2093(m), 1239(s); ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.35 (m, 2 H), 7.27-7.24 (m, 3 H), 3.08 (s, 1 H), 1.44 (s, 3 H), 1.33 (s, 3 H), 1.16-1.04 (m, 2 H), 0.98-0.84 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 131.5, 128.0, 127.6, 123.4, 91.8, 77.6, 63.4, 59.9, 24.8, 18.3, 13.5, 13.4, 11.7; HRMS calcd for C₁₅H₁₆O: 212.1201, found: 212.1203.

Spectra data for (Z)-3-chloro-2-pentyl-8-p-tolyl-4,5-dihydro-2H-oxocin-6(3H)-one (6a)

Colorless oil; IR (neat, cm⁻¹): 3149(m), 1667(m), 1495(s), 1225(m), 726(s); ¹H NMR (400 MHz, CDCl₃): δ 7.28-7.16 (m, 4 H), 5.60 (s, 1 H), 4.21 (td, *J* = 8.0, 4.0 Hz, 1 H), 3.48 (td, *J* = 8.0, 4.0 Hz, 1 H), 2.99 (t, *J* = 4.0 Hz, 2 H), 2.42-2.37 (m, 1 H), 2.34 (s, 3 H), 2.17-2.07 (m, 1 H), 1.60-0.80 (m, 11 H); ¹³C NMR (100 MHz, CDCl₃): δ 210.0, 154.3, 139.2, 130.6, 129.3, 127.1, 101.6, 75.6, 63.8, 45.4, 31.9, 31.6, 24.6, 21.2, 13.9, 12.7; HRMS calcd for C₁₉H₂₅ClO₂: 320.1543, found:320.1546.

Spectra data for (Z)-3-chloro-2-pentyl-8-phenyl-4,5-dihydro-2H-oxocin-6(3H)-one (6b)

Colorless oil; IR (neat, cm⁻¹): 3132(m), 1941(w), 1901(s), 1673(m), 1495(s); ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.29 (m, 5 H), 5.65 (s, 1 H), 4.21 (td, *J* = 8.0, 4.0 Hz, 1 H), 3.49 (td, *J* = 8.0, 4.0 Hz, 1 H), 3.01 (t, *J* = 4.0 Hz, 2 H), 2.46-2.07 (m, 2 H), 1.59-0.89 (m, 11 H); ¹³C NMR (100 MHz, CDCl₃): δ 210.1, 154.2, 133.4, 129.1, 128.6, 127.1, 102.4, 75.7, 63.7, 45.3, 31.8, 31.6, 24.6, 22.3, 13.9, 12.6; HRMS calcd for C₁₈H₂₃ClO₂: 306.1387, found: 306.1385.

NOE-map of compound 6b	irradiation	intensity increase
$ \begin{array}{c} Cl \\ H^{4a} \\ H^{4b} \\ 0 \\ 5 \\ 6 \\ \end{array} $	$H^{1}(\delta 4.21)$	H ² (δ 3.49, 5.43 %), H ⁶ (δ 7.35, 6.98 %).
	$\mathrm{H}^{2}\left(\delta\ 3.49\right)$	H ¹ (δ 4.21, 5.25 %), H ³ (δ 3.01, 1.31 %), H ⁴ ^b (δ 2.26, 3.84 %).
	H ³ (δ 3.01)	$ \begin{array}{l} H^2 (\delta \ 3.49, \ 1.46 \ \%), \ H^{4a} (\delta \ 2.41, \ 1.46 \ \%), \\ H^{4b} (\delta \ 2.12, \ 1.53 \ \%) \end{array} $
	$H^{4}(\delta 2.26)$	H ² (δ 3.49, 3.90 %), H ³ (δ 3.01, 34.63 %).
	$\mathrm{H}^{5}\left(\delta5.65\right)$	H ⁶ (δ 7.35, 8.08 %).

Spectra data for (Z)-3-chloro-8-(4-methoxyphenyl)-2-pentyl-4,5-dihydro-2H-oxocin-6(3H)-one (6c)

Colorless oil; IR (neat, cm⁻¹): 3132(m), 1673(m), 1495(s), 1225(m), 724(s) ; ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.26 (m, 2 H), δ 6.93-6.87 (m, 2 H), 5.55 (s, 1 H), 4.20 (td, *J* = 8.0, 4.0 Hz, 1 H), 3.80 (s, 3H), 3.47 (td, *J* = 8.0, 4.0 Hz, 1 H),3.00 (t, *J* = 8.0 Hz, 2 H), 2.43-2.06 (m, 2 H), 1.56-0.80 (m, 11 H); ¹³C NMR (100 MHz, CDCl₃): δ210.2, 160.3, 154.0, 128.5, 114.0, 100.9, 75.5, 63.7,55.3, 45.3, 31.8, 31.6, 24.7, 22.4, 13.9, 12.6; HRMS calcd for C₁₉H₂₅ClO₃: 336.1492, found:336.1498.

Spectra data for 4-((Z)-3-chloro-6-oxo-2-pentyl-3,4,5,6-tetrahydro-2H-oxocin-8-yl)benzonitrile (6d)

Colorless oil; IR (neat, cm⁻¹): 3132(m), 2250(s), 1673(m), 1495(s), 1225(m), 724(s); ¹H NMR (400 MHz, CDCl₃): δ 7.68-7.65 (m, 2 H), δ 7.49-7.47 (m, 2 H), 5.83 (s, 1 H), 4.17 (td, *J* = 8.0, 4.0 Hz, 1 H), 3.50 (td, *J* = 8.0, 4.0 Hz, 1 H), 3.01 (t, *J* = 8.0 Hz, 2 H), 2.45-2.41 (m, 1 H), 2.15-2.09 (m, 1 H), 1.54-0.80 (m, 11 H); ¹³C NMR (100 MHz, CDCl₃): δ 209.0, 152.5, 138.0, 132.5, 127.3, 118.3, 112.7, 105.9, 76.2, 63.4, 45.3, 31.6, 31.5, 24.7, 22.3, 13.8, 12.2; HRMS calcd for C₁₉H₂₂ClNO₂: 331.1339, found:331.1345.

Spectra data for (Z)-3-chloro-8-(4-fluorophenyl)-2-pentyl-4,5-dihydro-2H -oxocin-6(3H)-one (6e)

Colorless oil; IR (neat, cm⁻¹): 3154(m), 1673(m), 1467(s), 1225(m), 724(s) ; ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.24 (m, 2 H), δ 7.07-7.03 (m, 2 H), 5.60 (s, 1 H), 4.18 (td, *J* = 8.0, 4.0 Hz, 1 H), 3.48 (td, *J* = 8.0, 4.0 Hz, 1 H), 3.00 (t, *J* = 8.0 Hz, 2 H), 2.44-2.40 (m, 1 H), 2.14-2.09 (m, 1 H), 1.57-0.80 (m, 11 H); ¹³C NMR (100 MHz, CDCl₃): δ 210.1, 153.3, 129.5, 129.0, 128.9, 115.8, 115.6, 102.3, 75.6, 63.6, 45.3, 31.7, 31.6, 24.6, 22.3, 13.8, 12.4; HRMS calcd for: C₁₈H₂₂ClFO₂: 324.1292, found:324.1297.

Spectra data for (Z)-3-chloro-8-(4-chlorophenyl)-2-pentyl-4,5-dihydro-2Hoxocin-6(3H)-one (6f)

Colorless oil; IR (neat, cm⁻¹): 3157(m), 1673(m), 1495(s), 1228(m), 746(s) ; ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.17 (m, 4 H), 5.59 (s, 1 H), 4.12 (td, *J* = 8.0, 4.0 Hz, 1 H), 3.42 (td, *J* = 8.0, 4.0 Hz, 1 H), 2.94 (t, *J* = 4.0 Hz, 2 H), 2.40-2.30 (m, 1 H), 2.10-2.00 (m, 1 H), 1.49-0.74 (m, 11 H); ¹³C NMR (100 MHz, CDCl₃): δ 210.0, 153.2, 135.1, 131.9, 128.9, 128.3, 103.0, 75.8, 63.6, 45.4, 31.7, 31.6, 24.7, 22.4, 13.9, 12.4; HRMS calcd for C₁₈H₂₂C₁₂O₂: 340.0997, found:340.0992.

Spectra data for (Z)-3-chloro-2-pentyl-8-(thiophen-2-yl)-4,5-dihydro-2H-oxocin-6(3H)-one (6g)

Colorless oil; IR (neat, cm⁻¹): 3147(m), 1673(m), 1495(s), 1225(m), 724(s) ; ¹H NMR (400 MHz, CDCl₃): δ 7.28-7.27 (m, 1 H), δ 7.14-7.13 (m, 1 H), δ 7.02-7.00 (m, 1 H), 5.78 (s, 1 H), 4.45 (td, *J* = 8.0, 4.0 Hz, 1 H), 3.53 (td, *J* = 8.0, 4.0 Hz, 1 H), 2.99 (t, *J* = 8.0 Hz, 2 H), 2.41-2.08 (m, 2 H), 1.63-1.23 (m, 11 H); ¹³C NMR (100 MHz, CDCl₃): δ 209.6, 148.3, 135.9, 127.4, 126.8, 126.4, 102.4, 77.0, 63.8, 45.4, 32.0, 31.6, 24.7, 22.4, 13.9, 12.8; HRMS calcd for C₁₆H₂₁ClO₂S: 312.0951, found:312.0957. **Spectra data for (Z)-3-chloro-2-pentyl-8-(thiophen-3-yl)-4,5-dihydro-2H-oxocin-6(3H)-one (6h)**

Colorless oil; IR (neat, cm⁻¹): 3143(m), 1673(m), 1498(s), 1225(m), 727(s) ; ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.37 (m, 1 H), δ 7.31-7.29 (m, 1 H), δ 7.07-7.06 (m, 1 H), 5.70 (s, 1 H), 4.32 (td, *J* = 8.0, 4.0 Hz, 1 H), 3.51 (td, *J* = 8.0, 4.0 Hz, 1 H), 3.00 (t, *J* = 8.0 Hz, 2 H), 2.42-2.38 (m, 1 H), 2.17-2.06 (m, 1 H), 1.57-0.83 (m, 11 H); ¹³C NMR (100 MHz, CDCl₃): δ 210.2, 149.8, 134.9, 126.3, 126.0, 123.9, 102.0, 76.0, 63.7, 45.3, 31.8, 31.6, 24.7, 22.4, 13.9, 12.4; HRMS calcd for C₁₆H₂₁ClO₂S: 312.0951, found:312.0957.

Spectra data for (Z)-8-(benzo[b]thiophen-2-yl)-3-chloro-2-pentyl-4,5-dihydro-2H-oxocin-6(3H)-one (6i)

Colorless oil; IR (neat, cm⁻¹): 3146(m), 1673(m), 1495(s), 1225(m), 724(s) ; ¹H NMR (400 MHz, CDCl₃): δ 7.78-7.76 (m, 2 H), δ 7.39 (m, 1 H), δ 7.35-7.32 (m, 2 H),5.96 (s, 1 H), 4.56 (td, *J* = 8.0, 4.0 Hz, 1 H), 3.58 (td, *J* = 8.0, 4.0 Hz, 1 H), 3.02 (t, *J* = 4.0 Hz, 2 H), 2.43-2.12 (m, 2 H), 1.67-0.82 (m, 11 H); ¹³C NMR (100 MHz, CDCl₃): δ 209.6, 148.6, 139.4, 136.1, 125.1, 124.7, 124.1, 123.3, 122.2, 104.6, 77.3, 63.7, 45.4, 32.0, 31.7, 24.7, 22.4, 13.9, 12.9; HRMS calcd for C₂₀H₂₃ClO₂S: 362.1107, found:362.1112.

Spectra data for (Z)-3-chloro-8-(furan-2-yl)-2-pentyl-4,5-dihydro-2H-oxocin-6(3H)-one (6j)

Colorless oil; IR (neat, cm⁻¹): 3132(m), 1673(m), 1495(s), 1225(m), 724(s) ; ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.36 (m, 1 H), δ 6.54-6.53 (m, 1 H), δ 6.40-6.39 (m, 1 H), 6.00 (s, 1 H), 4.46 (td, *J* = 8.0, 4.0 Hz, 1 H), 3.54 (td, *J* = 8.0, 4.0 Hz, 1 H), 2.99 (t, *J* = 8.0 Hz, 2 H), 2.37-2.07 (m, 2 H), 1.55-0.84 (m, 11 H); ¹³C NMR (100 MHz, CDCl₃): δ 209.9, 147.9, 145.2, 142.9, 111.2, 109.0, 103.5, 77.7, 63.7, 45.4, 31.9, 31.7,24.8, 22.4, 13.9, 12.6; HRMS calcd for C₁₆H₂₁ClO₃: 296.1179, found:296.1183.

Spectra data for (Z)-3-chloro-2-methyl-8-phenyl-4,5-dihydro-2H-oxocin-6(3H)-one (6k)

Colorless oil; IR (neat, cm⁻¹): 3132(m), 1673(m), 1495(s), 1225(m), 724(s); ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.35 (m, 5 H), 5.76 (s, 1 H), 4.31 (qd, *J* = 12.0, 4.0 Hz, 1 H), 3.44 (td, *J* = 8.0, 4.0 Hz, 1 H), 3.01 (t, *J* = 8.0 Hz, 2 H), 2.42-2.13 (m, 2 H), 1.17 (d, *J* = 4.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 209.1, 153.9, 133.5, 129.1, 128.7, 126.7, 103.2, 72.4, 65.8, 45.3, 17.7, 12.9; HRMS calcd for C₁₄H₁₅ClO₂: 250.0761, found: 250.0765.

Spectra data for (Z)-3-chloro-2-methyl-8-(thiophen-2-yl)-4,5-dihydro-2H-oxocin-6(3H)-one (6l)

Colorless oil; IR (neat, cm⁻¹): 3156(m), 1673(m), 1495(s), 1225(m), 745(s); ¹H NMR (400 MHz, CDCl₃): δ 7.28-6.99 (m, 3 H), 5.88 (s, 1 H), 4.54 (qd, J = 12.0, 4.0 Hz, 1 H), 3.46 (td, J = 8.0, 4.0 Hz, 1 H), 3.02 (t, J = 4.0 Hz, 2 H), 2.99-2.16 (m, 2 H), 1.28

(d, J = 4.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): $\delta 208.9$, 148.0, 136.4, 127.5, 126.3, 103.1, 76.6, 65.8, 45.3, 29.6 18.0, 13.1; HRMS calcd for C₁₂H₁₃ClO₂S: 256.0325, found: 256.0327.

Spectra data for (Z)-3-chloro-2,2-dimethyl-8-phenyl-4,5-dihydro-2H-oxocin-6(3H)-one (6m)

Colorless oil; IR (neat, cm⁻¹): 3132(m), 1673(m), 1495(s), 1225(m), 724(s); ¹H NMR (400 MHz, CDCl₃): δ 7.97-7.95 (m, 2 H), δ 7.65-7.62 (m, 1 H), δ 7.53-7.49 (m, 2 H), 5.90 (s, 1 H), 4.28 (t, *J* = 4.0 Hz, 1 H), 2.85 (td, *J* = 8.0, 4.0 Hz, 2 H), 2.34-2.15 (m, 2 H), 1.43 (s, 3 H);1.17 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 197.0, 143.5, 135.0, 129.0, 128.9, 114.8, 78.7, 65.0, 33.5, 29.1, 22.7; HRMS calcd for C₁₅H₁₇ClO₂: 264.0917, found:264.0923.

Spectral data for 5-bromo-2-pentyl-4-phenyl-3-oxabicyclo[4.2.0]oct-4-en-6-ol (5b)

Colorless oil; IR (neat, cm⁻¹): 3587(m), 3081(m), 1682(s), 1604(m), 1210(s), 558(s);^{:1}H NMR (400 MHz, CDCl₃): δ 7.56-7.54 (m, 2H), 7.38-7.34 (m, 3H), 3.90 (td, J = 8.0, 4.0 Hz, 1H), 2.83 (td, J = 8.0, 4.0 Hz, 1H), 2.69 (m, 1H), 2.24 - 1.42 (m, 15H); ¹³C NMR (100 MHz, CDCl₃): δ 151.6, 135.6, 129.0, 128.9, 127.7, 105.4, 73.6, 71.3, 47.2, 35.5, 31.6, 24.9, 22.4, 13.9, 11.8; HRMS calcd for C₁₈H₂₃BrO₂: 350.0881, found:350.0875.

Spectra data for 2,2-dibromo-1-phenylethanone (7)

Colorless oil; IR (neat, cm⁻¹): 3081(m), 1710(s), 1604(m), 538(s);¹H NMR (400 MHz,

CDCl₃): $\delta 8.07-8.05$ (m, 2H), 7.64-7.47 (m, 3H), 6.69 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta 185.9$, 134.4, 130.8, 129.6, 128.9, 39.6, 29.6; HRMS calcd for C₈H₆Br₂O: 275.8785, found:275.8794.

Spectral data for 5-bromo-2-pentyl-4-p-tolyl-3-oxabicyclo [4.2.0]oct-4-en-6-ol(5a)

Colorless oil; IR (neat, cm⁻¹): 3533(m), 3081(m), 1682(s), 1604(m), 1210(s), 550(s);¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, *J* = 8.0 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 3.88 (m, 1H), 2.84 ~ 2.79 (m, 1H), 2.35 (s, 3H), 2.21 ~ 2.08 (m, 2H), 1.77 ~ 1.70 (m, 1H), 1.63 ~ 1.39 (m, 5H), 1.34 ~ 1.22 (m, 4H), 0.87 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 151.7, 138.9, 132.7, 129.0 (CH x 2), 128.5 (CH x 2), 105.1, 73.6, 71.4, 47.3, 35.5, 31.6 (CH₂ x 2), 25.0, 22.5, 21.4, 14.0, 11.9; HRMS calcd for C_{19H25}BrO₂: 364.1038, found: 364.1045.

Spectral data for 5-bromo-2-pentyl-4-(thiophen-2-yl)-3-oxabicyclo [4.2.0]oct-4-en-6-ol (5g)

Colorless oil; IR (neat, cm⁻¹): 3587(m), 1682(s), 1210(s), 558(s);¹H NMR (400 MHz, CDCl₃): δ 7.77-7.76 (m, 1H), 7.38-7.36 (m, 1H), 7.06-7.04 (m, 1H), 3.88 (td, *J* = 8.0, 4.0 Hz, 1H), 2.81 (td, *J* = 12.0, 8.0 Hz, 1H), 2.62 (m, 1H), 2.19 - 2.08 (m, 2H), 1.74 - 1.65 (m, 2H) ,1.56 - 1.32(m, 11H); ¹³C NMR (100 MHz, CDCl₃): δ 145.4, 137.3, 129.0, 127.2,126.6, 105.3, 73.6, 71.6, 47.2, 35.6,31.5, 29.6, 25.0, 22.5, 14.0, 11.6; HRMS calcd for C₁₆H₂₁BrO₂S: 356.0446, found:356.0451.

Spectral data for 4-(benzo[b]thiophen-2-yl)-5-bromo-2-pentyl-3 -oxabicyclo [4.2.0]oct-4-en-6-ol (5i)

Colorless oil; IR (neat, cm⁻¹): 3606(m), 3081(m), 1682(s), 1604(m), 1210(s), 576(s);¹H NMR (400 MHz, CDCl₃): δ 7.82-7.81 (m, 3H), 7.35-7.33 (m, 2H), 4.18 (td, J = 8.0, 4.0 Hz, 1H), 2.90 (td, J = 8.0, 4.0 Hz, 1H), 2.84 (m, 1H), 2.34 - 2.09(m, 4H), 1.56 - 0.83(m, 11H); ¹³C NMR (100 MHz, CDCl₃): δ 162.5,147.2, 140.0,138.6, 124.9, 124.3,124.3,124.1,122.0, 83.5, 79.3, 74.5, 46.7, 34.4,33.2, 29.6, 25.2, 22.5, 19.1, 14.0; HRMS calcd for C₂₀H₂₃BrO₂S: 406.0602, found:406.0615.

Spectral data for 5-bromo-2-methyl-4-phenyl-3-oxabicyclo [4.2.0]oct-4-en-6-ol (5k)

Colorless oil; IR (neat, cm⁻¹): 3587(m), 3081(m), 1682(s), 1604(m), 1210(s), 558(s);¹H NMR (400 MHz, CDCl₃): δ 7.53-7.51 (m, 1H), 7.38-7.34 (m, 4H), 4.07 (qd, J = 8.0, 4.0 Hz, 1H), 2.77 (td, J = 8.0, 4.0 Hz, 1H), 2.58 (m, 1H), 2.22 – 2.02 (m, 4H), 1.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 151.8, 135.6, 129.0, 128.9, 127.8, 105.4, 84.2, 69.7, 48.4, 35.2, 17.3, 11.5; HRMS calcd for C₁₄H₁₅BrO₂: 294.0255, found:294.0257.

Spectral data for 5-bromo-2,2-dimethyl-4-phenyl-3-oxabicyclo [4.2.0]oct-4-en-6-ol (5m)

Colorless oil; IR (neat, cm⁻¹): 3587(m), 3081(m), 1682(s), 1604(m), 1210(s), 558(s); H NMR (400 MHz, CDCl₃): δ 7.50-7.47 (m, 2H), 7.36-7.34 (m, 3H),2.68 (t, *J* = 12.0, 1H), 2.54 (m, 1H), 2.19 – 2.00 (m, 4H), 1.33 (s, 3H) , 1.21(s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.2, 135.9, 128.9, 128.7, 127.7, 104.6, 74.7, 71.2, 51.9, 34.6, 24.9, 23.1,13.8; HRMS calcd for C₁₅H₁₇BrO₂: 308.0412, found:308.0415.

Spectral data for 5-iodo-2-pentyl-4-phenyl-3-oxabicyclo [4.2.0]oct-4-en-6-ol (5b')

Colorless oil; IR (neat, cm⁻¹): 3598(m), 3081(m), 1682(s), 1604(m), 1210(s), 502(s);¹H NMR (400 MHz, CDCl₃): δ 7.48-7.34 (m, 5H), 3.92 (td, *J* = 8.0, 4.0 Hz, 1H), 2.84 (td, *J* = 12.0, 8.0 Hz, 1H), 2.52 (m, 1H), 2.11 - 1.40 (m, 15H); ¹³C NMR (100 MHz, CDCl₃): δ 154.7, 138.0, 129.3, 129.0, 127.8, 84.2, 73.9, 72.6, 46.1, 37.4, 31.7, 31.7, 24.9, 22.5, 14.0, 12.1; HRMS calcd for C₁₈H₂₃IO₂: 398.0743, found:398.0751.

Spectral data for 5-iodo-2-pentyl-4-p-tolyl-3-oxabicyclo[4.2.0]oct-4-en-6-ol (5a')

Colorless oil; IR (neat, cm⁻¹): 3587(m), 3081(m), 1682(s), 1632(m), 1210(s), 508(s);¹H NMR (400 MHz, CDCl₃): δ 7.36 (d, *J* = 8.4 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 3.89 (m, 1H), 2.85 ~ 2.80 (m, 1H), 2.36 (s, 3H), 2.10 ~ 1.97 (m, 2H), 1.76 ~ 1.69 (m, 1H), 1.64 ~ 1.27 (m, 9H), 0.87 ~ 0.84 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.7, 138.9, 135.1, 129.2 (CH x 2), 128.4 (CH x 2), 83.9, 73.8, 72.6, 46.1, 37.4, 31.7, 31.6, 24.9, 22.5, 21.4, 14.0, 12.0; HRMS calcd for C₁₉H₂₅IO₂: 412.0899, found:412.0905.

Spectral data for 5-iodo-2-pentyl-4-(thiophen-2-yl)-3-oxabicyclo [4.2.0]oct-4-en-6-ol (5g')

Colorless oil; IR (neat, cm⁻¹): 3587(m), 1682(s), 1210(s), 502(s);¹H NMR (400 MHz, CDCl₃): δ 7.64-7.63 (m, 1H), 7.23-7.16 (m, 2H), 4.49 (td, *J* = 8.0, 4.0 Hz, 1H), 2.94 (td, *J* = 8.0, 4.0 Hz, 1H), 2.79 (m, 1H), 1.95 - 1.71 (m, 4H), 1.33 - 0.82 (m, 11H); ¹³C NMR (100 MHz, CDCl₃): δ 164.4, 136.7, 134.3, 132.3,127.5, 82.1, 74.6, 74.1, 45.5, 31.3,29.6, 26.8, 25.1, 24.9, 22.4, 13.9; HRMS calcd for C₁₆H₂₁IO₂S: 404.0307, found:404.0312.

Spectral data for 5-iodo-2-pentyl-4-(thiophen-3-yl)-3-oxabicyclo [4.2.0]oct-4-en-6-ol (5h')

Colorless oil; IR (neat, cm⁻¹): 3587(m), 1682(s), 1210(s), 512(s);¹H NMR (400 MHz, CDCl₃): δ 7.70-7.69 (m, 1H), 7.38-7.37 (m, 1H), 7.27-7.25 (m, 1H), 3.89 (td, *J* = 8.0, 4.0 Hz, 1H), 2.83 (td, *J* = 8.0, 4.0 Hz, 1H), 2.47 (m, 1H), 2.06 - 1.97 (m, 4H), 1.61 - 0.82 (m, 11H); ¹³C NMR (100 MHz, CDCl₃): δ 149.9, 137.8, 128.3, 127.2, 124.3, 84.1, 73.6, 72.7, 46.1, 37.4, 31.7, 31.6, 25.0, 22.5, 14.0, 11.9; HRMS calcd for C₁₆H₂₁IO₂S: 404.0307, found:404.0312.

Spectral data for 4-(benzo[b]thiophen-2-yl)-5-iodo-2-pentyl-3oxabicyclo[4.2.0]oct-4-en-6-ol (5i')

Colorless oil; IR (neat, cm⁻¹): 3587(m), 3081(m), 1682(s), 1604(m), 1210(s), 558(s);¹H NMR (400 MHz, CDCl₃): δ 7.95-7.78 (m, 3H), 7.35-7.32 (m, 2H), 3.94 (td, J = 8.0, 4.0 Hz, 1H), 2.87 (td, J = 8.0, 4.0 Hz, 1H), 2.52 (m, 1H), 2.11 – 1.98(m, 2H), 1.75 – 1.66(m, 2H), 1.57 – 0.81(m, 11H); ¹³C NMR (100 MHz, CDCl₃): δ 148.2,140.2, 138.9,138.8, 126.5, 125.1,124.3,124.2,122.0, 85.8, 74.0, 72.9, 46.1, 37.6,31.6, 31.6,25.0, 22.5, 14.0, 11.8; HRMS calcd for C₂₀H₂₃IO₂S: 454.0463, found:454.0467.

Spectral data for 5-iodo-2-methyl-4-phenyl-3-oxabicyclo[4.2.0]oct-4-en-6-ol (5k')

Colorless oil; IR (neat, cm⁻¹): 3587(m), 3081(m), 1682(s), 1604(m), 1210(s), 508(s);¹H NMR (400 MHz, CDCl₃): δ 7.46-7.43 (m, 2H), 7.37-7.34 (m, 3H), 4.10 (qd, J = 8.0, 4.0 Hz, 1H), 2.78 (td, J = 8.0, 4.0 Hz, 1H), 2.53-2.52 (m, 1H), 2.08 – 1.74 (m, 4H), 1.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.9, 138.0, 129.1, 128.9, 127.8, 84.2, 72.4, 69.9, 47.2, 37.1, 17.4, 11.7 ;HRMS calcd for C₁₄H₁₅IO₂: 342.0117, found:342.0124.

Spectral data for 5-iodo-2,2-dimethyl-4-phenyl-3-oxabicyclo [4.2.0]oct-4-en-6-ol (5m')

Colorless oil; IR (neat, cm⁻¹): 3587(m), 3081(m), 1682(s), 1604(m), 1210(s), 508(s); ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.34 (m, 5H), 2.69 (t, *J* = 8.0, 1H), 2.53 (m, 1H), 2.03 – 1.78 (m, 4H), 1.38 (s, 3H), 1.21(s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 152.3, 138.3, 129.1, 128.7, 127.8, 83.4, 74.9, 72.4, 50.6, 36.5, 25.0, 23.2,14.0 ;HRMS calcd for C₁₅H₁₇IO₂: 356.0273, found:356.0277.