Convenient route to water-sensitive sol-gel

precursors using click chemistry

Nirmalya Moitra, Joël J.E. Moreau, Xavier Cattoën* and Michel Wong Chi

Man*

Institut Charles Gerhardt Montpellier (UMR 5253 CNRS-UM2-ENSCM-UM1),

8 rue de l'école normale, 34296 Montpellier, France

Xavier.cattoen@enscm.fr; michel.wong-chi-man@enscm.fr

Contents

General	S2
General procedure for the click reaction	S2
Characterization of the new compounds	S2-S10
General procedures for the syntheses of the materials	S11
Characterization of the materials	S11-S13
References	S13
Copies of NMR spectra	S14-S46

Caution

Azide compounds are potentially explosive. Great care and protection are needed for heating of these compounds.

General

3-azidopropyltriethoxysilane (AzPTES),¹ 11-azidoundecyltriethoxysilane,² dipropargyl tartrate³ and $\text{CuBr}(\text{PPh}_3)_3^4$ were prepared according to published procedures. The alkynes were purshased from Aldrich. Dry, oxygen-free solvents were employed.

All the manipulations were carried out using Schlenk techniques under a dry atmosphere of nitrogen. NMR spectra were recorded in dry CDCl₃ at 298 K on a Bruker Advance 400 apparutus. ¹H and ¹³C chemical shifts are reported in ppm relative to Me₄Si, and ¹⁹F chemical shifts are reported in ppm relative to CFCl₃.

Microwave reactions were carried out in sealed tubes using a CEM Discover Microwave Reactor equipped with an infrared temperature sensor.

General procedure for the click reaction:

A microwave tube was filled under nitrogen with the alkyne (2 mmol), the azide (2 mmol / alkyne function), [CuBr(PPh₃)₃] (0.01 mmol / alkyne function), dry triethylamine (0.5 mL) and dry thf (0.5 mL) then sealed. After 5 minutes under microwave irradiation at 100 °C (maximum power = 200 W) [Alternatively, some reactions were carried out at room temperature for 48 h], the reaction mixture was allowed to cool, then the solvents were removed under vacuum. After addition of dry pentane, the mixture was filtered then the filtrate was concentrated to afford the title compounds.

2a:

Yield: 95 %. ¹H NMR (CDCl₃, 400 MHz): $\delta = 0.64$ (m, 2 H), 1.22 (t, J = 7.0 Hz, 9 H), 2.07 (m, 2 H), 3.82 (q, J = 7.0 Hz, 6 H), 4.41 (t, J = 7.1 Hz, 2 H), 7.32 (m, 1 H), 7.42 (m, 2 H), 7.77 (s, 1 H), 7.82 (m, 2 H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 6.9$ (CH₂), 17.8 (CH₃), 23.8 (CH₂), 51.9 (CH₂), 58.0 (CH₂), 119.5 (CH), 125.1(CH), 127.5(CH), 128.3(CH), 130.4 (C), 146.9 (C). HRMS (ESI⁺): calcd for C₁₇H₂₈N₃O₃Si, 350.1900; found, 350.1893.

2b:

Yield: 97 %. ¹H NMR (CDCl₃, 400 MHz): $\delta = 0.56$ (m, 2 H), 1.15 (t, J = 7.0 Hz, 9 H), 1.15-1.40 (m, 16 H), 1.82 (m, 2 H), 3.75 (q, J = 7.0 Hz, 6 H), 4.26 (t, J = 7.2 Hz, 2 H), 7.22 (m, 1 H), 7.32 (m, 2 H), 7.72 (s, 1 H), 7.76 (m, 2 H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 10.1$ (CH₂), 18.0 (CH₃), 22.5 (CH₂), 26.2 (CH₂), 28.7 (CH₂), 28.9 (CH₂), 29.1 (CH₂), 29.17 (CH₂), 29.22 (CH₂), 30.0 (CH₂), 32.9 (CH₂), 50.1 (CH₂), 58.0 (CH₂), 119.3 (CH), 125.3 (CH), 127.7(CH), 128.5 (CH), 130.5 (C), 147.3 (C). HRMS (ESI⁺): calcd for C₂₅H₄₄N₃O₃Si, 462.3152; found, 462.3142. 2c:

Yield: 95 %. ¹H NMR (CDCl₃, 400 MHz): $\delta = 0.63$ (m, 2 H), 1.21 (t, J = 7.0 Hz, 9 H), 2.09 (m, 2 H); 3.82 (q, J = 7.0 Hz, 6 H), 4.44 (t, J = 7.1 Hz, 2 H), 7.81 (br s, 1 H), 7.95 (br s, 1 H), 8.28 (br s, 2 H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 7.5$ (CH₂), 18.3 (CH₃), 24.3 (CH₂), 52.7 (CH₂), 58.6 (CH₂), 120.7 (CH), 121.4 (sept, J = 3.9 Hz, CH), 123.2 (q, J = 272 Hz, C), 125.5 (CH), 132.2 (q, J = 33 Hz, C), 132.9 (C), 144.9 (C). ¹⁹F NMR (CDCl₃, 235 MHz): $\delta = 63.0$. Mp 95-97 °C. HRMS (ESI⁺): calcd for C₁₉H₂₆N₃O₃SiF₆, 486.1648; found, 486.1633.

2d:

Yield: 90 %. ¹H NMR (CDCl₃, 400 MHz): $\delta = 0.62$ (m, 2 H), 1.21 (t, J = 7.0 Hz, 9 H), 2.04 (m, 2 H), 2.97 (s, 6 H), 3.80 (q, J = 7.0 Hz, 6 H), 4.35 (t, J = 7.1 Hz, 2 H), 6.75 (d, J = 8.9 Hz, 2 H), 7.62 (s, 1 H), 7.68 (d, J = 8.9 Hz, 2 H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 7.4$ (CH₂), 18.2 (CH₃), 24.2 (CH₂), 40.4 (CH₃), 52.3 (CH₂), 58.4 (CH₂), 112.4 (CH), 118.1 (CH), 119.0 (C), 126.5(CH), 148.0 (C), 150.3 (C). Mp 65-68 °C. HRMS (ESI⁺): calcd for C₁₉H₃₃N₄O₃Si, 393.2322; found, 393.2305.

2e:

Yield: 92 %. ¹H NMR (CDCl₃, 400 MHz): $\delta = 0.57$ (m, 2 H), 0.90 (t, J = 7.3 Hz, 3 H), 1.18 (t, J = 7.0 Hz, 9 H), 1.35 (m, 2 H), 1.62 (m, 2 H), 1.98 (m, 2 H), 2.68 (t, J = 7.6 Hz, 2 H), 3.78 (q, J = 6.9 Hz, 6 H), 4.30 (t, J = 7.0 Hz, 2 H), 7.34 (s, 1 H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 6.9$ (CH₂), 13.2 (CH₃), 17.7 (CH₃), 21.7 (CH₂), 23.7 (CH₂), 24.8 (CH₂), 31.1 (CH₂), 51.6 (CH₂), 57.9 (CH₂), 120.2 (CH), 147.5 (C). HRMS (ESI⁺): calcd for C₁₅H₃₂N₃O₃Si, 330.2213; found, 330.2206.

2f:

[Reaction carried out at room temperature for 48 h using 3 eqv of alkyne]. Yield: 94 %. ¹H NMR (CDCl₃, 400 MHz): δ = 0.58 (m, 2 H), 0.81 (m, 2 H), 0.91 (m, 2 H), 1.19 (t, *J* = 7.0 Hz, 9 H), 1.88-2.02 (m, 3 H), 3.79 (q, *J* = 7.0 Hz, 6 H), 4.26 (t, *J* = 7.2 Hz, 2 H), 7.21 (s, 1 H). ¹³C NMR (CDCl₃, 100 MHz): δ = 6.7 (CH), 7.4 (CH₂), 7.7 (CH₂), 18.3 (CH₃), 24.2 (CH₂), 52.3 (CH₂), 58.5 (CH₂), 119.6 (CH), 150.0 (C). HRMS: calcd for C₁₄H₂₈N₃O₃Si, 314.1900; found, 314.1889.

2g:

[Reaction carried out at room temperature for 48 h using 3 eqv of alkyne]. Yield: 88 %. ¹H NMR (CDCl₃, 400 MHz): δ = 0.58 (m, 2 H), 1.19 (t, *J* = 7.0 Hz, 9 H), 1.31 (s, 9 H), 1.98 (m, 2 H), 3.78 (q, *J* = 7.0 Hz, 6 H), 4.27 (t, *J* = 7.2 Hz, 2 H), 7.23 (s, 1 H). ¹³C NMR (CDCl₃, 100 MHz): δ = 7.4 (CH₂), 18.2 (CH₃), 24.2 (CH₂), 30.3 (CH₃), 30.6 (C), 52.1 (CH₂), 58.4 (CH₂), 118.9 (CH), 157.4 (C). HRMS: calcd for C₁₅H₃₂N₃O₃Si, 330.2213; found, 330.2220.

2h:

[Reaction carried out at room temperature for 48 h using 3 eqv of alkyne]. Yield: 95 %. ¹H NMR (CDCl₃, 400 MHz): $\delta = 0.23$ (s, 9 H), 0.53 (m, 2 H), 1.13 (t, J = 7.0 Hz, 9 H), 1.94 (m, 2 H), 3.73 (q, J = 7.0 Hz, 6 H), 4.30 (t, J = 7.1 Hz, 2 H), 7.47 (s, 1 H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = -1.3$ (CH₃), 7.3 (CH₂), 18.1 (CH₃), 24.1 (CH₂), 51.6 (CH₂), 58.3 (CH₂), 128.8 (CH), 146.0 (C). HRMS: calcd for C₁₄H₃₂N₃O₃Si₂, 346.1982; found, 346.1971.

2i:

Yield: 93 %. ¹H NMR (CDCl₃, 400 MHz): $\delta = 0.58$ (m, 2 H), 1.19 (t, J = 6.9 Hz, 9 H), 1.99 (m, 2 H), 3.78 (q, J = 6.9 Hz, 6 H), 4.31 (t, J = 7.0 Hz, 2 H), 7.49 (s, 1 H) (CH₂-N and NH₂ not observed). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 7.2$ (CH₂), 17.9 (CH₃), 23.9 (CH₂), 52.1

(CH₂), 58.1 (CH₂), 121.0 (CH), 154.7 (C). HRMS (ESI⁺): calcd for C₁₂H₂₇N₄O₃Si, 303.1852; found, 303.1834.

2j:

Yield: 98 %. ¹H NMR (CDCl₃, 400 MHz): $\delta = 0.46$ (m, 2 H), 1.06 (t, J = 7.0 Hz, 9 H), 1.86 (m, 2 H), 3.66 (q, J = 7.0 Hz, 6 H), 4.19 (t, J = 7.1 Hz, 2 H), 4.61 (br s, 2 H), 4.71 (br s, 1 H), 7.49 (s, 1 H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 7.1$ (CH₂), 17.9 (CH₃), 23.8 (CH₂), 52.1 (CH₂), 55.6 (CH₂), 58.1 (CH₂), 121.8 (CH), 147.7 (C). HRMS (ESI⁺): calcd for C₂₄H₄₉N₆O₇Si₂, 304.1693; found, 304.1662.

3a:

Yield: 87 %. ¹H NMR (CDCl₃, 400 MHz): $\delta = 0.51$ (m, 2 H), 1.08 (t, J = 7.0 Hz, 9 H), 1.94 (m, 2 H), 3.68 (q, J = 7.0 Hz, 6 H), 4.27 (t, J = 7.1 Hz, 2 H), 7.75 (s, 2 H), 7.78 (s, 1 H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 7.1$ (CH₂), 17.9 (CH₃), 23.9 (CH₂), 52.1 (CH₂), 58.1 (CH₂), 119.7 (CH), 125.6 (CH), 130.4 (C), 146.7 (C). HRMS (ESI⁺): calcd for C₂₈H₄₉N₆O₆Si₂, 621.3252; found, 621.3237.

3b:

Yield: 95 %. ¹H NMR (CDCl₃, 400 MHz): $\delta = 0.60$ (m, 4 H), 1.21 (t, J = 7.0 Hz, 18 H), 1.95-2.11 (m, 6 H), 2.77 (t, J = 7.5 Hz, 4 H), 3.77 (q, J = 7.0 Hz, 12 H), 4.31 (t, J = 7.1 Hz, 4 H), 7.33 (s, 2 H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 7.0$ (CH₂), 17.8 (CH₃), 23.8 (CH₂), 24.5 (CH₂), 28.8 (CH₂), 51.8 (CH₂), 58.0 (CH₂), 120.6 (CH), 146.9 (C). HRMS (ESI⁺): calcd for C₂₅H₅₀N₆O₆Si₂, 587.3409; found, 587.3425.

3c:

Yield: 94 %. ¹H NMR (CDCl₃, 400 MHz): $\delta = 0.60$ (m, 4 H), 1.21 (t, J = 7.0 Hz, 18 H), 2.01 (m, 4 H), 3.80 (q, J = 7.0 Hz, 12 H), 4.34 (t, J = 7.1 Hz, 4 H), 4.70 (s, 2 H), 7.58 (s, 2 H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 7.1$ (CH₂), 17.9 (CH₃), 23.9 (CH₂), 52.1 (CH₂), 58.2 (CH₂), 63.2 (CH₂), 122.6 (CH), 144.1 (C). HRMS (ESI⁺): calcd for C₂₄H₄₉N₆O₇Si₂, 589.3201; found, 589.3213.

3d:

Yield: 91 %. ¹H NMR (CDCl₃, 400 MHz): $\delta = 0.60$ (m, 2 H), 1.20 (t, J = 7.0 Hz, 9 H), 2.02 (m, 2 H), 3.74 (s, 2 H), 3.79 (q, J = 7.0 Hz, 6 H), 4.34 (t, J = 7.3 Hz, 2 H), 7.76 (s, 1 H). ¹³C

NMR (CDCl₃, 100 MHz): $\delta = 6.8$ (CH₂), 17.6 (CH₃), 23.6 (CH₂), 46.4 (CH₂), 51.7 (CH₂), 57.8 (CH₂), 123.2 (CH), 143.1 (C). HRMS (ESI⁺): calcd for C₃₆H₇₃N₁₀O₉Si₃, 873.4870; found, 873.4854.

3e:

Yield: 92 %. ¹H NMR (CDCl₃, 400 MHz): $\delta = 0.53$ (m, 2 H), 1.13 (t, J = 7.0 Hz, 9 H), 1.92 (br, 2 H), 3.73 (q, J = 7.0 Hz, 6 H), 4.22 (br, 2 H), 4.62 (br, 2 H), 7.60 (br, 2 H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 7.3$ (CH₂), 18.1 (CH₃), 24.0 (CH₂), 35.9 (CH₂), 52.2 (CH₂), 58.3 (CH₂), 122.1 (CH), 146.1 (C), 165.7 (C). HRMS (ESI⁺): calcd for C₃₉H₇₆N₁₅O₉Si₃, 982.5258; found, 982.5273.

3f:

Yield: 81 %. ¹H NMR (CDCl₃, 400 MHz): $\delta = 0.51$ (m, 4 H), 1.14 (t, J = 7.0 Hz, 18 H), 1.93 (m, 4 H), 3.73 (q, J = 7.0 Hz, 12 H), 4.02 (br s, 2 H), 4.27 (t, J = 7.3 Hz, 4 H), 4.54 (s, 2 H), 5.26 (d, J = 13.0 Hz, 2 H), 5.30 (d, J = 13.0 Hz, 2 H), 7.61 (s, 2 H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 7.4$ (CH₂), 18.3 (CH₃), 24.1 (CH₂), 52.5 (CH₂), 58.5 (CH₂), 59.2 (CH₂), 72.2 (CH), 123.8 (CH), 141.9 (C), 171.2 (C=O). HRMS: calcd for C₂₈H₅₃N₆O₁₂Si₂, 721.3260; found, 721.3261.

General procedures for the syntheses of the materials:

Method A: To a suspension of precursor (2.5 mmol) in water (54 mL, 3.0 mol) under vigorous stiring was added hydrochloric acid (37 $\%_w$, 1 mL, 10 mmol). The mixture was stirred at 80°C for 3 days. After cooling, the solid was filtered off, washed with water, ethanol then acetone, and the resulting powder was dried under vacuum for 6 hours.

Method B: To a solution of precursor (2.5 mmol) in thf (5 mL) under vigorous stirring was added water (0.25 mL / silyl group, 6 mmol / silyl group) and a tetrabutylammonium fluoride solution (1 M in thf, 50 μ L / silyl group, 0.02 mmol / silyl group). After one minute under stirring, the solution was left standing for 3 days at room temperature. Gelification took place within few minutes. The gel was crushed, filtered off, washed with water, ethanol then acetone and the resulting powder dried under vacuum for 6 hours.

M1: method A from 3c; 0.49 g, white solid.

¹³C CPTOSS solid state NMR

²⁹Si CPMAS solid state NMR

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

M2: *method B* from 3c; 0.51 g; light brown solid.

¹³C CPTOSS solid state NMR

²⁹Si CPMAS solid state NMR

²⁹Si CPMAS solid state NMR

M4: *method B* from 3d; 0.75 g, light yellow solid.

¹³C CPTOSS solid state NMR

²⁹Si CPMAS solid state NMR

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

M5: *method A* from 3b; 0.78 g, yellow solid.

¹³C CPTOSS solid state NMR

²⁹Si CPMAS solid state NMR

M6: *method B* from 3b; 0.85 g, yellow solid.

¹³C CPTOSS solid state NMR

²⁹Si CPMAS solid state NMR

References

(1) Malvi, B.; Sarkar, B. R.; Pati, D.; Mathew, R.; Ajithkumar, T. G.; Sen Gupta, S. *Journal of Materials Chemistry* **2009**, *19*, 1409.

(2) Pichon, B. P.; Wong Chi Man, M.; Bied, C.; Moreau, J. J. E. *Journal of Organometallic Chemistry* **2006**, *691*, 1126.

(3) Desrat, S.; van de Weghe, P. Journal of Organic Chemistry 2009, 74, 6728.

(4) Van Allen, D.; Venkataraman, D. *Journal of Organic Chemistry* **2003**, *68*, 4590.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010 Ph, N, S,	130.42 128.30 127.45 125.11 119.51	77.32 77.00 76.68		
(EtO) ₃ Si ^{-/-/3}				
210 200 190 180 170 160 150 140			50 40 30	20 10 0 -10 ppm

-

Ph	147	130	77.77.76.16.1	57.	

130 120 110 100

ppm

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

200 190

180 170 160

150 140

Supplementary Material (ESI) for Chemical Communities journal is (c) The Royal Society of Chemistry 20 F_3C F_3C N N N N N N N N	cations 121.32 121.32 121.33 121.34 121.45 121.45 121.45 121.45 121.45 121.45 121.45 121.45 121.45 121.45 121.45 121.137 121.141 121.141 121.141 121.151	77.34	58.58	

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010 F_3C_{19F} -63.02 19F N_{≥Ņ} F₃C ^y/₃ Si(OEt)₃

-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	ppm

Supplementary Material (ESI) for Ch This journal is (c) The Royal Society N=N, N, -(,) 3 Si(OE	nemical Communications of Chemistry 2010		77.31	58.42	30.62 30.32 24.19	7.41
anne millen af ante seepent of a popul and by political and political and political and political and a second		s i be de en a dela vicio de la travela de en a de interna de i				
	······			60 50 4	.0 30 20	

Supplementary Material (ESI) for Chemical Communication This journal is (c) The Royal Society of Chemistry 2010 H_2N	s	77.82 77.50 77.17 58.10 58.10	23.93 17.95
(EtO) ₃ Si ^{-1/3}		ı	
210 200 190 180 170 160 150	140 130 120 110 100	90 80 70 60 50	40 30 20 10 0 -10 ppm

Supplementary Material (ESI) for C This journal is (c) The Royal Societ HO	Chemical Communications ty of Chemistry 2010 C. Le t	121.90	77.32	58.15 55.59 52.11	23.83 17.90))
(EtO) ₃ Si ⁷³						
		- <u> </u>		I.II	I I	L
	70 160 150 140	130 120 1	 80 70		30 20 10	

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010 N = N (EtO) ₃ Si $N = N$ N = N N = N N = N N = N	130.37 130.08 125.64 119.67	77.32 77.00 76.68 58.11 58.11	23.91 17.91 7.07
	1		
	, 130 120 110 100 90	80 70 60 50 40 30	D 20 10 0 -10 ppm

-10 ppm

