Supporting Information

Highly Spectral Dependent Enhancement of Upconversion Emission with Sputtered Gold Island Films

Hua Zhang^a, Di Xu^a, Yu Huang^{*a,c} and Xiangfeng Duan^{*b,c}

^a Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, U. S. A.;

^b Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, U. S. A.;

^c California Nanosystems Institute, University of California, Los Angeles, CA 90095, U. S. A

Synthesis of NaYF4:Yb/Er nanocrystals

NaYF₄:20%Yb,2%Er NCs was synthesized by thermal decomposition of rare-earth/sodium trifluoroacetate precursors in oleic acid (OA) and octadecene (ODE) as reported previously.⁹ All chemicals were purchased from Sigma-Aldrich and used without further purification. In a typical procedure, 0.975 mmol of yttrium(III) oxide (Y_2O_3 , 99.99%), 0.25 mmol of ytterbium(III) oxide (Yb_2O_3 , 99.9%) and 0.025 mmol of erbium(III) oxide (Er_2O_3 , 99.9%) were dissolved in 5 ml trifluoroacetic acid (TFA, 99%) in a 100 ml three-necked flask. The slurry was then heated to 80 °C with vigorous magnetic stirring under vacuum for 30 minutes to remove water and excessive TFA. Next, 2.5 mmol sodium trifluoroacetate (NaCOOCF₃, 98%) was added, along with 7.5 mL of oleic acid (OA, 90%) and 7.5 ml of 1-octadecene (ODE, 90%) at 100 °C. Afterwards, the solution was heated to 330 °C at a rate of 30 °C min⁻¹ and maintained at 330 °C for 60 minutes to obtain the NCs. The NCs were thoroughly washed and can be readily dispersed in non-polar organic solvents such as chloroform and toluene.

Figure S1. (a) TEM image of upconversion NCs. (Scale Bar: 200 nm) (b) EDX spectrum of upconversion NCs shows only sodium, fluorine and rare-earth elements. The carbon signal comes from the carbon membrane on TEM grid. The atomic ratio of Y:Yb:Er is 72.3:25.0:2.7

Figure S2. (a) AFM image of a glass slide sputtered with gold island film; (b) SEM image of a single upconversion NC with sputtered gold island films. (Scale Bar: 100 nm)

Figure S3. SEM image of a large area of upconversion NC thin film prepared by Langmuir–Blodgett (LB) assembly. (Scale Bar: $10 \mu m$)

Figure S4. Emission spectra obtained from 10 different locations in L-B assembled upconversion NC film before (a) and after (b) sputtering GIFs.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Figure S5. Schematic illustration of the two-photon (a) and three-photon (b) upconversion process in NaYF₄:Yb,Er NCs.

Figure S6. UV-Vis spectrum of the gold island film sputtered on a glass slide.