Bismuth- and lead-texaphyrins: Towards potential α -core emitters for radiotherapy

Christian Preihs^a, Jonathan F. Arambula^a, Vincent M. Lynch^a, Zahid H. Siddik^{*,b} and Jonathan L. Sessler^{*,a}

^a Department of Chemistry & Biochemistry and Institute for Cellular and Molecular Biology, 1-University Station A5300, The University of Texas at Austin, Austin, Texas 78712-0156, USA;E-Mail: sessler@mail.utexas.edu;

^b The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Unit Number: 353, Houston, TX 77030, USA

E-Mail: zsiddik@mdanderson.org

- Supporting Information -

	Page
1. Synthesis and characterization of 1a	S3
2. Synthesis and characterization of 1b	S9
3. Synthesis and characterization of 2a	·····S16
4. Synthesis and characterization of 2b	·····S23
5. <i>In vitro</i> anti-proliferative activity of 1a (MBi) and 1b (MPb)	···· S29
6. Crystallographic Material for 2a (CCDC-790736)	····S30

Experimental Section

All chemicals were obtained from commercial sources (Fisher Scientific, Acros Chemicals, Sigma-Aldrich or Strem Chemicals) and used as supplied unless otherwise noted. All solvents were of reagent grade quality. Fisher ailica gel (230-400 mesh, Grade 60 Å) and Sorbent Technologies alumina (neutral, standard activity I, 50-200 μ m) were used for column chromatography. Thin layer chromatography (TLC) analyses were either performed on silica gel (aluminum backed, 200 μ m or glass backed, 250 μ m) or alumina neutral TLC plates (polyester backed, 200 μ m), both obtained from Sorbent Technologies. All NMR solvents were purchased from Cambridge Isotope Laboratories, Inc. Proton-NMR and ¹³C NMR spectra used in the characterization of products were recorded on Varian Unity+ 300 MHz or Varian Mercury 400

MHz spectrometers. Chemical shifts are reported in units of δ (parts per million; ppm) and referenced to the residual solvent. Spectral splitting patterns are designated as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad). Low and high resolution ESI mass spectra were obtained at the Mass Spectrometry Facility of the Department of Chemistry and Biochemistry at The University of Texas at Austin using a Thermo Finnigan LTQ instrument and a Qq FTICR (7 Tesla) instrument, respectively. UV-Vis spectra were recorded either on a Beckman DU 640B spectrophotometer or a Varian Cary 5000 UV-Vis spectrophotometer. HPLC spectra were taken on a Shimadzu High Performance Liquid Chromatograph (Fraction Collector Module FRC-10A, Auto Sampler SIL-20A, System Controller CBM-20A, UV/Vis Photodiode Array Detector SPD-M20A, Prominence).

Macrocyclic, methylene-bridged texaphyrin precursor used to prepare MGd (generally referred to as sp^3 -Tex_{PEG}) and the so-called sp^3 form of the analogous texaphyrin precursor with appended methoxy functionalities (sp^3 -Tex_{OMe}); these compounds have been reported previously.¹⁻⁴

 $R_1 = R_2 = -O(CH_2CH_2O)_3Me = sp^3-Tex_{PEG}$

 $R_1 = R_2 = -OMe = sp^3-Tex_{OMe}$

1. Synthesis and Characterization of **1a**

The hydrochloride salt of sp^3 -Tex_{PEG} (189.8 mg, 216.2 mmol) was dissolved in 20 ml methanol. Bi(NO₃)₃ • 5H₂O (157.3 mg, 324.3 mmol, 1.5 equiv.) was added together with 1 ml triethylamine. The solution was stirred at 70 °C and gradually changed color from deep red to deep green. UV/Vis spectra were taken every 2 to 4 minutes (50 µL taken directly from the reaction mixture and diluted with 4 ml MeOH in the case of each sample). The insertion reaction was deemed over after 34 minutes. No further increase in the intensity of the Soret band was observed after that time, a finding interpreted in terms of the formation of the stable, aromatic texaphyrin scaffold being complete. The solvent was removed in vacuo and the residue was subjected to column chromatography (silica gel, first 90% CH₂Cl₂, then 10% MeOH, and then 25% CH₂Cl₂ and 75% MeOH, as the eluents). The deep green fraction was c4ollected and the solvent was removed in vacuo to give **1a** as a deep green crystalline material (152.0 mg, 64%).

UV/Vis (MeOH, 25 °C):	λ [nm] = 480 (Soret-type band); 723 (Q-type band);
¹ H-NMR (400 MHz, DMSO- <i>d</i> ₆ , 25 °C):	δ[ppm] = 1.74 (t, J = 7.2 Hz, 6H); 2.24 (q, J = 6.8 Hz, 4H); 3.23 (s, 6H), 3.45 (m, 4H); 3.49 (s, 6H); 3.58 (m, 4H); 3.66 (m, 8H), 3.82 (m, 4H); 3.93 (m, 8H); 4.16 (br t, J = 4 Hz, 4H); 4.95 (br t, J = 4 Hz, 2H); 9.76 (s, 2H); 10.30 (s, 2H); 12.93 (s, 2H);
¹³ C-NMR (125 MHz, DMSO- <i>d</i> ₆ , 25 °C):	δ[ppm] = 4.6 (2 C); 15.4 (2 C); 22.0 (2 C); 32.2 (2 C); 37.8 (2 C); 55.2 (2 C); 59.5 (2 C); 69.0 (2 C); 70.1 (2 C); 71.3 (2 C); 100.1 (2 C); 116.7 (2 C); 117.1 (2 C); 118.0 (2 C); 128.4 (2 C); 150.1 (2 C); 150.9 (2 C); 151.4 (2 C); 155.5 (2 C);
Low Resolution MS (ESI):	1098.47 (M ⁺ , monomeric Bi(III)-texaphyrin with axial hydroxide ligand)
High Resolution MS (ESI):	calculated for $C_{48}H_{67}N_5O_{11}Bi^{+1} = 1098.4641$; found: 1098.46354 ($C_{48}H_{67}N_5O_{10}Bi^{+1}$, M ⁺)

UV/Vis spectrum for 1a and upon addition of TFA

HPLC and UV/Vis spectrum for 1a

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

¹H-NMR (400 MHz, DMSO-*d*₆, 25 °C) for **1a**

no TFA added

Upon addition of TFA (1 equiv.), the three signals for the protons on the sp²-hybridized carbons appear as sharp singlets between 9.5 and 13 ppm.

¹³C-NMR (125 MHz, DMSO-*d*₆, 25 °C) for **1a**

ppm

Low Resolution MS (ESI) for 1a

S8

High Resolution MS (ESI) for 1a

Elemental Composition Search Report:

Target Mass:

Target m/z = $1098.46419 \pm .002$ Charge = +1

Possible Elements:

Element:	Exact Mass:	Min:	Max:
С	12.000000	0	100
Н	1.007825	0	120
Ν	14.003074	5	5
0	15.994915	11	11
Bi	208.980383	1	1

Additional Search Restrictions:

None

Search Results:

Number of Hits = 1

<u>m/z Delta m/z DBE Formula</u> 1098.46354 0.00065 18.0 C₄₈H₆₇N₅O₁₁Bi⁺¹

2. Synthesis and Characterization of **1b**

The hydrochloride salt of sp³-Tex_{PEG} (189.8 mg, 216.2 mmol) was dissolved in 20 ml methanol. Pb(NO₃)₂ (107.4 mg, 324.3 mmol, 1.5 equiv.) was added together with 1 ml triethylamine. The solution was stirred at 70 °C and gradually changed color from deep red to deep green. The mixture was stirred at that temperature for two hours. The solvent was removed in vacuo and the residue was then subjected to column chromatography (silica, first 90% CH₂Cl₂ and 10% MeOH, with the product slowly eluting with 25% CH₂Cl₂ and 75% MeOH). The deep green fraction was collected and the solvent was removed in vacuo to give **1b** as a deep green crystalline material (109.8 mg, 47%).

UV/Vis (MeOH, 25 °C):	λ [nm] = 471 (Soret-type band); 743 (Q-type band);
¹ H-NMR (400 MHz, CD₃OD, 25 °C):	δ[ppm] = 1.57 (m, 6 H); 2.19 (br, 4 H); 3.27 (br, 6 H), 3.30 (m, 8 H); 3.50 (m, 4 H); 3.63 (m, 8 H); 3.74-3.95 (m, 16 H); 4.14 (br, 2H); 8.38 (s, 2 H); 8.98 (s, 2 H); 10.92 (br, 2 H);
¹³ C-NMR (125 MHz, DMSO- <i>d</i> ₆ , 25 °C):	δ[ppm] = 5.8 (2 C); 18.5 (2 C); 22.9 (2 C); 30.2 (2 C); 38.1 (2 C); 55.5 (2 C); 63.5 (2 C); 70.6 (2 C); 71.4 (2 C); 72.6 (2 C); 98.4 (2 C); 113.3 (2 C); 114.3 (2 C); 115.6 (2 C); 128.2 (2 C); 135.1 (2 C); 151.3 (2 C); 152.0 (2 C); 152.5 (2 C); 167.1 (2 C);
MS (ESI):	1080.40 (M^{*} , monomeric Pb-Tx, no axial ligand)
High Resolution MS (ESI):	calculated for $C_{48}H_{66}N_5O_{10}Pb^{+1} = 1080.4576$; found: 1080.45706 ($C_{48}H_{66}N_5O_{10}Pb^{+1}$, M ⁺)

HPLC and UV/Vis spectrum for 1b

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

¹H-NMR (400 MHz, CD₃OD, 25 °C) for **1b**

¹³C-NMR (125 MHz, DMSO-*d*₆, 25 °C) for **1b**

վառողիստակառուղությունը հայտակառուղությունը հայտակությունը հայտակորինը հայտակորինը հայտակությունը հայտակությունը հայտակությունը հայտակությունը հայտակությունը հայտակությունը հերենի հայտակությունը հերենի հերենինը հերենի հերենի հերենի հերենինը հերենի հերենինը հերենի հերենի Ó ppm

Low Resolution MS (ESI) for 1b

High Resolution MS (ESI) for 1b

Elemental Composition Search Report:

Target Mass:

Target m/z = 1080.45870 ± 0.004 Charge = +1

Possible Elements:

Elemer	t: Exact Mass:	Min:	Max:
С	12.000000	0	100
Н	1.007825	0	120
Ν	14.003074	5	5
0	15.994915	10	10
Pb	207.976636	1	1

Additional Search Restrictions:

None

Search Results:

Number of Hits = 1

m/z Delta m/z DBE Formula 18.5 C₄₈H₆₆N₅O₁₀Pb⁺¹ 1080.45706 0.00164

3. Synthesis and Characterization of 2a

The hydrochloride salt of sp³-Tex_{OMe} (140.6 mg, 216.2 mmol) was dissolved in 20 ml methanol. Bi(NO₃)₃ x 5H₂O (157.3 mg, 324.3 mmol, 1.5 equiv.) was added together with 1 ml triethylamine. The solution was stirred at 70 °C and gradually changed color from deep red to deep green. The mixture was stirred at that temperature for two hours. The solvent was removed in vacuo and the residue was then subjected to column chromatography (silica, first 95% CH₂Cl₂ and 5% MeOH, with the product then slowly eluting with 60% CH₂Cl₂ and 40% MeOH). The deep green fraction was collected and the solvent was removed in vacuo to give **2a** as a deep green crystalline material (129.9 mg, 72%). Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of **2a** in methanol.

UV/Vis (MeOH, 25 °C):	λ [nm] = 479 (Soret-type band); 722 (Q-type band);
¹ H-NMR (400 MHz, DMSO- <i>d</i> ₆ , 25 °C):	δ[ppm] = 1.74 (t, J = 7.6 Hz, 6H); 2.25 (br t, J = 7.2 Hz, 4H); 3.16 (s, 2H), 3.51 (br s, 6H); 3.66 (t, J = 6 Hz, 4H); 3.95 (m, 6H); 4.45 (s, 6H); 9.77 (s, 2H); 10.35 (s, 2H); 13.01 (s, 2H);
¹³ C-NMR (125 MHz, DMSO- <i>d</i> ₆ , 25 °C):	δ[ppm] = 9.8 (2 C); 16.4 (2 C); 21.1 (2 C); 28.5 (2 C); 30.3 (2 C); 59.4 (2 C); 70.0 (2 C); 96.5 (2 C); 112.4 (2 C); 116.9 (2 C); 118.0 (2 C); 133.3 (2 C); 138.2 (2 C); 144.6(2 C); 145.5 (2 C); 146.8 (2 C); 158.3 (2 C);
Low Resolution MS (ESI):	834.27 (M ⁺ , monomeric Bi(III)-texaphyrin with axial hydroxide ligand)
High Resolution MS (ESI):	calculated for $C_{36}H_{43}N_5O_5Bi^{+1}$ = 834.3068; found: 834.30626 ($C_{48}H_{67}N_5O_{10}Bi^{+1}$, M ⁺)

UV/Vis spectrum for 2a and upon addition of TFA

HPLC and UV/Vis spectrum for 2a

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

¹H-NMR (400 MHz, DMSO-*d*₆, 25 °C) for **2a**

Upon addition of TFA (1 equiv.), the three signals for the protons on the sp²-hybridized carbons appear as sharp singlets between 9.5 and 13 ppm.

¹³C-NMR (125 MHz, DMSO-*d*₆, 25 °C) for 2a

արությունը հայտարիստությունը հայտարինը հայտարիստությունը հայտարիստությունը հայտարիստությունը հայտարիստությունը հայտարիստությունը հայտարիստությունը հայտարիստությունը հայտարիստությունը հայտարի հայտարիի հայտարիստությունը հայտությունը հայտարիստությունը հայտությունի հայտությունը հայտութի -10 ppm

Low Resolution MS (ESI) for 2a

High Resolution MS (ESI) for 2a

Elemental Composition Search Report:

Target Mass:

Target m/z = 834.3066 ± 0.002 Charge = +1

Possible Elements:

Element:	Exact Mass:	Min:	Max:
С	12.000000	0	100
Н	1.007825	0	100
Ν	14.003074	5	5
0	15.994915	5	5
Bi	208.980383	1	1

Additional Search Restrictions:

None

Search Results:

Number of Hits = 1

4. Synthesis and Characterization of **2b**

The hydrochloride salt of sp³-Tex_{OMe} (140.6 mg, 216.2 mmol) was dissolved in 20 ml methanol. Pb(NO₃)₂ (107.4 mg, 324.3 mmol, 1.5 equiv.) was added together with 1 ml triethylamine. The solution was stirred at 70 °C and gradually changed color from deep red to deep green. The mixture was stirred at that temperature for two hours. The solvent was removed in vacuo and the residue was subjected to column chromatography (silica, first 95% CH₂Cl₂ and 5% MeOH, with the product slowly eluting with 60% CH₂Cl₂ and 40% MeOH). The deep green fraction was collected and the solvent was removed in vacuo to give **2a** as a deep green crystalline material (123.6 mg, 70%).

UV/Vis (MeOH, 25 °C):	λ [nm] = 479 (Soret-type band); 740 (Q-type band);
¹ H-NMR (300 MHz, CD₃OD, 25 °C):	δ[ppm] = 1.62 (t, J = 7.2 Hz, 6 H); 2.19 (t, J = 6.8 Hz, 4 H); 3.66-3.92 (m, 12 H), 4.56 (s, 6 H); 8.58 (s, 2 H); 9.13 (s, 2 H); 11.12 (s, 2 H);
¹³ C-NMR (125 MHz, DMSO- <i>d</i> ₆ , 25 °C):	δ[ppm] = 6.0 (2 C); 17.1 (2 C); 22.7 (2 C); 26.6 (2 C); 32.8 (2 C); 58.3 (2 C); 66.2 (2 C); 97.2 (2 C); 108.3 (2 C); 119.5 (2 C); 120.2 (2 C); 135.5 (2 C); 140.8 (2 C); 148.8 (2 C); 149.9 (2 C); 150.4 (2 C); 159.9 (2 C);
MS (ESI):	816.40 (M^{+} , monomeric Pb-Tx, no axial ligand)
High Resolution MS (ESI):	calculated for C ₃₆ H ₄₂ N ₅ O ₄ Pb ⁺¹ = 816.3003; found: 816.29977 (C ₃₆ H ₄₂ N ₅ O ₄ Pb ⁺¹ , M ⁺)

HPLC and UV/Vis spectrum for 2b

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

¹H-NMR (300 MHz, CD₃OD, 25 °C) for **2b**

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 ppm

Low Resolution MS (ESI) for 2b

High Resolution MS (ESI) for 2b

Elemental Composition Search Report:

Target Mass:

Target m/z = $816.29975 \pm .002$ Charge = +1

Possible Elements:

Element:	Exact Mass:	Min:	Max:
С	12.000000	0	100
Н	1.007825	0	100
0	15.994915	4	5
Ν	14.003074	5	5
Pb	207.976636	1	1
-			

Additional Search Restrictions:

None

Search Results:

Number of Hits = 1

m/z	Delta m/z	DBE	Formula
816.29977	-0.00002	18.5	C ₃₆ H ₄₂ O ₄ N ₅ Pb ⁺¹

5. In vitro anti-proliferative activity of **1a** (MBi) and **1b** (MPb)

The proliferation of exponential phase cultures of A2780 cells was assessed by a dye reduction assay and assessing the formazan product.⁵ In brief, tumor cells were seeded in 96-well microtiter plates at 300 cells/well, respectively, and allowed to adhere overnight in RPMI 1640 medium supplemented with 2 mM L-glutamine, 10% heat inactivated fetal bovine serum, and antibiotics (200 U/cm³ penicillin and 200 μ g/cm³ streptomycin). Stock solutions of MBi and MPb (30% v/v methanol/H₂O) were formulated in the indicated solvent for maximum stability and then diluted in medium for secondary stocks. Secondary stock solutions were serially diluted in medium and immediately added to wells to give the final concentrations indicated in the figures, whereupon plates were incubated at 37 °C under a 5% CO₂/95% air atmosphere. After a total of 5 days, the tetrazolium dye, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, Sigma Chemical) was added to each well, the plates incubated at 37 °C, whereupon the medium was removed, the formazan dissolved in 50 μ M DMSO and absorbances measured at 560-650 nm using a microplate reader (Molecular Devices, Sunnyvale, CA). Absorbances were corrected for background and the values normalized to wells containing untreated cells to allow plate-toplate comparison. The data are shown as mean inhibition of proliferation or growth as a % of control cells from 8-10 replicate values. Error bars represent the associated standard deviation.

6. Crystallographic Material for 2a (CCDC-790736)

X-ray Experimental.

Table 1. Crystallographic Data for 2a.

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(\text{\AA}^2 x \ 10^3)$ for **2a**.

Table 3. Bond Lengths (Å) and Angles (⁰) for the non-hydrogen atoms of **2a**.

Table 4. Anisotropic displacement parameters.

Table 5. Fractional coordinates and isotropic thermal parameters (\AA^2) for the hydrogen atoms of **2a**.

Table 6. Torsion Angles (⁰) for the non-hydrogen atoms of **2a**.

Figure 1. View of the Bi coordination to the macrocycle in **2a** showing the atom labeling scheme. Displacement ellipsoids are scaled to the 50% probability level.

Figure 2. View of the dimer formed in **2a**. Displacement ellipsoids are scaled to the 50% probability level. The oxygen atom bridging the two Bi ions resides on a crystallographic inversion center at $\frac{1}{2}$, $\frac{1}{2}$, 0. The distance between the rings defined by the five nitrogen atoms of the macrocycles is 3.433(5) Å.

X-ray experimental for $(C_{36}H_{42}N_5O_4)Bi(NO_3)-CH_3OH-2H_2O-1/2 O$:

Crystals grew as small, dark green prisms by slow evaporation from methanol. The data crystal had approximate dimensions; 0.18 x 0.13 x 0.04 mm. The data were collected on a Rigaku AFC12 diffractometer with a Saturn 724+ CCD using a graphite monochromator with MoKa radiation (λ = 0.71069 Å). A total of 736 frames of data were collected using w-scans with a scan range of 0.5° and a counting time of 40 seconds per frame. The data were collected at 100 K using a Rigaku XStream low temperature device. Details of crystal data, data collection and structure refinement are listed in Table 1. Data reduction were performed using the Rigaku Americas Corporation's Crystal Clear version 1.40.⁶ The structure was solved by direct methods using SIR97⁷ and refined by full-matrix least-squares on F^2 with anisotropic displacement parameters for the non-H atoms using SHELXL-97.⁸ The hydrogen atoms on carbon were calculated in ideal positions with isotropic displacement parameters set to 1.2xUeg of the attached atom (1.5xUeq for methyl hydrogen atoms). The function, $\Sigma w(|F_0|^2 - |F_c|^2)^2$, was minimized, where w = $1/[(s(F_0))^2 + (0.0789^*P)^2 + (0.8963^*P)]$ and P = $(|F_0|^2 + 2|F_c|^2)/3$. $R_{W}(F^{2})$ refined to 0.134, with R(F) equal to 0.0479 and a goodness of fit, S = 1.094. Definitions used for calculating R(F), $R_W(F^2)$ and the goodness of fit, S, are given below.⁹ The data were checked for secondary extinction effects but no correction was necessary. Neutral atom scattering factors and values used to calculate the linear absorption coefficient are from the International Tables for X-ray Crystallography (1992).¹⁰ All figures were generated using SHELXTL/PC.¹¹ Tables of positional and thermal parameters, bond lengths and angles, torsion angles and figures are found elsewhere.

Table 1 Crystallographic data for **2a**. Empirical formula C74 H100 Bi2 N12 O21 Formula weight 1911.62 Temperature 100(2) K 0.71069 Å Wavelength Crystal system Triclinic P-1 Space group Unit cell dimensions a = 10.9258(8) Å $\alpha = 75.646(3)^{\circ}$. $\beta = 74.471(3)^{\circ}$. b = 12.9230(10) Å c = 15.3223(15) Å $\gamma = 88.263(2)^{\circ}$. Volume 2017.9(3) Å³ Ζ 1 1.573 Mg/m^3 Density (calculated) 4.432 mm⁻¹ Absorption coefficient 962 F(000) 0.18 x 0.13 x 0.04 mm Crystal size Theta range for data collection 3.08 to 27.48°. Index ranges -14<=h<=12, -10<=k<=16, -19<=l<=19 Reflections collected 16942 Independent reflections 9198 [R(int) = 0.0405]99.4 % Completeness to theta = 27.48° Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.84 and 0.66 Full-matrix least-squares on F² Refinement method Data / restraints / parameters 9198 / 41 / 479 Goodness-of-fit on F² 1.094 Final R indices [I>2sigma(I)] R1 = 0.0479, wR2 = 0.1288R indices (all data) R1 = 0.0557, wR2 = 0.13411.893 and -2.670 e.Å⁻³ Largest diff. peak and hole

	Х	у	Z	U(eq)	
Bil	5961(1)	5952(1)	642(1)	33(1)	
O1W	5000	5000	0	47(2)	
O1A	5872(6)	7117(7)	1955(5)	112(3)	
C2A	5195(8)	7201(8)	2860(6)	72(2)	
O1B	8522(5)	6881(6)	461(4)	82(2)	
O2B	9885(5)	7369(5)	1043(4)	62(1)	
N1B	8863(6)	7445(6)	901(4)	55(2)	
O3B	8127(7)	8128(6)	1252(6)	95(2)	
01	10408(5)	7402(4)	-3842(3)	52(1)	
02	11378(4)	5692(4)	-3116(3)	43(1)	
O4	918(10)	9850(8)	2178(6)	127(3)	
N1	3984(5)	5481(4)	1884(3)	34(1)	
N2	4563(5)	7207(4)	94(3)	37(1)	
N3	6771(5)	6867(4)	-1076(3)	38(1)	
N4	7803(4)	5094(4)	-308(3)	34(1)	
N5	6274(4)	4180(4)	1419(3)	33(1)	
C1	3779(5)	4645(5)	2677(4)	34(1)	
C2	2587(5)	4763(5)	3345(4)	38(1)	
C3	2091(6)	5679(5)	2959(4)	40(1)	
C4	2959(5)	6120(5)	2051(4)	35(1)	
C5	2760(6)	7093(5)	1455(4)	39(1)	
C6	3471(6)	7595(5)	568(5)	40(1)	
C7	3221(6)	8616(5)	-22(5)	42(1)	
C8	4175(6)	8808(5)	-841(5)	42(1)	
C9	4993(6)	7908(5)	-743(5)	41(1)	
C10	6150(6)	7708(5)	-1371(4)	40(1)	
C11	7927(6)	6590(5)	-1602(4)	36(1)	
C12	8561(6)	7208(5)	-2505(4)	40(1)	
C13	9705(6)	6881(5)	-2982(4)	41(1)	
C14	10251(6)	5933(5)	-2571(4)	38(1)	
C15	9651(5)	5338(5)	-1690(4)	36(1)	

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(\text{\AA}^2 x \ 10^3)$ for **2a**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C16	8462(5)	5646(5)	-1181(4)	33(1)
C17	8147(5)	4170(5)	163(4)	36(1)
C18	7360(5)	3705(5)	1070(4)	35(1)
C19	7523(6)	2731(5)	1726(4)	39(1)
C20	6462(6)	2624(5)	2485(4)	40(1)
C21	5709(5)	3532(5)	2279(4)	36(1)
C22	4548(5)	3765(5)	2847(4)	34(1)
C23	2068(6)	4026(6)	4283(4)	47(2)
C24	2622(8)	4253(7)	5044(5)	59(2)
C25	876(6)	6181(6)	3357(5)	47(2)
C26	1110(8)	7045(6)	3821(5)	56(2)
C27	2155(6)	9313(5)	253(6)	49(2)
C28	2507(7)	10142(6)	731(6)	54(2)
C29	1361(9)	10564(7)	1308(6)	69(2)
C30	4341(8)	9748(6)	-1650(6)	62(2)
C31	9996(8)	8432(6)	-4256(5)	60(2)
C32	12020(6)	4810(6)	-2721(4)	47(2)
C33	8622(6)	2012(5)	1563(5)	45(2)
C34	6168(8)	1756(6)	3401(5)	64(2)
C35	6341(11)	2127(8)	4249(6)	105(3)
C36	5942(13)	1291(9)	5146(6)	166(5)
03	6932(13)	537(9)	5249(6)	270(8)

Bi1-O1W	2.1941(2)	C2-C23	1.487(9)
Bi1-N2	2.352(5)	C3-C4	1.447(8)
Bi1-N5	2.366(5)	C3-C25	1.505(8)
Bi1-N1	2.442(5)	C4-C5	1.407(9)
Bi1-N3	2.527(5)	C5-C6	1.379(9)
Bi1-N4	2.548(4)	С5-Н5	0.95
O1W-Bi1#1	2.1941(2)	C6-C7	1.467(9)
O1A-C2A	1.415(9)	C7-C8	1.372(10)
O1A-H1A	0.8400	C7-C27	1.486(8)
C2A-H2A1	0.98	C8-C9	1.449(8)
C2A-H2A2	0.98	C8-C30	1.481(10)
C2A-H2A3	0.98	C9-C10	1.430(8)
O1B-N1B	1.232(9)	C10-H10	0.95
O2B-N1B	1.190(8)	C11-C16	1.420(8)
N1B-O3B	1.294(9)	C11-C12	1.416(9)
O1-C13	1.353(8)	C12-C13	1.381(8)
O1-C31	1.440(9)	С12-Н12	0.95
O2-C14	1.366(7)	C13-C14	1.423(9)
O2-C32	1.412(8)	C14-C15	1.373(9)
O4-C29	1.391(12)	C15-C16	1.426(7)
O4-H4	0.8400	C15-H15	0.95
N1-C4	1.377(7)	C17-C18	1.418(8)
N1-C1	1.382(8)	C17-H17	0.95
N2-C9	1.346(8)	C18-C19	1.442(8)
N2-C6	1.372(7)	C19-C20	1.387(9)
N3-C10	1.312(8)	C19-C33	1.502(8)
N3-C11	1.394(7)	C20-C21	1.433(8)
N4-C17	1.334(8)	C20-C34	1.526(9)
N4-C16	1.362(7)	C21-C22	1.404(7)
N5-C18	1.361(6)	С22-Н22	0.95
N5-C21	1.366(8)	C23-C24	1.539(9)
C1-C22	1.407(8)	С23-Н23А	0.99
C1-C2	1.456(7)	С23-Н23В	0.99
C2-C3	1.353(9)	C24-H24A	0.98

Table 3. Bond lengths [Å] and angles [°] for **2a**.

C24-H24B	0.98	C31-H31A	0.98
C24-H24C	0.98	C31-H31B	0.98
C25-C26	1.525(9)	C31-H31C	0.98
С25-Н25А	0.99	C32-H32A	0.98
С25-Н25В	0.99	С32-Н32В	0.98
С26-Н26А	0.98	C32-H32C	0.98
С26-Н26В	0.98	С33-Н33А	0.98
С26-Н26С	0.98	С33-Н33В	0.98
C27-C28	1.548(9)	С33-Н33С	0.98
С27-Н27А	0.99	C34-C35	1.549(9)
С27-Н27В	0.99	C34-H34A	0.99
C28-C29	1.500(9)	C34-H34B	0.99
C28-H28A	0.99	C35-C36	1.489(8)
C28-H28B	0.99	С35-Н35А	0.99
С29-Н29А	0.99	С35-Н35В	0.99
С29-Н29В	0.99	C36-O3	1.4484
С30-Н30А	0.98	С36-Н36А	0.99
С30-Н30В	0.98	С36-Н36В	0.99
С30-Н30С	0.98	О3-Н3	0.84

O1W-Bi1-N2	79.53(12)
O1W-Bi1-N5	77.57(11)
N2-Bi1-N5	148.07(18)
O1W-Bi1-N1	80.93(10)
N2-Bi1-N1	77.58(17)
N5-Bi1-N1	77.09(16)
O1W-Bi1-N3	77.96(11)
N2-Bi1-N3	66.83(16)
N5-Bi1-N3	128.30(15)
N1-Bi1-N3	141.18(16)
O1W-Bi1-N4	77.22(11)
N2-Bi1-N4	128.26(16)
N5-Bi1-N4	67.08(16)
N1-Bi1-N4	141.13(16)
N3-Bi1-N4	63.44(15)
Bi1#1-O1W-Bi1	180.000(8)
C2A-O1A-H1A	110.0
O1A-C2A-H2A1	109.5
O1A-C2A-H2A2	109.5
H2A1-C2A-H2A2	109.5
O1A-C2A-H2A3	109.5
H2A1-C2A-H2A3	109.5
Н2А2-С2А-Н2А3	109.5
O2B-N1B-O1B	121.2(7)
O2B-N1B-O3B	116.4(8)
O1B-N1B-O3B	122.3(7)
C13-O1-C31	117.4(5)
C14-O2-C32	117.7(5)
С29-О4-Н4	110.0
C4-N1-C1	105.2(5)
C4-N1-Bi1	126.5(4)
C1-N1-Bi1	126.7(4)
C9-N2-C6	107.6(5)
C9-N2-Bi1	118.7(4)
C6-N2-Bi1	130.7(4)
C10-N3-C11	123.7(6)

C10-N3-Bi1	115.2(4)
C11-N3-Bi1	120.1(4)
C17-N4-C16	124.7(5)
C17-N4-Bi1	114.7(4)
C16-N4-Bi1	120.0(4)
C18-N5-C21	106.4(5)
C18-N5-Bi1	118.6(4)
C21-N5-Bi1	133.8(4)
N1-C1-C22	127.5(5)
N1-C1-C2	110.3(5)
C22-C1-C2	122.2(6)
C3-C2-C1	106.7(5)
C3-C2-C23	127.8(5)
C1-C2-C23	125.4(6)
C2-C3-C4	106.9(5)
C2-C3-C25	128.7(6)
C4-C3-C25	124.4(6)
N1-C4-C5	126.5(5)
N1-C4-C3	110.8(5)
C5-C4-C3	122.7(5)
C6-C5-C4	129.4(5)
С6-С5-Н5	115.3
С4-С5-Н5	115.3
N2-C6-C5	124.3(6)
N2-C6-C7	108.5(6)
C5-C6-C7	127.1(5)
C8-C7-C6	107.1(5)
C8-C7-C27	127.6(6)
C6-C7-C27	125.3(6)
C7-C8-C9	105.7(6)
C7-C8-C30	127.1(6)
C9-C8-C30	127.3(6)
N2-C9-C10	119.2(5)
N2-C9-C8	111.1(6)
C10-C9-C8	129.7(6)
N3-C10-C9	117.4(6)

N3-C10-H10	121.3
С9-С10-Н10	121.3
N3-C11-C16	116.4(5)
N3-C11-C12	122.9(5)
C16-C11-C12	120.6(5)
C13-C12-C11	119.5(6)
С13-С12-Н12	120.3
С11-С12-Н12	120.3
O1-C13-C12	125.2(6)
O1-C13-C14	114.2(5)
C12-C13-C14	120.6(6)
C15-C14-O2	124.8(6)
C15-C14-C13	120.3(5)
O2-C14-C13	114.9(5)
C14-C15-C16	120.7(6)
С14-С15-Н15	119.7
С16-С15-Н15	119.7
N4-C16-C11	117.4(5)
N4-C16-C15	124.2(5)
C11-C16-C15	118.3(5)
N4-C17-C18	117.6(5)
N4-C17-H17	121.2
С18-С17-Н17	121.2
N5-C18-C17	120.1(5)
N5-C18-C19	111.1(5)
C17-C18-C19	128.8(5)
C20-C19-C18	105.3(5)
C20-C19-C33	129.8(6)
C18-C19-C33	124.9(6)
C19-C20-C21	106.9(5)
C19-C20-C34	127.7(6)
C21-C20-C34	125.3(6)
N5-C21-C22	122.5(5)
N5-C21-C20	110.4(5)
C22-C21-C20	127.2(6)
C21-C22-C1	129.2(6)

С21-С22-Н22	115.4
С1-С22-Н22	115.4
C2-C23-C24	113.6(6)
С2-С23-Н23А	108.8
С24-С23-Н23А	108.8
С2-С23-Н23В	108.8
С24-С23-Н23В	108.8
H23A-C23-H23B	107.7
C23-C24-H24A	109.5
С23-С24-Н24В	109.5
H24A-C24-H24B	109.5
С23-С24-Н24С	109.5
H24A-C24-H24C	109.5
H24B-C24-H24C	109.5
C3-C25-C26	111.7(5)
С3-С25-Н25А	109.3
С26-С25-Н25А	109.3
С3-С25-Н25В	109.3
С26-С25-Н25В	109.3
H25A-C25-H25B	107.9
С25-С26-Н26А	109.5
С25-С26-Н26В	109.5
H26A-C26-H26B	109.5
С25-С26-Н26С	109.5
H26A-C26-H26C	109.5
H26B-C26-H26C	109.5
C7-C27-C28	112.7(5)
С7-С27-Н27А	109.0
С28-С27-Н27А	109.0
С7-С27-Н27В	109.0
С28-С27-Н27В	109.0
H27A-C27-H27B	107.8
C29-C28-C27	112.6(7)
С29-С28-Н28А	109.1
С27-С28-Н28А	109.1
C29-C28-H28B	109.1

С27-С28-Н28В	109.1
H28A-C28-H28B	107.8
O4-C29-C28	110.4(8)
O4-C29-H29A	109.6
С28-С29-Н29А	109.6
O4-C29-H29B	109.6
С28-С29-Н29В	109.6
H29A-C29-H29B	108.1
C8-C30-H30A	109.5
С8-С30-Н30В	109.5
H30A-C30-H30B	109.5
С8-С30-Н30С	109.5
H30A-C30-H30C	109.5
H30B-C30-H30C	109.5
O1-C31-H31A	109.5
O1-C31-H31B	109.5
H31A-C31-H31B	109.5
O1-C31-H31C	109.5
H31A-C31-H31C	109.5
H31B-C31-H31C	109.5
O2-C32-H32A	109.5
O2-C32-H32B	109.5
H32A-C32-H32B	109.5
O2-C32-H32C	109.5
H32A-C32-H32C	109.5
H32B-C32-H32C	109.5
С19-С33-Н33А	109.5
С19-С33-Н33В	109.5
Н33А-С33-Н33В	109.5
С19-С33-Н33С	109.5
Н33А-С33-Н33С	109.5
Н33В-С33-Н33С	109.5
C20-C34-C35	114.4(7)
C20-C34-H34A	108.7
С35-С34-Н34А	108.6
C20-C34-H34B	108.7

С35-С34-Н34В	108.7
H34A-C34-H34B	107.6
C36-C35-C34	113.1(7)
С36-С35-Н35А	109.0
С34-С35-Н35А	109.0
С36-С35-Н35В	109.0
С34-С35-Н35В	109.0
H35A-C35-H35B	107.8
O3-C36-C35	111.2(6)
O3-C36-H36A	109.4
С35-С36-Н36А	109.4
О3-С36-Н36В	109.4
С35-С36-Н36В	109.4
H36A-C36-H36B	108.0
С36-О3-Н3	109.5

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z

Table 4. Anisotropic displacement parameters $(\text{\AA}^2 \text{ x } 10^3)$ for **2a**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [\text{ h}^2 \text{ a}^* \text{U}^{11} + ... + 2 \text{ h k a}^* \text{ b}^* \text{U}^{12}]$

	U ¹¹	U ²²	U33	U ²³	U13	U ¹²	
Bi1	32(1)	39(1)	37(1)	-19(1)	-14(1)	11(1)	
O1W	34(3)	68(4)	52(4)	-41(3)	-12(3)	-5(3)	
O1A	71(4)	167(8)	111(5)	-110(6)	29(4)	-37(5)	
C2A	57(5)	103(7)	70(5)	-57(5)	-10(4)	1(5)	
O1B	47(3)	143(6)	58(3)	-32(4)	-7(3)	-30(4)	
O2B	46(3)	62(3)	83(4)	-33(3)	-14(3)	6(3)	
N1B	38(3)	69(4)	49(3)	-13(3)	0(3)	16(3)	
O3B	61(4)	78(4)	144(7)	-33(5)	-20(4)	32(3)	
01	51(3)	55(3)	41(2)	-14(2)	1(2)	2(2)	
02	34(2)	55(3)	40(2)	-22(2)	0(2)	3(2)	
O4	132(8)	127(8)	94(6)	-17(5)	5(6)	26(6)	
N1	33(2)	38(2)	40(2)	-23(2)	-14(2)	12(2)	
N2	38(3)	40(3)	40(2)	-21(2)	-13(2)	18(2)	
N3	37(3)	45(3)	41(3)	-24(2)	-18(2)	16(2)	
N4	25(2)	46(3)	35(2)	-18(2)	-8(2)	12(2)	
N5	25(2)	43(3)	33(2)	-17(2)	-8(2)	13(2)	
C1	30(3)	46(3)	35(3)	-25(2)	-9(2)	8(2)	
C2	24(3)	58(4)	38(3)	-27(3)	-5(2)	4(3)	
C3	29(3)	54(4)	45(3)	-31(3)	-6(2)	8(3)	
C4	26(3)	46(3)	41(3)	-27(3)	-9(2)	10(2)	
C5	30(3)	51(3)	48(3)	-32(3)	-14(2)	17(3)	
C6	35(3)	46(3)	53(3)	-32(3)	-22(3)	20(3)	
C7	39(3)	37(3)	62(4)	-23(3)	-25(3)	19(3)	
C8	36(3)	38(3)	60(4)	-18(3)	-23(3)	14(3)	
C9	39(3)	42(3)	50(3)	-20(3)	-20(3)	16(3)	
C10	43(3)	43(3)	39(3)	-17(3)	-13(3)	13(3)	
C11	34(3)	41(3)	41(3)	-22(3)	-13(2)	12(2)	
C12	40(3)	41(3)	42(3)	-17(3)	-12(3)	5(3)	
C13	43(3)	44(3)	38(3)	-19(3)	-7(3)	0(3)	
C14	28(3)	50(3)	40(3)	-23(3)	-6(2)	4(2)	
C15	25(3)	47(3)	42(3)	-23(3)	-9(2)	8(2)	

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

C16	26(3)	42(3)	32(3)	-16(2)	-6(2)	4(2)
C17	28(3)	45(3)	43(3)	-23(3)	-10(2)	14(2)
C18	28(3)	39(3)	42(3)	-18(2)	-10(2)	15(2)
C19	36(3)	41(3)	44(3)	-16(3)	-16(3)	15(3)
C20	35(3)	42(3)	46(3)	-15(3)	-11(3)	13(3)
C21	30(3)	45(3)	38(3)	-18(3)	-13(2)	9(2)
C22	27(3)	49(3)	30(2)	-18(2)	-7(2)	7(2)
C23	35(3)	64(4)	42(3)	-24(3)	-3(3)	6(3)
C24	60(5)	80(5)	41(3)	-29(4)	-8(3)	10(4)
C25	33(3)	63(4)	50(3)	-31(3)	-5(3)	12(3)
C26	58(4)	58(4)	59(4)	-36(4)	-8(3)	22(4)
C27	34(3)	45(3)	77(5)	-24(3)	-25(3)	18(3)
C28	42(4)	52(4)	79(5)	-38(4)	-17(3)	17(3)
C29	63(5)	69(5)	70(5)	-32(4)	0(4)	26(4)
C30	53(4)	41(4)	86(6)	-4(4)	-18(4)	14(3)
C31	68(5)	54(4)	49(4)	-10(3)	-2(4)	0(4)
C32	33(3)	72(4)	42(3)	-30(3)	-4(3)	8(3)
C33	37(3)	47(3)	54(4)	-18(3)	-12(3)	21(3)
C34	51(4)	62(4)	61(4)	4(4)	-4(3)	16(4)
C35	89(5)	116(6)	92(5)	23(4)	-39(4)	0(5)
C36	151(7)	161(7)	169(7)	-8(6)	-47(6)	13(6)
03	256(10)	261(11)	280(10)	-42(8)	-72(8)	18(8)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å² x 10³) for **2a**.

	х	у	Z	U(eq)	
H1A	6569	7464	1783	168	
H2A1	5796	7339	3196	107	
H2A2	4709	6531	3204	107	
H2A3	4612	7790	2808	107	
H4	328	9453	2171	190	
Н5	2030	7456	1701	47	
H10	6458	8166	-1979	48	
H12	8202	7842	-2782	47	
H15	10033	4716	-1416	43	
H17	8894	3836	-100	44	
H22	4238	3256	3429	41	
H23A	2248	3282	4239	56	
H23B	1134	4083	4474	56	
H24A	3546	4189	4865	89	
H24B	2251	3737	5640	89	
H24C	2420	4979	5110	89	
H25A	281	5621	3823	56	
H25B	474	6499	2849	56	
H26A	1630	6763	4253	84	
H26B	295	7261	4169	84	
H26C	1557	7665	3341	84	
H27A	1418	8861	687	59	
H27B	1897	9695	-311	59	
H28A	3052	9806	1137	65	
H28B	3004	10746	245	65	
H29A	1585	11263	1391	83	
H29B	683	10672	979	83	
H30A	3507	10023	-1692	93	
H30B	4768	9538	-2226	93	
H30C	4857	10307	-1569	93	

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

H31A	9170	8346	-4372	91	
H31B	10621	8752	-4849	91	
H31C	9917	8898	-3829	91	
H32A	12104	4879	-2117	71	
H32B	12867	4791	-3143	71	
H32C	11535	4148	-2630	71	
H33A	9422	2428	1403	68	
H33B	8602	1696	1047	68	
H33C	8561	1441	2132	68	
H34A	6728	1152	3313	77	
H34B	5279	1487	3546	77	
H35A	7247	2334	4132	126	
H35B	5839	2769	4308	126	
H36A	5740	1636	5675	199	
H36B	5163	906	5164	199	
Н3	6773	-15	5096	406	

Table 6. Torsion angles [°] for **2a**

O1W-Bi1-N1-C4	-100.0(4)
N2-Bi1-N1-C4	-18.8(4)
N5-Bi1-N1-C4	-179.2(4)
N3-Bi1-N1-C4	-42.3(5)
N4-Bi1-N1-C4	-156.3(4)
O1W-Bi1-N1-C1	96.3(4)
N2-Bi1-N1-C1	177.5(4)
N5-Bi1-N1-C1	17.0(4)
N3-Bi1-N1-C1	153.9(4)
N4-Bi1-N1-C1	40.0(5)
O1W-Bi1-N2-C9	-95.5(4)
N5-Bi1-N2-C9	-140.2(4)
N1-Bi1-N2-C9	-178.4(4)
N3-Bi1-N2-C9	-14.2(4)
N4-Bi1-N2-C9	-31.1(5)
O1W-Bi1-N2-C6	106.6(5)
N5-Bi1-N2-C6	61.8(6)
N1-Bi1-N2-C6	23.6(5)
N3-Bi1-N2-C6	-172.2(6)
N4-Bi1-N2-C6	171.0(5)
O1W-Bi1-N3-C10	96.0(4)
N2-Bi1-N3-C10	12.3(4)
N5-Bi1-N3-C10	159.3(4)
N1-Bi1-N3-C10	37.5(5)
N4-Bi1-N3-C10	177.6(5)
O1W-Bi1-N3-C11	-94.9(4)
N2-Bi1-N3-C11	-178.6(5)
N5-Bi1-N3-C11	-31.6(5)
N1-Bi1-N3-C11	-153.5(4)
N4-Bi1-N3-C11	-13.3(4)
O1W-Bi1-N4-C17	-92.5(4)
N2-Bi1-N4-C17	-157.9(4)
N5-Bi1-N4-C17	-10.8(4)
N1-Bi1-N4-C17	-35.1(5)

S47

N3-Bi1-N4-C17	-175.3(5)
O1W-Bi1-N4-C16	96.3(4)
N2-Bi1-N4-C16	30.9(5)
N5-Bi1-N4-C16	178.0(4)
N1-Bi1-N4-C16	153.7(4)
N3-Bi1-N4-C16	13.5(4)
O1W-Bi1-N5-C18	93.3(4)
N2-Bi1-N5-C18	138.4(4)
N1-Bi1-N5-C18	176.7(4)
N3-Bi1-N5-C18	29.8(5)
N4-Bi1-N5-C18	12.1(4)
O1W-Bi1-N5-C21	-101.6(5)
N2-Bi1-N5-C21	-56.4(6)
N1-Bi1-N5-C21	-18.2(5)
N3-Bi1-N5-C21	-165.1(5)
N4-Bi1-N5-C21	177.2(6)
C4-N1-C1-C22	178.9(5)
Bi1-N1-C1-C22	-14.6(8)
C4-N1-C1-C2	0.8(6)
Bi1-N1-C1-C2	167.4(3)
N1-C1-C2-C3	-1.1(6)
C22-C1-C2-C3	-179.3(5)
N1-C1-C2-C23	-178.8(5)
C22-C1-C2-C23	3.1(9)
C1-C2-C3-C4	0.9(6)
C23-C2-C3-C4	178.4(6)
C1-C2-C3-C25	-179.5(6)
C23-C2-C3-C25	-1.9(10)
C1-N1-C4-C5	177.8(5)
Bi1-N1-C4-C5	11.2(8)
C1-N1-C4-C3	-0.3(6)
Bi1-N1-C4-C3	-166.9(4)
C2-C3-C4-N1	-0.4(6)
C25-C3-C4-N1	180.0(5)
C2-C3-C4-C5	-178.6(5)
C25-C3-C4-C5	1.8(9)

S48

N1-C4-C5-C6	4.4(10)
C3-C4-C5-C6	-177.7(6)
C9-N2-C6-C5	-179.8(6)
Bi1-N2-C6-C5	-20.0(9)
C9-N2-C6-C7	-0.6(7)
Bi1-N2-C6-C7	159.3(4)
C4-C5-C6-N2	-0.6(10)
C4-C5-C6-C7	-179.6(6)
N2-C6-C7-C8	0.4(7)
C5-C6-C7-C8	179.6(6)
N2-C6-C7-C27	-177.4(6)
C5-C6-C7-C27	1.8(10)
C6-C7-C8-C9	-0.1(7)
C27-C7-C8-C9	177.7(6)
C6-C7-C8-C30	-179.3(7)
C27-C7-C8-C30	-1.5(11)
C6-N2-C9-C10	178.3(5)
Bi1-N2-C9-C10	15.7(7)
C6-N2-C9-C8	0.5(7)
Bi1-N2-C9-C8	-162.1(4)
C7-C8-C9-N2	-0.3(7)
C30-C8-C9-N2	178.9(7)
C7-C8-C9-C10	-177.8(6)
C30-C8-C9-C10	1.4(12)
C11-N3-C10-C9	-178.2(5)
Bi1-N3-C10-C9	-9.5(7)
N2-C9-C10-N3	-3.2(9)
C8-C9-C10-N3	174.1(6)
C10-N3-C11-C16	-179.2(5)
Bi1-N3-C11-C16	12.7(7)
C10-N3-C11-C12	1.4(9)
Bi1-N3-C11-C12	-166.7(4)
N3-C11-C12-C13	179.9(5)
C16-C11-C12-C13	0.5(9)
C31-O1-C13-C12	6.4(9)
C31-O1-C13-C14	-172.9(6)

C11-C12-C13-O1	-179.4(6)
C11-C12-C13-C14	-0.2(9)
C32-O2-C14-C15	-4.6(9)
C32-O2-C14-C13	175.0(5)
O1-C13-C14-C15	178.5(5)
C12-C13-C14-C15	-0.8(9)
O1-C13-C14-O2	-1.2(8)
C12-C13-C14-O2	179.5(5)
O2-C14-C15-C16	-178.9(5)
C13-C14-C15-C16	1.5(9)
C17-N4-C16-C11	176.8(5)
Bi1-N4-C16-C11	-13.0(7)
C17-N4-C16-C15	-3.6(9)
Bi1-N4-C16-C15	166.6(4)
N3-C11-C16-N4	0.3(8)
C12-C11-C16-N4	179.7(5)
N3-C11-C16-C15	-179.3(5)
C12-C11-C16-C15	0.1(8)
C14-C15-C16-N4	179.4(5)
C14-C15-C16-C11	-1.1(8)
C16-N4-C17-C18	179.3(5)
Bi1-N4-C17-C18	8.7(7)
C21-N5-C18-C17	178.0(5)
Bi1-N5-C18-C17	-13.2(7)
C21-N5-C18-C19	-1.1(7)
Bi1-N5-C18-C19	167.8(4)
N4-C17-C18-N5	2.3(8)
N4-C17-C18-C19	-178.9(6)
N5-C18-C19-C20	1.4(7)
C17-C18-C19-C20	-177.5(6)
N5-C18-C19-C33	-179.9(6)
C17-C18-C19-C33	1.2(10)
C18-C19-C20-C21	-1.1(7)
C33-C19-C20-C21	-179.7(6)
C18-C19-C20-C34	-177.3(7)
C33-C19-C20-C34	4.1(12)

S50

C18-N5-C21-C22	-179.3(5)
Bi1-N5-C21-C22	14.3(8)
C18-N5-C21-C20	0.3(6)
Bi1-N5-C21-C20	-166.1(4)
C19-C20-C21-N5	0.5(7)
C34-C20-C21-N5	176.8(6)
C19-C20-C21-C22	-179.9(6)
C34-C20-C21-C22	-3.6(11)
N5-C21-C22-C1	-0.7(9)
C20-C21-C22-C1	179.8(6)
N1-C1-C22-C21	1.8(10)
C2-C1-C22-C21	179.7(5)
C3-C2-C23-C24	-94.0(8)
C1-C2-C23-C24	83.1(8)
C2-C3-C25-C26	96.8(8)
C4-C3-C25-C26	-83.6(8)
C8-C7-C27-C28	-87.4(9)
C6-C7-C27-C28	90.0(8)
C7-C27-C28-C29	-159.2(7)
C27-C28-C29-O4	81.3(10)
C19-C20-C34-C35	105.5(9)
C21-C20-C34-C35	-70.1(10)
C20-C34-C35-C36	175.1(8)
C34-C35-C36-O3	81.7(8)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z

Figure 1. View of the Bi coordination to the macrocycle in **2a** showing the atom labeling scheme. Displacement ellipsoids are scaled to the 50% probability level. Note that this structure shows only one individual texaphyrin subunit viewed from the top (ancillary ligands disregarded). The complete structure is shown in Figure 2.

Figure 2. View of the dimer present in **2a**. Displacement ellipsoids are scaled to the 50% probability level. The oxygen atom bridging the two Bi ions resides on a crystallographic inversion center at $\frac{1}{2}$, $\frac{1}{2}$, 0. The distance between the rings defined by the five nitrogen atoms of the macrocycles is 3.433(5) Å.

References

- 1. J. L. Sessler, G. Hemmi, T. D. Mody, T. Murai, A. Burrell, S. W. Young, *Acc. Chem. Res.*, 1994, **27**, 43-50.
- S. Hannah, V. Lynch, D. M. Guldi, N. Gerasimchuk, C. L. B. Mac Donald, D. Magda, J. L. Sessler, *J. Am. Chem. Soc.*, 2002, **124**, 8416-8427.
- J. L. Sessler, G. H. Hemmi, T.D. Mody, PCT Int. Appl., 1993, WO 9314093 A1 19939722.
- 4. J. L. Sessler, T. D. Mody, G. W. Hemmi, V. Kral, U.S., 1995, US5457183 A 19951010.
- 5. T. Mosmann, J. Immunol. Methods, 1983, 65, 55.
- 6. CrystalClear 1.40 (2008). Rigaku Americas Corportion, The Woodlands, TX.
- SIR97. (1999). A program for crystal structure solution. Altomare A., Burla M.C., Camalli M., Cascarano G.L., Giacovazzo C., Guagliardi A., Moliterni A.G.G., Polidori G., Spagna R. J. Appl. Cryst. 32, 115-119.
- 8. Sheldrick, G. M. (1994). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- 9. $R_W(F^2) = \{Sw(|F_0|^2 |F_c|^2)^2/Sw(|F_0|)^4\}^{1/2}$ where w is the weight given each reflection. $R(F) = S(|F_0| - |F_c|)/S|F_0|\}$ for reflections with $F_0 > 4(s(F_0))$.

S = $[Sw(|F_0|^2 - |F_c|^2)^2/(n - p)]^{1/2}$, where n is the number of reflections and p is the number of refined parameters.

- 10. International Tables for X-ray Crystallography (1992). Vol. C, Tables 4.2.6.8 and 6.1.1.4, A. J. C. Wilson, editor, Boston: Kluwer Academic Press.
- 11. Sheldrick, G. M. (1994). SHELXTL/PC (Version 5.03). Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.