Electronic Supplementary Information

A New Oxapalladacycle Generated via *Ortho* C-H Activation of Phenylphosphinic Acid: Efficient Catalyst for Markovnikov-Type Additions of E-H Bonds to Alkynes

Qing Xu,^{*ab*}, Ruwei Shen,^{*a*} Yutaka Ono,^{*a*} Ritsuko Nagahata,^{*a*} Shigeru Shimada,^{*a*} Midori Goto,^{*a*} and Li-Biao Han^{*a**}

^{*a*} National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan

^b College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China

libiao-han@aist.go.jp

General	S2
X-ray Crystallography	S2
Characterizations of Adducts	S2
Preparation of Complexes 4b and 5a	S6
Monitoring 31 P NMR Spectra of 4b -Catalyzed Addition of Ph ₂ P(O)H to 1-O	OctyneS7
¹ H NMR and ¹³ C NMR Spectra of New Products	S10
ESI-TOF MS of 3 in CH ₂ Cl ₂	S17
ESI-TOF MS of 3 in CHCl ₃ (1% DMSO)	S18

General. All reactions were carried out under nitrogen atmosphere in a sealed NMR or a Schlenk tube unless otherwise noted. Solvents were dried and purified under nitrogen before use by standard procedure. ¹H, ¹³C and ³¹P NMR spectra were recorded on a JEOL LA-500 instrument (500 MHz for ¹H, 125.4 MHz for ¹³C, and 201.9 MHz for ³¹P NMR spectroscopy). Unless otherwise noted, CDCl₃ was used as the solvent. Chemical shift values for ¹H and ¹³C were referred to internal Me₄Si (0 ppm), and that for ³¹P was referred to H₃PO₄ (85% solution in D₂O, 0 ppm). Mass spectra were measured on a Shimadzu GCMS-QP2010 spectrometer (EI). HRMS and elemental analysis was performed by the Analytical Center at the National Institute of Advanced Industrial Science and Technology. Preparative GPC was carried out on a Japan Analytical Industry LC-908 instrument (1H and 2H columns) with CHCl₃ as eluent.

X-ray Crystallography. Data collection was performed on a Bruker Smart Apex CCD diffractometer (Mo K*a* radiation, graphite monochromator). Data were corrected for absorption. For complex **3**, the structures were solved by the Patterson method.¹ Structure refinement was carried out by full-matrix least squares on F^2 . All non-hydrogen atoms were refined anisotropically, with a similar U restraint for some of carbon atoms (C8-C12). All hydrogen atoms were located at calculated positions and refined with a riding model. Structure solution and refinement were performed using Crystal Structure software package² with SHELX-97 program.³

- 1) <u>PATTY</u>: Beurskens, P. T.; Admiraal, G.; Behm, H.; Beurskens, G.; Smits, J. M. M. and Smykalla, C. (1991). Z. f. Kristallogr. Suppl.4, p.99.
- <u>CrystalStructure 4.0</u>: Crystal Structure Analysis Package, Rigaku Corporation (2000-2010). Tokyo 196-8666, Japan.
- 3) SHELX97: Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Characterizations of Adducts

n-C₆H₁₃ P(O)Ph₂

This compound is known: Han, L.-B.; Hua, R.-M.; Tanaka, M. Angew. Chem. Int. Ed.

1998, *37*, 94.

*t-*Bu^{____}P(O)Ph₂

¹H NMR: δ 7.69-7.64 (m, 4H), 7.52-7.49 (m, 2H), 7.46-7.42 (m, 4H), 5.99 (d, $J_{P-H} = 45.2$ Hz, 1H), 5.20 (d, $J_{P-H} = 22.0$ Hz, 1H), 1.27 (s, 9H). ³¹P NMR: δ 34.8. M/S (*m/z*) 284 (42, M⁺), 228 (60), 227 (100), 201 (36). This compound is known: (a) Dobashi, N.; Fuse, K.; Hoshino, T.; Kanada, J.; Kashiwabara, T.; Kobata, C.; Nune, S. K.; Tanaka, M. *Tetrahedron Lett.* **2007**, *48*, 4669. (b) Takaki, K.; Takeda, M.; Koshiji, G.; Shishido, T.; Takehira, K. *Tetrahedron Lett.* **2001**, *42*, 6357.

Ph Ph Ph₂(O)P

This compound is known: Han, L.-B.; Hua, R.-M.; Tanaka, M. Angew. Chem. Int. Ed. **1998**, *37*, 94.

n-C₆H₁₃ P(O)Me₂

¹H NMR: δ 5.92 (d, $J_{P-H} = 19.5$ Hz, 1H), 5.86 (d, $J_{P-H} = 39.1$ Hz, 1H), 2.24-2.19 (m, 2H), 1.55 (d, $J_{P-H} = 12.2$ Hz, 6H), 1.56-1.49 (m, 2H), 1.37-1.31 (m, 6H), 0.90 (t, $J_{H-H} = 6.1$ Hz, 3H). ¹³C NMR: δ 145.8 (d, $J_{C-P} = 87.8$ Hz), 125.9 (d, $J_{C-P} = 7.2$ Hz), 32.1, 31.6 (d, $J_{C-P} = 11.4$ Hz), 29.4, 28.5 (d, $J_{C-P} = 6.2$ Hz), 23.0, 16.6 (d, $J_{C-P} = 69.2$ Hz), 14.5. ³¹P NMR: δ 35.3. M/S (*m*/*z*) 187 (M⁺-1), 173, 159, 145, 131, 104, 93, 78. HRMS Calcd for C₁₀H₂₁OP: 188.1330; found: 188.1325.

¹H NMR: δ 5.75 (d, $J_{P-H} = 42.7$ Hz, 1H), 5.54 (d, $J_{P-H} = 22.0$ Hz, 1H), 1.64 5.76 (d, $J_{P-H} = 12.2$ Hz, 6H), 1.32 (s, 9H). ¹³C NMR: δ 156.5 (d, $J_{C-P} = 82.7$ Hz), 122.6 (d, $J_{C-P} = 11.4$ Hz), 38.0 (d, $J_{C-P} = 9.3$ Hz), 30.4 (d, $J_{C-P} = 4.1$ Hz), 20.4 (d, $J_{C-P} = 70.3$ Hz). ³¹P NMR: δ 39.2. HRMS Calcd for C₈H₁₇OP: 160.1017; found: 160.1013.

n-C₆H₁₃ P(O)(OEt)Ph

This compound is known: Han, L.-B.; Zhang, C.; Yazawa, H.; Shimada, S. J. Am. Chem. Soc. 2004, 126, 5080.

t-Bu^{____}P(O)(OEt)Ph

¹H NMR: δ 7.81-7.77 (m, 2H), 7.53-7.30 (m, 1H), 7.48-7.43 (m, 2H), 5.90 (d, $J_{P-H} =$ 44.0 Hz, 1H), 5.82 (d, $J_{P-H} = 22.0$ Hz, 1H), 4.13-4.06 (m, 1H), 3.98-3.90 (m, 1H), 1.32 (t, $J_{H-H} = 7.4$ Hz, 3H), 1.22 (s, 9H). ¹³C NMR: δ 152.1 (d, $J_{C-P} = 117.8$ Hz), 133.1 (d, $J_{C-P} = 129.2$ Hz), 132.165 (d, $J_{C-P} = 3.1$ Hz), 132.161 (d, $J_{C-P} = 10.3$ Hz), 128.7 (d, $J_{C-P} = 12.4$ Hz), 127.5 (d, $J_{C-P} = 10.3$ Hz), 60.9 (d, $J_{C-P} = 6.2$ Hz), 37.0 (d, $J_{C-P} = 11.4$ Hz), 30.7 (d, $J_{C-P} = 4.1$ Hz), 16.8 (d, $J_{C-P} = 6.2$ Hz). ³¹P NMR: δ 34.9. HRMS Calcd for C₁₄H₂₁O₂P: 252.1279; found: 252.1280.

n-C₆H₁₃ P(O)(OMe)₂

This compound is known: Han, L.-B.; Tanaka, M. J. Am. Chem. Soc. 1996, 118, 1571.

t-Bu P(O)(OMe)₂

¹H NMR: δ 6.03 (d, $J_{P-H} = 23.2$ Hz, 1H), 5.90 (d, $J_{P-H} = 48.8$ Hz, 1H), 3.72 (d, $J_{P-H} = 11.0$ Hz, 6H), 1.23 (s, 9H). ¹³C NMR: δ 147.9 (d, $J_{C-P} = 163.3$ Hz), 128.7 (d, $J_{C-P} = 8.3$ Hz), 52.6 (d, $J_{C-P} = 5.2$ Hz), 36.0 (d, $J_{C-P} = 11.4$ Hz), 30.4 (d, $J_{C-P} = 5.2$ Hz). ³¹P NMR: δ 23.0. HRMS Calcd for C₈H₁₇O₃P: 192.0915; found: 192.0925.

¹H NMR: δ 5.88 (d, $J_{P-H} = 23.2$ Hz, 1H), 5.60 (d, $J_{P-H} = 50.0$ Hz, 1H), 2.39-2.33 (m, 2H), 1.59-1.54 (m, 2H), 1.52 (s, 6H), 1.37-1.30 (m, 6H), 1.34 (s, 6H), 0.88 (t, $J_{H-H} = 6.1$ Hz, 3H). ¹³C NMR: δ 141.4 (d, $J_{C-P} = 166.4$ Hz), 126.7 (d, $J_{C-P} = 9.3$ Hz), 88.6, 33.3 (d, $J_{C-P} = 11.4$ Hz), 32.0, 29.2, 28.4 (d, $J_{C-P} = 5.2$ Hz), 25.4 (d, $J_{C-P} = 2.1$ Hz), 24.5 (d, $J_{C-P} = 4.1$ Hz), 23.0, 14.5. ³¹P NMR: δ 31.1. HRMS Calcd for C₁₄H₂₇O₃P: 274.1698; found: 274.1695.

¹H NMR: δ 5.93 (d, J_{P-H} = 24.4 Hz, 1H), 5.73 (d, J_{P-H} = 50.0 Hz, 1H), 1.51 (s, 6H), 1.32 (s, 6H), 1.27 (s, 9H). ¹³C NMR: δ 151.4 (d, J_{C-P} = 158.1 Hz), 124.7 (d, J_{C-P} = 8.3 Hz), 88.4, 36.0 (d, $J_{C-P} = 13.4$ Hz), 30.9 (d, $J_{C-P} = 5.2$ Hz), 25.4 (d, $J_{C-P} = 4.1$ Hz), 24.3 (d, $J_{C-P} = 5.2$ Hz). ³¹P NMR: δ 31.0. HRMS Calcd for C₁₂H₂₃O₃P: 246.1385; found: 246.1381.

¹H NMR: δ 5.76 (d, $J_{P-H} = 25.6$ Hz, 1H), 5.38 (d, $J_{P-H} = 56.1$ Hz, 1H), 2.41-2.35 (m, 2H), 1.54-1.49 (m, 2H), 1.35-1.27 (m, 6H), 1.26 (s, 12H), 1.13 (s, 12H), 0.88 (t, $J_{H-H} = 7.4$ Hz, 3H). ¹³C NMR: δ 151.6 (d, $J_{C-P} = 204.6$ Hz), 121.0 (d, $J_{C-P} = 7.2$ Hz), 78.7, 33.3 (d, $J_{C-P} = 11.4$ Hz), 32.2, 29.6, 28.6 (d, $J_{C-P} = 8.3$ Hz), 24.9 (d, $J_{C-P} = 4.1$ Hz), 24.2 (d, $J_{C-P} = 6.2$ Hz), 23.1 (d, $J_{C-P} = 1.0$ Hz), 14.5. ³¹P NMR: δ -31.6. This compound is known: L.-B. Han, Y. Ono, Q. Xu, S. Shimada, *Bull. Chem. Soc. Jpn. in press.*

n-C₆H₁₃ SPh

This compound is known: Ishiyama, T.; Nishijima, K.; Miyaura, N.; Suzuki, A. J. Am. Chem. Soc. **1993**, 115, 7219.

This compound is known: (a) Trost, B. M.; Chan, C.; Ruhter, G. J. Am. Chem. Soc. **1987**, *109*, 3486. (b) Trost, B. M.; Sorum, M.T.; Chan, C.; Harms, A. E.; Ruhter, G. J. Am. Chem. Soc. **1997**, *119*, 698.

This compound is known: (a) Straub, T.; Haskel, A.; Eisen, M. J. Am. Chem. Soc. **1995**, *117*, 6364. (b) Haskel, A.; Straub, T.; Dash, A. K.; Eisen M. S. J. Am. Chem. Soc. **1999**, *121*, 3014.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Preparation of Complex 4b. The mixture of **3** (64.6 mg, 0.2 mmol) and dppe (80.0 mg, 0.2 mmol) in 4 mL CH₂Cl₂ was stirred at room temperature under nitrogen till **3** totally dissolved. Standing of the solution filtrate after adding drops of hexane at room temperature gave a white solid, which was collected and washed with CH₂Cl₂ and hexane. Dec. 168 °C. ¹H NMR (CD₂Cl₂): δ 7.99-7.58 (m, 9H), 7.56-6.99 (m, 17H), 6.87-6.84 (m, 1H), 6.61-6.54 (m, 2H), 2.62-2.37 (m, 2H), 2.34-2.21 (m, 1H), 2.16-2.02 (m, 1H). ³¹P NMR (CD₂Cl₂): δ 61.3 (dd, *J*_{P-P} = 29.4 Hz, *J*_{P-P} = 7.4 Hz, 1P), 47.2 (dd, *J*_{P-P} = 33.1 Hz, *J*_{P-P} = 7.4 Hz, 1P), 38.2 (dd, *J*_{P-P} = 33.1 Hz, *J*_{P-P} = 29.4 Hz, *J*_{P-P} = 19.4 Hz, 1P).

Preparation of Complex 5a. The mixture of **3** (0.162 g, 0.5 mmol), dmpe (84 μ L, 0.5 mmol) and Ph₂P(O)H (0.101g, 0.5 mmol) in 5 mL CH₂Cl₂ was stirred at room temperature under nitrogen till **3** totally dissolved. Standing of the solution filtrate after adding drops of hexane at room temperature gave colorless crystals, which were collected and washed with CH₂Cl₂ and hexane. ³¹P NMR (CD₂Cl₂): δ 71.9 (ddd, *J*_{P-P} = 447.0 Hz, *J*_{P-P} = 34.4 Hz, *J*_{P-P} = 7.6 Hz, 1P), 32.1 (dd, *J*_{P-P} = 447.0 Hz, *J*_{P-P} = 26.8 Hz, 1P), 23.5 (dd, *J*_{P-P} = 9.6 Hz, *J*_{P-P} = 11.5 Hz, 1P), 20.3 (ddd, *J*_{P-P} = 36.3 Hz, *J*_{P-P} = 26.7 Hz, *J*_{P-P} = 11.5 Hz, 1P).

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Monitoring ³¹P NMR Spectra of 4b-Catalyzed Addition of Ph₂P(O)H to 1-Octyne. 4b (11 mg, 0.015 mmol, 15 mol%; Chart 1) was added to a mixture of Ph₂P(O)H (20.2 mg, 0.1 mmol) and 1-octyne (16 μ L, 0.11 mmol) dissolved in CD₂Cl₂ (0.5 mL) in a NMR tube. After 2 h, ³¹P NMR showed the complete conversion of 4b to 5b (ca. 15 mol%; Chart 2). The solvent was changed to *d*₈-toluene, and the tube was heated at 70 °C overnight (19 h). ³¹P NMR showed that all starting Ph₂P(O)H and 5b were completely disappeared, and 99% yield of the adducts (branched/linear ratio = 99/1) together with 4b (ca.15 mol%) were obtained (Chart 3).

Chart 2. After 2 h at room temperature of a mixture of **4b** with $Ph_2P(O)H$ and 1-octyne: **4b** totally converted to **5b** (ca. 15 mol%); trace adduct (29.97 ppm) was also observed.

Chart 3. Heating at 70 °C for 19 h: Ph₂P(O)H and **5b** completely disappeared to give the adducts (branched/linear 99/1), while **4b** was regenerated (cat. 15 mol%).

ESI-TOF MS of $\mathbf{3}$ (with 1% DMSO) in CHCl₃

