Supporting Information

Auto-tandem Catalysis; Facile Synthesis of Substituted Alkylidenecyclohexanones by Domino (4 + 2) Cycloaddition-Elimination Raction

Kiyosei Takasu, Tohru Tanaka, Takumi Azuma, and Yoshiji Takemoto

Solvent effects in the domino (4 + 2) cycloaddition-elimination reaction of **3d** and **4a** were examined. The results are summarized in Table S1. The results indicate that CH_2Cl_2 and toluene are appropriate solvents for the domino reaction. When the reaction was subjected in THF, ring-opening polymerization of THF solvent giving poly(tetramethylene ether glycol)s was observed.

 Table S1. Solvent effects.^a

^{*a*} Conditions; **3d** (1.2 equiv.), **4a** (1.0 equiv.), Tf_2NH (2 mol%), toluene, -40 °C, 10 min.

A survey of the optimal catalyst was carried out in the reaction of **4a** and **3d** (or **3f**). The results are summarized in Table S1. Several acidic catalysts gave the desired *exo*-enone **5c**. Among the acidic catalysts tested, several representative element Lewis acids such as BF₃, EtAlCl₂, ZnI₂ and TMSNTf₂ activate the domino reaction to give **5c** albeit in low conversion.

Ö

Ph

	0 + 1 30 3f	Ph OR OTES d (R = TES) f (R = Me) catalyst (x m)to luene		5c
entry	substrate 3	catalyst (mol%)	time (h)	% yield of 5c
1^b	3d	BF ₃ -OEt ₂ (20)	16	45
2	3d	BF ₃ -OEt ₂ (100)	1	74
3	3d	$TMSNTf_2(10)$	0.5	40
4^b	3d	Yb(OTf) ₃ (2.0)	2	0^c
5^b	3d	PtCl ₄ (20)	12	0^d
6	3f	Tf ₂ NH (2.0)	0.2	68
7	3f	TfOH (20)	0.2	0^e
8	3f	Sc(OTf) ₃ (20)	0.2	0^e
9	3f	EtAlCl ₂ (20)	0.2	20
10	3f	ZnI ₂ (20)	0.2	37
11^{b}	3f	ZnBr ₂ (20)	2	31
12	3f	TiCl ₄ (20)	0.2	0^e
13	3f	AgNTf ₂ (20)	2	0^c

Table S2. Results of catalyst screen.^a

^a Conditions; **3** (1.2 equiv.), **1** (1.0 equiv.), catalyst, toluene, -40 °C. ^b Reaction temperature was gradually warmed from -40 °C to rt. ^c No reaction (substrate 3 was completely recovered). ^d Complex mixture. ^e Decomposition (hydrolysis) of **3** was observed.

 Tf_2NH -catalyzed (2 + 2) cycloaddition of siloxydiene with enone would promote via a stepwise mechanism. The stepwise mechanism is supported by the following observation: reaction of 3d with 4a in the presence of Tf₂NH (Table 2, entry 1 in maintext), Mukaiyama Michael adduct 9 was obtained in 12% yield (Scheme S1).

Scheme S1.

General Methods

Unless otherwise noted, all reactions were performed under argon atmosphere. Nominal (LR-MS) and exact mass (HR-MS) spectra were recorded on Shimazu GC-2010/PARVUM2 (for LRMSEI) and JEOL JMS-01SG-2 (for LRMSFAB) or JMS-HX/HX 110A (for HRMS) mass spectrometer. ¹H-NMR and ¹³C-NMR spectra were registered on JEOL JNM-LA500 (500 MHz) or JEOL NMTC-400/54/SS (400 MHz), NMTC-500/54/SS (500 MHz) using TMS (0.00 ppm) and CDCl₃ (77.0) as internal standard for CDCl₃. For column chromatography, Kanto Silica gel 60 (spherical, 63-210 μ l) was employed. Analytical thin-layer chromatography was performed with "105715 TLC Silica gel 60 F₂₅₄ (25 Glass plates 20 x 20 cm)" or "Merck 105554 TLC Silica gel 60 F₂₅₄ (25 Aluminium sheets 20 x 20 cm)". Infrared spectroscopy was performed on JASCO FT/IR-410. Unless otherwise noted, materials were purchased from Tokyo Kasei Co., Aldrich Inc., Nacalai Tesque Inc. and other commercial suppliers, and were used without purification. Tf₂NH was purchased from Aldrich Chemical Company, Inc. An 80 mM solution of Tf₂NH in toluene was prepared as follows. A flame-dried, 50-ml, round-bottomed flask equipped with gas inlet is charged with Tf₂NH (675 mg, 2.40 mmol) under an atmosphere of argon, and toluene (anhydrous, Aldrich Sure-Seal) (30 ml) is quickly added under an atmosphere of argon. The solution can be stored for more than 1 month in the dark at ambient temperature.

3-[(Triethylsiloxy)phenylmethyl]-3-buten-2-one (2d)

To a stirred solution of 3-hydroxyphenylmethyl-3-buten-2-one (2.5 g, 14.2 mmol) and TESCI (3.1 ml, 18.4 mmol) and DMAP (173 mg, 1.4 mmol) in CH₂Cl₂ (50 mL), DIPEA (3.4 mL, 19.9 mmol) was added at 0 °C. The reaction mixture was quenched with saturated NaHCO₃. The **2d** resulting mixture was extracted with Et₂O. The combined organic layers were dried over anhydrous Na₂SO₄, and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography on silica gel with hexane-AcOEt (95:5 v/v) as eluent, gave **2d** (4.14 g, quant.) as a colorless oil. IR (neat) v = 2955, 2911, 2876, 1678, 1084, 1067, 743, 699 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) 7.36-7.19 (5H, m), 6.29 (1H, s) , 6.11 (1H, s), 5.73 (1H, s), 2.25 (3H, s), 0.86 (9H, t, *J* = 8.0 Hz), 0.53 (6H, q, *J* = 8.0 Hz); ¹³C-NMR (125 MHz, CDCl₃) 198.5, 152.1, 143.1, 127.9, 127.1, 126.6, 124.0, 70.9, 26.4, 6.7, 4.7; MS *m/z* 291 (M + H)⁺; Anal. Calcd for C₁₇H₂₆O₂Si, C: 70.29; H: 9.02. Found, C: 70.09; H: 8.81.

3-[(Trimethylsiloxy)phenylmethyl]-3-buten-2-one (2e)

 2e was synthesized from 3-hydroxyphenylmethyl-3-buten-2-one and TMSCl according as the same procedure as above (119 mg, 94%, colorless oil).
 TMSO

 IR (neat) v = 2957, 1678, 1251, 1083, 1066, 888, 839, 699 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) 7.34-7.20 (5H, m) 6.20 (1H, s), 6.13 (1H, s) 5.73 (1H, s) 2.26 (3H, s) 0.04 (9H, s); ¹³C-NMR (125 MHz, CDCl₃) 198.6, 151.9, 142.9, 128.1, 127.3, 126.9, 124.6, 71.3, 26.6, 0.0; MS *m/z* 249 (M + H)⁺; Anal. Calcd for

C₁₄H₂₀O₂Si, C: 67.70; H: 8.12. Found, C: 67.99; H: 8.16.

3-[(Methoxymethyloxy)phenylmethyl]-3-buten-2-one (2g).

2h was synthesized from 3-hydroxyphenylmethyl-3-buten-2-one and MOMCl in 79% yield as a colorless oil.

IR (neat) v = 2950, 2888, 2822, 1678, 1150, 1098, 1038 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) 7.37-7.25 (5H, m), 6.20 (1H, s), 6.17 (1H, d, J = 1.2 Hz), 4.61 (1H, d, J = 3.9 Hz), 4.59 (1H, d, J = 3.9 Hz), 3.32 (3H, s), 2.29 (3H, s); ¹³C-NMR (125 MHz, CDCl₃) 198.2, 149.2, 139.6, 128.2, 127.7, 127.5, 125.1, 94.3, 74.0, 55.6, 26.3; MS m/z 221 (M + H)⁺; Anal. Calcd for C₁₃H₁₆O₃, C: 70.89; H: 7.32. Found, C: 71.00; H: 7.46.

3-[(Benzoyloxy)phenylmethyl]-3-buten-2-one (2h).

2g was synthesized from 3-hydroxyphenylmethyl-3-buten-2-one and benzoyl chloride in 40% yield as white solids.

Mp. 112-113 °C, IR (CHCl₃) v = 3028, 1722, 1678, 1274, 1108 cm⁻¹; ¹H-NMR (400 MHz, **2h** CDCl₃) 7.69-7.25 (10H, m) 6.99 (1H, s), 6.25 (1H, s), 6.19 (1H, d, J = 1.2 Hz), 2.34 (3H,s); ¹³C-NMR (125 MHz, CDCl₃) 197.2, 165.0, 147.8, 138.2, 133.1, 129.9, 129.6, 128.4, 128.4, 128.2, 127.4, 125.2, 73.0, 26.2; MS m/z 281 (M + H)⁺; Anal. Calcd for C₁₈H₁₆O₃, C: 77.12; H: 5.75. Found, C: 77.10; H: 5.82.

3-Methylene-4-triethylsiloxy-2-pentanone (2i).

2i was synthesized from 4-hydroxy-3-methylene-2-pentanone and TESCl in 90% yield as a colorless oil.

IR (neat) v = 2956, 2912, 2877, 1678, 1374, 1088, 982, 742 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) 6.19 (1H, s), 6.07 (1H, s), 4.77 (1H, q, J = 6.1 Hz), 2.34 (3H, s), 1.22 (3H, d, J = 6.1 Hz), 0.93 (9H, t, J = 7.8 Hz), 0.58 (6H, q, J = 7.8 Hz); ¹³C-NMR (125 MHz, CDCl₃) 198.7, 153.6, 123.7, 65.4, 26.1, 24.7, 6.6, 4.6; MS m/z 199 (M⁺-Et); Anal. Calcd for C₁₂H₂₄O₂Si, C: 63.10; H: 10.59. Found, C: 63.34; H: 10.68.

3-[(Triethylsiloxy)-(p-bromophenyl)methyl]-3-buten-2-one (2j)

To a stirred solution of methylvinylketone (2.0 mL, 24.7 mmol) and pyridine (2.2 mL, 27.1 mmol) in CH₂Cl₂ (100 mL), TMSOTf (5.8 mL, 32.1 mmol) was added at -78 $^{\circ}$ C. To the mixture was added *p*-bromobenzaldehyde dimethylacetal (5.2 mL, 32.1 mmol), and then the mixture was warmed to -20 $^{\circ}$ C. After the mixture was stirred for 2 h at the same temperature, to the mixture was added DBU (8.8 mL, 59.2 mmol). After stirring for 30 min, the mixture was

quenched with saturated NaHCO_{3.} The resulting mixture was extracted with AcOEt. The combined organic layers were dried over anhydrous Na₂SO₄, and the solvent was evaporated under reduced pressure. The residue was

2i

purified by column chromatography on silica gel with hexane-AcOEt (90:10 v/v) as eluent, gave 2j (3.2 g, 48%) as a colorless oil.

IR (neat) v = 2933, 2823, 1677, 1485, 1092 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) 7.43 (2H, d, J = 8.4 Hz), 7.22 (2H, d, J = 8.4 Hz) 6.18 (1H, s), 6.14 (1H, s), 5.18 (1H, s), 3.28 (3H, s), 2.29 (3H, s), ¹³C-NMR (125 MHz, CDCl₃) 198.1, 148.9, 139.1, 131.3, 128.9, 124.9, 121.5, 78.9, 56.8, 26.1; MS m/z 269 (M + H)⁺, 271 (M + H + 2)⁺; Anal. Calcd for C₁₃H₁₅BrO₂, C: 53.55; H: 4.87. Found, C: 53.25; H: 4.87.

Synthsis of 3b (typical procedure)

To a stirred solution of dist. iPr_2NH (1.8 mL, 12.9 mmol) in anhydrous THF (25 mL), *n*-buthyllithium (8.6 mL, 1.6 M in hexane 13.8 mmol) was added at -78 °C, and the mixture was stirred for 30 min. A solution of **2a** (2.0 g, 9.2 mmol) in anhydrous THF (5 mL) was slowly added. After the mixture was stired for 30 min at the same temperature, to the mixture was added TESCI (2.2 mL, 12.9 mmol). The resulting solution was stirred for 30 min at the same temperature and for additional 15 min at ambient temperature. After quenched with saturated NaHCO₃, the resulting mixture was extracted with AcOEt. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by short column chromatography on silica gel with hexane-AcOEt (98:2 v/v) as eluent, to afford **3b** (0.96 g, 32%) as a colorless oil.

2-Triethylsiloxy-3-(tert-butyldimethylsiloxy)methyl-1,3-butadiene (3b)

IR (neat) v = 3120, 2956, 2878, 1590, 1461, 1252, 1098, 1017, 836, 779, 740 cm⁻¹; ¹H-NMR(400 MHz, CDCl₃) 5.56 (1H, s), 5.32 (1H, s), 4.34 (2H, m), 4.28 (2H, s), 0.98 (9H, t, <math>J = 7.8Hz), 0.92 (9H, s), 0.71 (6H, q, J = 7.8 Hz), 0.08 (6H, s), ¹³C-NMR (500 MHz, CDCl₃) 154.0,

143.4, 111.9, 91.4, 62.5, 25.9, 18.3, 6.7, 6.4, 5.0, 3.9, -5.5; MS m/z 329 (M⁺); HRMS (FAB⁺): Calcd for C₁₇H₃₆O₂Si₂ (M - H)⁺: 328.2254, Found: 328.2260.

2-*tert*-Butyldimethylsiloxy-3-(*tert*-butyldimethylsiloxy)methyl-1,3-butadiene (3c) 3c was obtained from 2a in 70% yield as a colorless oil. ¹H-NMR (400 MHz, CDCl₃) 5.55 (1H, s), 5.32 (1H,s), 4.36 (1H, m), 4.28 (1H, m), 0.96 (9H,s), 0.92 (9H, s), 0.16 (6H, s), 0.07 (6H, s). 3c

2-Triethylsiloxy-3-(triethylsiloxy)phenylmethyl-1,3-butadiene (3d)

3d was obtained from **2d** in 65% yield as a colorless oil. IR (neat) v = 3064, 3029, 2956, 2912,2877, 1587, 1087, 1067, 1008, 743, 699 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) 7.36-7.20 (5H, m), 5.67 (1H, d, J = 2.4 Hz), 5.54 (1H, s), 5.44 (1H, s), 4.41 (1H, d, J = 1.5 Hz), 4.23 (1H, s), 0.92 (9H, **3d** t, J = 8.1 Hz), 0.90 (9H, t, J = 8.1 Hz), 0.63 (6H, q, J = 8.1 Hz), 0.60 (6H, q, J = 8.1 Hz); ¹³C-NMR (125 MHz, CDCl₃) 153.7, 147.2, 143.4, 127.9, 126.9, 126.6, 113.5, 93.9, 74.1, 6.81, 6.68, 4.86, 4.83; MS *m/z* 405 (M + H)⁺; Anal. Calcd for C₂₃H₄₀O₂Si₂, C: 68.25; H: 9.96. Found: C: 68.04; H: 9.94.

OTBS

OTES

Ph

3b

2-Triethylsiloxy-3-(trimethylsiloxy)phenylmethyl-1,3-butadiene (3e)

3e was obtained from **2e** in 43% yield as a colorless oil. IR (neat) v = 3063, 3029, 2956, 2911,2877, 1587, 1456, 1250, 1087, 1067, 1015, 889, 840, 745, 699 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) 7.34-7.21 (5H, m), 5.70 (1H, s), 5.47 (1H, s), 5.43 (1H, s), 4.38 (1H, s), 4.24 (1H, s), 0.94 (9H, t, J = 8.0 Hz), 0.64 (6H, q, J = 8.0 Hz), 0.10 (9H, s), ¹³C-NMR (125 MHz, CDCl₃) 153.7, 146.8, 143.1, 128.0, 127.0, 126.7, 114.0, 93.9, 74.1, 6.6, 4.8, 0.0; MS m/z 361 (M + H)⁺; HRMS (FAB⁺): Calcd for C₂₀H₃₃O₂Si₂ (M + H)⁺: 361.2014, Found: 361.2026.

2-Triethylsiloxy-3-(methoxy)phenylmethyl-1,3-butadiene (3f)

3f was obtained from **2f** in 78% yield as a colorless oil. IR (neat) v = 3062, 3029, 2955, 2911,2877, 2820, 1586, 1454, 1098, 1017, 744, 699 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) 7.37-7.23 (5H, m), 5.77 (1H, d, J = 2.0 Hz), 5.36 (1H, s), 4.93 (1H, s), 4.45 (1H, s), 4.29 (1H, s), 3.36 (3H, s), 0.95 (9H, t, J = 7.8 Hz), 0.66 (6H, q, J = 7.8 Hz); ¹³C-NMR (125 MHz, CDCl₃) 153.8, 144.0, 140.4, 128.1, 127.5, 127.1, 114.8, 93.7, 82.9, 56.9, 6.69, 4.86; MS m/z 305 (M + H)⁺; HRMS (FAB⁺): Calcd for C₁₈H₂₇O₂Si (M + H)⁺:

303.1775, Found: 303.1773.

2-Triethylsiloxy-3-(methoxymethyloxy)phenylmethyl-1,3-butadiene (3g)

3g was obtained from **2g** in 45% yield as a colorless oil. IR (neat) v = 3063, 3029, 2955, 2912,2878, 1587, 1149, 1039, 747, 700 cm⁻; ¹H-NMR (400 MHz, CDCl₃) 7.39-7.24 (5H, m), 5.82 (1H, d, J = 2.2 Hz), 5.47 (1H, s), 5.43 (1H, s), 4.66 (1H, d, J = 3.9 Hz), 4.64 (1H, d, J = 3.9 Hz), 4.43 (1H, d, J = 1.7 Hz), 4.29 (1H, s), 3.39 (3H, s), 0.94 (9H, t, J = 8.0 Hz), 0.65 (6H, q, J = 8.0 Hz); ¹³C-NMR (100 MHz, CDCl₃) 153.7, 143.8, 140.4, 128.2, 127.6, 127.4, 126.4, 115.1, 94.2, 76.4, 55.6, 6.58, 4.78; MS *m*/z 335 (M + H)⁺; HRMS (FAB⁺): Calcd for C₁₉H₃₀O₃Si (M⁺): 334.1959, Found: 334.1954.

3-(Benzoyloxy)phenylmethyl-2-triethylsiloxy-1,3-butadiene (3h)

3h was obtained from **2h** in 62% yield as a colorless oil. IR (neat) v = 3033, 2958, 2913, 3877, 1717, 1588, 1274, 1006 cm⁻; ¹H-NMR (400 MHz, CDCl₃) 8.09 (2H, m), 7.56 (1H, m), 7.44 (4H, m), 7.43 (3H, m), 6.84 (1H, s), 5.83 (1H, s), 5.40 (1H, s), 4.52 (1H, d, J = 2.0 Hz), 4.36 (1H, s), 0.95 (9H, t, J = 8.0 Hz), 0.67 (6H, q, J = 8.0 Hz); ¹³C-NMR (125 MHz, CDCl₃) 165.2, 153.3, 143.2, 138.6, 132.9, 130.1, 129.6, 128.2, 128.0, 127.4, 115.2, 93.8, 74.4, 6.61, 4.78; MS m/z 395 (M + H)⁺; Anal. Calcd for C₂₄H₃₀O₃Si, C: 73.05; H: 7.66. Found: C: 72.77; H: 7.76.

Ph

Ph

Ph

Ph

2-Triethylsiloxy-3-[1-(triethylsiloxy)ethyl]-1,3-butadiene (3i)

3i was obtained from **2i** in 43% yield as a colorless oil. IR (neat) v = 2956, 2912, 2878, 1585, 1459, 1098, 1008, 741 cm⁻; ¹H-NMR (400 MHz, CDCl₃) 5.48 (1H, s), 5.36 (1H, s), 4.55 (1H, q, J = 6.4 Hz), 4.44 (1H, s), 4.32 (1H, s), 1.31 (3H, d, J = 6.4 Hz), 0.98 (9H, t, J = 7.8 Hz), 0.95 (9H, t, J = 7.8 Hz), 0.71 (6H, q, J = 7.8 Hz), 0.59 (6H, q, J = 7.8 Hz), ¹³C-NMR (125 MHz, CDCl₃) 154.6, 149.6, 111.2, 92.0, 67.5, 25.3, 6.8, 6.7, 5.0, 4.8; MS m/z 343 (M + H)⁺; HRMS (M + H)⁺: Calcd for

 $C_{18}H_{37}O_2Si_2$ (M - H)⁺: 341.2327, Found: 341.2326.

3-[(p-Bromophenyl)methoxymethyl]-2-triethylsiloxy-1,3-butadiene (3j)

3j was obtained from **2j** in 56% yield as a colorless oil. IR (neat) v = 2955, 2911, 2877, 2821, 1628, 1588, 1485, 1096, 1012, 745 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) 7.44-7.42 (2H, m), 7.24-7.22 (2H, m), 5.77 (1H, s), 5.34 (1H, s), 4.88 (1H, s), 4.41 (1H, s), 4.28 (1H, s), 3.35 (3H, s), 0.95 (9H, t, J = 7.8 Hz), 0.66 (6H, q, J = 7.8 Hz); ¹³C-NMR (125 MHz, CDCl₃) 153.6, 143.8, 139.7, 131.2, 128.8, 121.4, 115.3, 93.8, 82.4, 56.9, 6.7, 4.8; MS *m*/*z* 381 (M + H)⁺, 383 (M + H + 2)⁺; HRMS (FAB⁺): Calcd for C₁₈H₂₆O₂Br₈₁Si (M + H + 2)⁺: 383.0865, Found: 383.0870.

3-tert-Butyldimethylsiloxy 2-(phenylmethoxymethyl)-1,3-pentadiene (3k)

(as a mixture of *E*/*Z* isomers, isomer ratio = 74 : 26): IR (neat) v = 3029, 2955, 2930, 2887, 2858, 2821, 1471, 1254, 1101, 1073, 839, 779, 700 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃)*Z*isomer;7.40-7.27 (5H, m), 5.23 (1H, s), 5.32 (1H, s), 5.03 (1H, q,*J*= 6.8 Hz), 4.95 (1H, s), 3.40 (3H, s), <math>I = 6.8 Hz, 1.04 (9H, s), 0.04 (6H, s); *E* isomer; 7.40-7.27 (5H, m), 5.49 (1H, s), **3k** 5.12 (1H, s), 4.97 (1H, s), 4.82 (1H, q, *J* = 6.8 Hz), 3.38 (3H, s) 1.42 (3H, d, *J* = 6.8 Hz), 1.00 (9H, s), 0.18 (3H, s), 0.15 (3H, s); ¹³C-NMR (125 MHz, CDCl₃) *Z* isomer; 148.0, 145.3, 140.7, 128.1, 127.4, 127.2, 112.8, 107.4, 83.3, 107.4, 83.3, 107.4, 83.3, 107.4, 83.3, 107.4, 83.3, 107.4, 83.3, 107.4, 83.3, 107.4, 83.4, 107.4

56.9, 25.9, 18.3, 11.6, -4.0; MS m/z 317 (M + H)⁺; HRMS (FAB⁺): Calcd for C₁₉H₂₉O₂Si (M + H)⁺: 317.1931, Found: 317.1935.

$(1S^*, 6R^*)$ -8,8-Dimethyl-4-methylenebicyclo[4.3.0]nonan-3,7-dione (5a)

Colorless oil, IR (KBr) v = 2962, 2864, 1741, 1703, 1624, 1461, 1228, 1145, 950 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) 6.00 (1H, s), 5.25 (1H, s), 2.97-2.90 (1H, m), 2.84-2.71 (4H, m), 2.42 (1H, dd, J = 10.7, 4.9 Hz), 2.07 (1H, dd, J = 7.6, 5.8 Hz), 1.25 (1H, J = 13.2, 10.3

Hz), 1.08 (3H, s), 1.02 (3H, s), ¹³C-NMR (125 MHz, CDCl₃) 222.2, 200.0, 141.2, 122.2, 45.9, 43.9, 43.3, 42.4, 29.9, 28.5, 24.6, 22.3; MS m/z 193 (M + H)⁺; HRMS (FAB⁺): Calcd for C₁₂H₁₅O₂ (M - H)⁺: 191.1067, Found: 191.1076.

 $(E, 1S^*, 6R^*)$ -4-Benzylidene-8,8-dimethylbicyclo[4.3.0]nonan-3,7-dione (5b) Colorless solids, mp 78-79 °C, IR (neat) v = 3058, 3022, 2961, 2866, 1742, 1687, 1614, 1446, 752, 696 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) 7.61 (1H, s), 7.41-7.33 (5H, m), 3.11-2.75 (5H, m), 2.46 (1H, dd, J = 6.1, 14.6 Hz), 2.14 (1H, dd, J = 7.3, 13.1 Hz) 1.42 (1H, dd, J = 9.8, 13.2 Hz), 1.08 (3H, s), 1.05 (3H, s), ¹³C-NMR (125 MHz, CDCl₃) 222.1, 200.4, 136.3, 134.8, 133.1, 129.8, 128.8, 128.5, 45.9, 44.2, 43.3, 42.8, 28.5, 24.9, 24.7, 22.9; MS m/z 269 (M + H)⁺; HRMS (FAB⁺): Calcd for C₁₈H₁₉O₂ (M - H)⁺: 267.1380, Me Found: 267.1380.

The stereochemistry of **5b** was determined by NOESY experiment. The representative NOE correlations were shown.

(E)-4-Acetyl-2-benzylidenecyclohexanone (5c)

Colorless needles, mp 75 °C, IR (neat) $v = 3012, 2949, 1711, 1680, 1593, 1211 \text{ cm}^{-1}; {}^{1}\text{H-NMR}$ (400 MHz, CDCl₃) 7.58 (1H, s), 7.42-7.32 (5H, m), 3.13 (1H, m), 2.90-2.83 (1H, m), 2.81-2.76 (1H, m), 2.75-2.68 (1H, m), 2.54-2.45 (1H, m), 2.26-2.18 (1H, m), 2.20 (3H, s), 2.02 1.01 (1H, m) ${}^{13}\text{C}$ NMR (100 MHz, CDCl) 200 4, 100 7, 127 2, 125 0, 122 8, 120 2, 128 0, 128

2.02-1.91 (1H, m), ¹³C-NMR (100 MHz, CDCl₃) 209.4, 199.7, 137.2, 135.0, 133.8, 130.2, 128.9, 128.4, 47.8, 38.3, 29.8, 28.4, 25.2; MS m/z 229 (M + H)⁺; HRMS (FAB⁺): Calcd for C₁₅H₁₅O₂ (M - H)⁺: 227.1067, Found: 227.1078.

(E)- 4-Acetyl 2-(p-bromobenzylidene)cyclohexanone (5d)

Colorless needles, mp 73-75 °C, IR (neat) v = 2948, 2877, 1705, 1677, 1588, 1485, 1238, 1174, 810 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) 7.54-7.51 (2H, m), 7.48 (1H, s), 7.28-7.25 (2H, m), 3.07-3.03 (1H, m), 2.88-2.67 (3H, m), 2.55-2.45 (1H, m), 2.25-2.21 (4H, m), 2.02-1.94 (1H, m); ¹³C-NMR (100 MHz, CDCl₃) 209.4, 199.6, 136.0, 134.5, 134.0, 131.8, 131.7, 123.3, 47.6, 38.3, 29.7, 28.3, 25.2; MS m/z 307 (M + H)⁺, 309 (M + H + 2)⁺; HRMS (FAB⁺): Calcd for C₁₅H₁₄BrO₂ (M + H)⁺: 307.0157, Found: 307.0156.

(*E*,4*R*^{*},5*R*^{*})-4-Acetyl-2-benzylidene-5-methylcyclohexanone (5e)

Colorless solids, mp 104-105 °C, IR (neat) $\nu = 3057, 3023, 2958, 2930, 2873, 1677, 1594, 1446, 1250, 1201,761, 697 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) 7.97-7.95 (2H, m), 7.61-7.27$

(8H, m), 3.52 (1H, ddd, J = 4.4, 9.8, 11.2 Hz), 3.16 (1H, ddd, J = 1.2, 4.4, 16.1 Hz), 2.96 (1H, ddd, J = 3.0, 11.2, 16.1 Hz) 2.81 (1H, dd, J = 4.9, 17.6 Hz), 2.55 (1H, m), 2.28 (1H, dd, J = 11.4, 17.6 Hz) 0.98 (3H, d, J = 6.3 Hz); ¹³C-NMR (125 MHz, CDCl₃) 202.8, 200.0, 137.0, 136.7, 135.1, 133.9, 133.5,

130.3, 128.8, 128.4, 128.2 (2C), 48.2, 46.9, 32.7, 31.6, 20.3; MS m/z 305 (M + H)⁺; HRMS (FAB⁺): Calcd for C₂₁H₂₀O₂ (M⁺): 304.1458, Found: 304.1458.

The stereochemistry of $\mathbf{5e}$ was determined by J values.

$(E,1S^*,6R^*)$ -4-Ethylidene-8,8-dimethylbicyclo[4.3.0]nonan-3,7-dione (5f)

Colorless oil, IR (neat) v = 2961, 2931, 2866, 1737, 1698, 1631 cm⁻¹; ¹H-NMR (400 MHz, > CDCl₃) 6.76 (1H, ddq, J = 1.2, 1.7, 7.3 Hz), 2.95-2.81 (3H, m), 2.76 (1H, dd, J = 5.8, 15.4 Hz), 2.55 (1H, ddt, J = 1.4, 6.8, 14.6 Hz), 2.38 (1H, dd, J = 4.9, 15.4 Hz), 2.05 (1H, ddd, J = 1.4, 6.8, 14.6 Hz), 2.38 (1H, dd, J = 4.9, 15.4 Hz), 2.05 (1H, ddd, J = 1.4, 6.8, 14.6 Hz), 2.38 (1H, dd, J = 4.9, 15.4 Hz), 2.05 (1H, ddd, J = 1.4, 6.8, 14.6 Hz), 2.38 (1H, dd, J = 4.9, 15.4 Hz), 2.05 (1H, ddd, J = 1.4, 6.8, 14.6 Hz), 2.38 (1H, dd, J = 4.9, 15.4 Hz), 2.05 (1H, ddd, J = 1.4, 6.8, 14.6 Hz), 2.38 (1H, dd, J = 4.9, 15.4 Hz), 2.05 (1H, ddd, J = 1.4, 6.8, 14.6 Hz), 2.38 (1H, dd, J = 4.9, 15.4 Hz), 2.05 (1H, ddd, J = 1.4, 6.8, 14.6 Hz), 2.38 (1H, dd, J = 4.9, 15.4 Hz), 2.05 (1H, ddd, J = 1.4, 6.8, 14.6 Hz), 2.38 (1H, dd, J = 4.9, 15.4 Hz), 2.05 (1H, ddd, J = 1.4, 6.8, 14.6 Hz), 2.38 (1H, dd, J = 4.9, 15.4 Hz), 2.05 (1H, ddd, J = 1.4, 6.8, 14.6 Hz), 2.38 (1H, dd, J = 4.9, 15.4 Hz), 2.05 (1H, ddd, J = 1.4, 6.8, 14.6 Hz), 2.38 (1H, dd, J = 4.9, 15.4 Hz), 2.05 (1H, ddd, J = 1.4, 6.8, 14.6 Hz), 2.38 (1H, dd, J =

1.2, 7.6, 13.2 Hz), 1.77 (3H, dd, J = 1.2, 7.3 Hz), 1.24 (1H, dd, J = 10.0, 13.2 Hz), 1.07 (3H, s), 1.00 (3H, s); ¹³C-NMR (125 MHz, CDCl₃) 222.6, 200.0, 135.0, 134.6, 46.0, 44.0, 43.3, 42.4, 28.3, 24.7, 23.7, 22.5, 13.7; MS m/z 207 (M + H)⁺; HRMS (FAB⁺): Calcd for C₁₃H₁₇O₂ (M - H)⁺: 205.1223, Found: 205.1223.

(*E*,1*S*^{*},2*S*^{*},6*R*^{*})-4-Benzylidene-2,8,8-trimethylbicyclo[4.3.0]nonan-3,7-dione (5g)

Colorless needles, mp 85-87 °C, IR (neat) v = 2966, 2930, 1735, 1693, 1614, 1447, 1166, 698 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) 7.65 (1H, s), 7.43-7.33 (5H, m), 3.39-3.29 (1H, m), 2.63-2.51 (2H, m), 2.47-2.40 (1H, m), 2.37-2.24 (2H, m), 1.60 (1H, dd, J = 7.8, 16.8 Hz), 1.22 (3H, d, J = 6.3 Hz), 1.14 (3H, s), 1.07 (3H, s); ¹³C-NMR (125 MHz, CDCl₃) 221.7,

201.9, 135.4, 135.0, 133.5, 129.9, 128.7, 128.5, 46.9, 46.1, 45.5, 43.2, 36.0, 24.9, 24.6, 23.1, 12.5; MS *m*/*z* 283 (M + H)⁺; Anal. Calcd for C₁₉H₂₂O₂, C: 80.82; H: 7.85. Found, C: 80.82; H: 7.76.

The stereochemistry of **5g** was determined by NOESY experiment. The representative NOE correlations were shown.

(1*S*^{*},6*R*^{*})-3-Triethylsiloxy-4-(Methoxymethoxy)phenylmethyl-8,8-dimethylbicycl o[4.3.0]non-3-en-7-one (6g)

Colorless oil, IR (neat) $\nu = 2956$, 2877, 1739, 1677, 1038, 730 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) 7.37-7.19 (5H, m), 6.00 (1H, s), 4.66 (1H, d, J = 6.4 Hz), 4.59 (1H, d, J = 6.4 Hz), 3.37 (3H, s) 2.59-2.50 (1H, m), 2.44 (1H, dd, J = 7.3, 17.1 Hz), 2.32 (1H,

dd, J = 7.8, 15.6 Hz), 2.12 (1H, dd, J = 7.3, 17.1 Hz) 2.00 (1H, d, J = 17.1 Hz), 1.95 (1H, d, J = 8.3 Hz) 1.91 (1H, dd, J = 6.8, 13.0 Hz), 1.70 (1H, dd, J = 9.5, 12.7 Hz), 1.14 (3H, s), 1.04 (3H, s), 1.01 (9H, t, J = 7.8 Hz) 0.72 (6H, q, J = 7.8 Hz); ¹³C-NMR (500 MHz, CDCl₃) 223.1, 145.9, 141.7, 128.0, 126.6, 125.9, 111.7, 93.5, 71.9, 55.4, 44.6, 44.5, 42.8, 32.0, 31.0, 26.1, 19.5, 6.8, 5.8; MS m/z 443 (M + H)⁺; Anal. Calcd for C₂₆H₄₀O₄Si, C: 70.23; H: 9.07. Found, C: 70.08; H: 8.95.

H 5f

Domino (4 + 2) cycloaddition—elimination—oxa Diels-Alder reaction

To a stirred solution of **4a** (57.0 mg, 0.52 mmol) and $ZnBr_2$ (35.0 mg, 0.16 mmol) in CH₂Cl₂ (3.0 ml), a solution of **3c** (170.0 mg, 0.52 mmol) in CH₂Cl₂ (2.0 mL) was added at ambient temperature. After the solution was stirred for 10 min at the same temperature, ethylvinylether (**7**) (0.50 mL, 5.2 mmol) was added and the resulting solution was stirred for 40 min at the same temperature. The mixture was filtered through a short pad of Celite using AcOEt as eluent. Removal of the solvent under reduced pressure, followed by column chromatography with hexane-AcOEt (90:10 v/v) as an eluent, gave **8** (35 mg, 25 %) as a single diastereomer (its stereochemistry was not determined).

Compound 8.

Colorless oil, IR (neat) v = 2960, 2933, 2867, 1739, 1705, 1122, 1100, 1078, 1055 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) diastereomixture 4.95-4.93 (1H, m), 3.86-3.78 (1H, m), 3.60-3.53 (1H, m), 2.62-2.53 (2H, m), 2.33-2.25 (1H, m), 2.12-1.72 (9H, m), 1.24-1.19 (3H, m), 1.16 (3H, s), 1.08 (3H, s); ¹³C-NMR (125 MHz, CDCl₃) 223.5,

141.5, 102.1, 97.0, 63.6, 45.1, 44.3, 42.4, 30.7, 28.8, 27.2, 26.8, 26.3, 25.5, 21.6, 15.2; MS m/z 265 (M + H)⁺; HRMS (FAB⁺): Calcd for C₁₆H₂₄O₃ (M)⁺: 264.1720, Found: 264.1722.

Compound 9

Colorless oil, IR (neat) v = 2957, 2876, 1739, 1676, 1455, 1015, 743, 699 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) major isomer; 7.35-7.20 (5H, m), 6.27 (1H, s), 6.06 (1H, s), 5.72 (1H, s), 2.69 (2H, s), 2.54-2.35 (2H, m), 1.84-1.62 (2H, m), 1.27-1.20 (1H, m), 1.00 (3H, s), 0.95 (3H, s), 0.86 (9H, t, J = 7.8 Hz), 0.53 (6H, q, J = 7.8 Hz); ¹³C-NMR

(500 MHz, CDCl₃) 222.1, 199.9, 152.2, 143.0, 128.0, 127.3, 126.8, 122.8, 71.4, 46.0, 44.8, 44.6, 43.6, 28.6, 24.0, 6.7, 4.7; MS *m*/*z* 399 (M + H)⁺; HRMS (FAB⁺): Calcd for C₂₄H₃₅O₃Si (M + H)⁺: 399.2350, Found: 399.2369.

Compounds $2a^{S1}$ and $2f^{S2}$ were prepared according as reported proceedres.

References

S1 G. Mehta, B. A. Bhat, T. H. Suresha Kumara, *Tetrahedron Lett.*, 2009, **50**, 6597.
S2 S. Kim, Y. G. Kim, J. H. Park, *Tetrahedron Lett.*, 1991, **32**, 2043.