A Borylative Cyclisation Towards Indole Boronic Esters

Jianhui Huang, Simon J.F. Macdonald, and Joseph P.A. Harrity *

^aDepartment of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF. ^b GlaxoSmithKline, Stevenage, Hertfordshire, SG1 2NY, UK.

SUPPLEMENTARY INFORMATION

General Procedures	S2
Synthesis of 2	S 3
Synthesis of 3	S 3
Synthesis of 4	S4
Synthesis of 5	S4
Synthesis of 6	S5
Synthesis of 7	S5
Synthesis of 8	S6
Synthesis of 9	S6
Synthesis of 10	S7
Synthesis of 12	S7
Synthesis of 13	S8
Synthesis of 14	S8
$^{1}\text{H}/^{13}\text{C}$ spectra of 2	S9
$^{1}\text{H}/^{13}\text{C}$ spectra of 3	S10
$^{1}\text{H}/^{13}\text{C}$ spectra of 4	S11
$^{1}\text{H}/^{13}\text{C}$ spectra of 5	S12
¹ H/ ¹³ C spectra of 6	S13
$^{1}\text{H}/^{13}\text{C}$ spectra of 7	S14
$^{1}\text{H}/^{13}\text{C}$ spectra of 8	S15
$^{1}\text{H}/^{13}\text{C}$ spectra of 9	S16
$^{1}\text{H}/^{13}\text{C}$ spectra of 10	S17
$^{1}\text{H}/^{13}\text{C}$ spectra of 12	S18
$^{1}\text{H}/^{13}\text{C}$ spectra of 13	S19
¹ H/ ¹³ C spectra of 14	S20

Huang et al. Page S2

1. General Information

All reactions were conducted in oven or flame-dried glassware under an inert atmosphere of dry nitrogen. Flash chromatography was performed on silica gel (BDH Silica Gel 60 43-60, or Fluorochem Davisil silica gel 43-60). The solvent system used was a gradient of petroleum ether or cyclohexane/ ethyl acetate (90-10), increasing in polarity to ethyl acetate. Thin layer chromatography (TLC) was performed on aluminium backed plates pre-coated with silica (0.2 mm, Merck DC-alufolien Kieselgel 60 F254), which were developed using standard visualizing agents: Ultraviolet light or potassium permanganate. ¹H/¹³C NMR spectra were recorded on Bruker AC-250 or Av1-250 instruments or AMX-400 or AV1-400 instruments. ¹H: Chemical shifts are reported in ppm with the solvent resonance as the internal standard (CHCl₃: δ 7.27 ppm). Data are reported as follows: chemical shift, multiplicity (s=singlet, d=doublet, t=triplet, q=quartet, br=broad, m=multiplet), integration, coupling constants (J) in Hz, and assignment. ¹³C NMR spectra were recorded with complete proton decoupling. Chemical shifts are reported in ppm with the solvent resonance as the internal standard (CDCl₃: δ 77.0 ppm). Infrared (FTIR) spectra in the range of 4000-450 cm⁻¹ were recorded on a Perkin Elmer Paragon 100 FTIR spectrometer (v_{max} in cm⁻¹). Bands are characterized as broad (br), strong (s), medium (m) and weak (w). Samples were recorded as thin films using sodium chloride plates, as a DCM solution or as a KBr disc. Low resolution mass spectra were recorded on Micromass Autospec, operating in E.I., C.I. or FAB mode; or a Perkin-Elmer Turbomass Bench top GC-MS operating in either E.I. or C.I mode. High-resolution mass spectra (HRMS) recorded for accurate mass analysis, were performed on either a MicroMass LCT operating in Electrospray mode (TOF ES+) or a MicroMass Prospec operating in either FAB (FAB+), EI (EI+) or CI (CI+) mode. Melting points were performed on recrystallised solids and recorded on a Gallenkamp melting point apparatus and are uncorrected. All o-alkynylanilines were prepared according to literature procedures.¹

¹ Yin, W. Ma, Z. Chai and G. Zhao, J. Org. Chem., 2007, 72, 5731.

2. Synthesis of Indole Boronic Esters

General procedure:

A solution of amino alkyne (0.1 mmol), Pd_2dba_3 (5 mol%), $AsPh_3$ (10 mol%), Cs_2CO_3 (0.2 mmol), B_2Pin_2 (0.2 mmol) in DMA (to make up a 0.5 M solution) was heated at 60 °C under a nitrogen atmosphere. After 30 minutes, the reaction mixture was allowed to cool to room temperature and diethyl ether (10 mL) was added. The organic extract was washed with H_2O (5 mL x 3), dried (MgSO₄) and the solvents removed under reduced pressure to provide the crude product. Purification of the residue by flash chromatography on silica gel using a solvent gradient of petroleum ether / ethyl acetate (90:10), increasing in polarity to ethyl acetate gave the desired products.

Following the general procedure, a solution of the amino alkyne (104 mg, 0.3 mmol), Pd₂dba₃ (13.8 mg, 5 mol%), AsPh₃ (9.3 mg, 10 mol%), Cs₂CO₃ (195.6 mg, 0.6 mmol), B₂Pin₂ (153.6 mg, 0.6 mmol) in DMA (0.6 mL) gave indole boronic ester **2** as a colourless oil (102 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ ; 8.35-8.31 (1 H, m, ArH), 7.90-7.87 (1 H, m, ArH), 7.49-7.32 (9 H, m, ArH), 7.07 (2 H, d, *J* = 8.0 Hz, ArH), 2.32 (3 H, s, CH₃), 1.18 (12 H, s, CH₃). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 148.7, 144.6, 137.6, 135.7, 133.4, 132.2, 131.7, 129.3, 128.6, 126.9, 126.6, 124.6, 124.0, 122.2, 115.5, 83.3, 24.6, 21.5. FTIR 2983 (m), 1598 (s), 1556 (s), 1400 (s), 1379 (s), 1181 (s), 1084 (s), 1038 (s), 734 (s). HRMS (EI+) calculated for C₂₇H₂₈BNO₄S: 473.1832. Found: 473.1849.

Following the general procedure, a solution of the amino alkyne (54 mg, 0.2 mmol), Pd_2dba_3 (9.2 mg, 5 mol%), AsPh₃ (6.2 mg, 10 mol%), Cs₂CO₃ (130.4 mg, 0.4 mmol), B₂Pin₂ (102.4 mg, 0.4 mmol) in DMA (0.4 mL) gave indole boronic ester **3** (50 mg, 63%) as a colourless oil. ¹H NMR (250 MHz, CDCl₃) δ ; 8.15-8.08 (1 H, m, ArH), 8.03-7.96 (1 H, m, ArH), 7.52-7.36 (7 H, m, ArH), 2.85 (3 H, s, CH₃), 1.23 (12 H, s, CH₃). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 148.6, 137.4, 133.3, 132.1, 131.2, 128.9,

127.0, 124.9, 124.3, 122.6, 114.9, 83.4, 40.8, 24.7. FTIR 2983 (m), 2932 (m), 1404 (s), 1368 (s), 1316 (s), 1174 (s), 1091 (s), 812 (s), 772 (s). HRMS (EI+) calculated for $C_{21}H_{25}BNO_4S$: 398.1597. Found: 398.1614.

Following the general procedure, a solution of the amino alkyne (71 mg, 0.2 mmol), Pd₂dba₃ (9.2 mg, 5 mol%), AsPh₃ (6.2 mg, 10 mol%), Cs₂CO₃ (130.4 mg, 0.4 mmol), B₂Pin₂ (102.4 mg, 0.4 mmol) in DMA (0.4 mL) gave indole boronic ester **4** (62 mg, 65%) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ; 8.33 (2 H, d, *J* = 8.0 Hz, ArH), 7.89 (1 H, d, *J* = 7.0 Hz, ArH), 7.47-7.42 (1 H, m, ArH), 7.39-7.36 (7 H, m, ArH), 7.31 (1 H, td, *J* = 7.0, 1.0 Hz, ArH), 6.74 (2 H, d, *J* = 8.0 Hz, ArH), 3.79 (3 H, s, CH₃), 1.18 (12 H, s, CH₃). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 163.6, 148.7, 137.7, 133.4, 132.3, 131.7, 130.3, 129.1, 128.6, 126.6, 124.6, 123.9, 122.2, 115.5, 113.9, 83.2, 55.6, 24.6. FTIR 2979 (m), 2844 (m), 1598 (s), 1501 (s), 1269 (s), 1173 (s), 1088 (s), 916 (s), 734 (s). HRMS (EI+) calculated for C₂₇H₂₉BNO₅S: 490.1860. Found: 490.1860.

Following the general procedure, a solution of the amino alkyne (33 mg, 0.1 mmol), Pd₂dba₃ (9.2 mg, 10 mol%), AsPh₃ (12.4 mg, 40 mol%), Cs₂CO₃ (65.2 mg, 0.2 mmol), B₂Pin₂ (51.2 mg, 0.2 mmol) in DMA (0.2 mL) gave indole boronic ester **5** (33 mg, 73%) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ; 8.16-8.12 (1 H, m, ArH), 7.96-7.93 (1 H, m, ArH), 7.65 (2 H, d, *J* = 8.0 Hz, ArH), 7.25-7.23 (2 H, m, ArH), 7.19 (2 H, d, *J* = 8.0 Hz, ArH), 3.33-3.29 (2 H, m, CH₂), 2.35 (3 H, s, CH₃), 1.74-1.67 (2 H, m, CH₂), 1.47-1.36 (2 H, m, CH₂), 1.36 (12 H, s, CH₃), 0.96 (3 H, t, *J* = 7.0 Hz, CH₃). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 153.0, 144.6, 137.2, 136.5, 133.4, 129.8, 126.4, 123.6, 123.5, 122.1, 114.5, 83.1, 34.2, 28.1, 24.9, 22.7, 21.5, 13.8. FTIR 2987 (m), 2941 (m), 1564 (m), 1408 (s), 1374 (s), 1324 (s), 1181 (s), 1093 (s), 1046 (s), 776 (s), 545 (s). HRMS (EI+) calculated for C₂₅H₃₃BNO₄S: 454.2223. Found: 454.2222.

Following the general procedure, a solution of the amino alkyne (37.5 mg, 0.1 mmol), Pd₂dba₃ (9.2 mg, 10 mol%), AsPh₃ (12.4 mg, 40 mol%), Cs₂CO₃ (65.2 mg, 0.2 mmol), B₂Pin₂ (51.2 mg, 0.2 mmol) in DMA (0.2 mL) gave indole boronic ester **6** (35 mg, 70%) as a colourless oil. ¹H NMR (250 MHz, CDCl₃) δ ; 8.21-8.17 (1 H, m, ArH), 8.00-7.96 (1 H, m, ArH), 7.69 (2 H, d, *J* = 8.0 Hz, ArH), 7.43-7.35 (4 H, m, ArH), 7.28-7.17 (3 H, m, ArH), 7.19 (2 H, d, *J* = 8.0 Hz, ArH), 3.60-3.53 (2 H, m, CH₂), 3.08-3.02 (2 H, m, CH₂), 2.33 (3 H, s, CH₃), 1.39 (12 H, s, CH₃). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 151.5, 144.8, 142.3, 137.1, 136.4, 133.2, 129.9, 128.7, 128.4, 126.4, 125.9, 123.9, 123.6, 122.2, 114.4, 83.2, 38.6, 31.5, 25.1, 21.5. FTIR 2983 (m), 1602 (m), 1402 (s), 1372 (s), 1174 (s), 1141 (s), 1060 (s), 703 (s), 573 (s). HRMS (EI+) calculated for C₂₉H₃₃BNO₄S: 502.2223. Found: 502.2225.

Following the general procedure, a solution of the amino alkyne (39 mg, 0.1 mmol), Pd₂dba₃ (9.2 mg, 10 mol%), AsPh₃ (12.4 mg, 40 mol%), Cs₂CO₃ (65.2 mg, 0.2 mmol), B₂Pin₂ (51.2 mg, 0.2 mmol) in DMA (0.2 mL) gave indole boronic ester **7** (35 mg, 68%) as a colourless solid. Mp 108-110 °C. ¹H NMR (400 MHz, CDCl₃) δ ; 8.13-8.10 (1 H, m, ArH), 8.06-8.02 (1 H, m, ArH), 7.93 (2 H, d, *J* = 8.0 Hz, ArH), 7.37-7.23 (7 H, m, ArH), 6.99 (2 H, d, *J* = 8.0 Hz, ArH), 5.32 (2 H, s, CH₂), 4.59 (2 H, s, CH₂), 2.27 (3 H, s, CH₃), 1.36 (12 H, s, CH₃). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 145.5, 144.5, 138.5, 137.1, 136.2, 132.3, 129.4, 128.2, 127.9, 127.4, 124.8 (C x 2), 123.3, 123.0, 114.2, 83.5, 72.0, 63.4, 25.0, 21.5. FTIR 3063 (m), 2991 (m), 2937 (m), 1573 (m), 1451 (s), 1396 (s), 1375 (s), 1177 (s), 1072 (s), 857 (s), 672 (s), 574 (s). HRMS (EI+, Na added) calculated for C₂₉H₃₂BNO₅NaS: 540.1992. Found: 540.2017.

Following the general procedure, a solution of the amino alkyne (39 mg, 0.1 mmol), Pd₂dba₃ (9.2 mg, 10 mol%), AsPh₃ (12.4 mg, 40 mol%), Cs₂CO₃ (65.2 mg, 0.2 mmol), B₂Pin₂ (51.2 mg, 0.2 mmol) in DMA (0.2 mL) gave indole boronic ester **8** (40 mg, 79%) as a colourless oil. ¹H NMR (250 MHz, CDCl₃) δ ; 8.36 (1 H, d, *J* = 2.0 Hz, ArH), 7.79 (1 H, d, *J* = 8.0 Hz, ArH), 7.45-7.26 (8 H, m, ArH), 7.10 (2 H, d, *J* = 8.0 Hz, ArH), 2.35 (3 H, s, CH₃), 1.16 (12 H, s, CH₃). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 149.3, 144.9, 138.0, 135.5, 131.8, 131.71, 131.66, 130.4, 129.5, 128.8, 127.0, 126.6, 124.5, 123.0, 115.6, 83.3, 24.6, 21.6. FTIR 2979 (m), 2941 (w), 1602 (m), 1459 (s), 1374 (s), 1181 (s), 1093 (s), 819 (s), 667 (s), 578 (s). HRMS (EI+) calculated for C₂₇H₂₈NO₄S³⁵CIB: 508.1521. Found: 508.1512.

Following the general procedure, a solution of the amino alkyne (39 mg, 0.1 mmol), Pd₂dba₃ (9.2 mg, 10 mol%), AsPh₃ (12.4 mg, 40 mol%), Cs₂CO₃ (65.2 mg, 0.2 mmol), B₂Pin₂ (51.2 mg, 0.2 mmol) in DMA (0.2 mL) gave indole boronic ester **9** (36 mg, 74%) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ; 8.19 (1 H, d, *J* = 2.0 Hz, ArH), 7.86 (1 H, d, *J* = 8.0 Hz, ArH), 7.67 (2 H, d, *J* = 8.0 Hz, ArH), 7.24-7.20 (3 H, m, ArH), 3.29-3.25 (2 H, m, CH₂), 2.37 (3 H, s, CH₃), 1.72-1.66 (2 H, m, CH₂), 1.47-1.41 (2 H, m, CH₂), 1.36 (12 H, s, CH₃), 0.96 (3 H, t, *J* = 7.0 Hz, CH₃). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 153.6, 145.0, 137.5, 136.3, 131.9, 130.0, 129.5, 126.4, 124.0, 122.9, 114.6, 83.2, 34.2, 28.1, 24.9, 22.7, 21.6, 13.8. FTIR 2969 (m), 2935 (m), 1560 (m), 1465 (s), 1408 (s), 1173 (s), 1055 (s), 915 (s), 740 (s), 584 (s). HRMS (EI+) calculated for C₂₅H₃₂BNO₄S³⁵Cl: 488.1834. Found: 488.1823.

Following the general procedure, a solution of the amino alkyne (35 mg, 0.1 mmol), Pd₂dba₃ (9.2 mg, 10 mol%), AsPh₃ (6.2 mg, 20 mol%), Cs₂CO₃ (65.2 mg, 0.2 mmol), B₂Pin₂ (51.2 mg, 0.2 mmol) in DMA (0.2 mL) gave indole boronic ester **10** (24 mg, 51%) as a colourless oil. ¹H NMR (250 MHz, CDCl₃) δ ; 8.49 (1 H, dd, J = 5.0, 2.0 Hz, ArH), 8.17 (1 H, dd, J = 8.0, 2.0 Hz, ArH), 7.82 (2 H, d, J = 8.0 Hz, ArH), 7.49-7.41 (5 H, m, ArH), 7.23 (1 H, dd, J = 8.0, 5.0 Hz, ArH), 7.18 (2 H, d, J = 8.0 Hz, ArH), 2.35 (3 H, s, CH₃), 1.18 (12 H, s, CH₃). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 149.8, 149.1, 144.8, 144.6, 136.2, 132.6, 130.9, 130.5, 129.3, 128.7, 127.9, 126.8, 125.5, 119.5, 83.3, 24.6, 21.6. FTIR 2988 (m), 29353 (m), 1594 (m), 1553 (m), 1492 (s), 1420 (s), 1382 (s), 1180 (s), 1093 (s), 1048 (s), 819 (s), 580 (s). HRMS (EI+) calculated for C₂₆H₂₈N₂O₄SB: 475.1863. Found: 475.1881.

A mixture of amino alkyne 11 (108 mg, 0.2 mmol), Pd₂dba₃ (9.2 mg, 5 mol%), AsPh₃ (6.2 mg, 10 mol%), Cs₂CO₃ (130.4 mg, 0.4 mmol), B₂Pin₂ (102.4 mg, 0.4 mmol) in DMA (0.4 mL) was heated at 60 °C under nitrogen. After 30 minutes, 4-fluoro-iodobenzene (88 mg, 0.4 mmol) in 1:1 DMA/H₂O (0.8 mL) was added. The resulting reaction mixture was stirred at the same temperature for 16 hours. A solution of TBAF (1 M in THF) (1 mL) was added and the reaction mixture was heated at 60 °C for 6 hours. After cooling to room temperature, diethyl ether (20 mL) was added and the organic phase was washed with H₂O (10 mL x 3), dried (MgSO₄) and the organic solvents were removed under reduced pressure to give the crude product. Purification of the residue by flash chromatography on silica gel using a gradient mixture of Et_2O /petroleum ether (1:4) as eluent gave the indole alcohol 12 (45 mg, 57%) as a colourless oil. ¹H NMR (250 MHz, CDCl₃) δ ; 8.17 (1 H, d, J = 8.0 Hz, ArH), 7.82 (2 H, d, J= 8.0 Hz, ArH), 7.53-7.47 (3 H, m, ArH), 7.40 (1 H, td, J = 7.0, 1.0 Hz, ArH), 7.30-7.20 (5 H, m, ArH), 4.82 (2 H, d, J = 7.5 Hz, CH₂), 3.37 (1 H, t, J = 7.5 Hz, OH), 2.38 (3 H, s, CH₃). ¹³C NMR (100.6 MHz, CDCl₃) δ; 162.2 (d, *J* = 247 Hz), 144.9, 135.7, 135.32, 135.26 131.4 (d, *J* = 8 Hz), 129.7, 128.9, 127.7 (d, J = 3 Hz), 126.2, 125.4, 124.2, 123.6, 120.0, 115.5 (d, J = 21 Hz), 114.2, 55.4, 21.3. FTIR 3577 (m), 2927 (m), 1511 (m), 1367 (s), 1230 (s), 1177 (s), 1097 (s), 846 (s), 713 (m). HRMS (EI+, Na added) calculated for C₂₂H₁₈NO₃FNaS: 418.0889. Found: 418.0873.

A mixture of indole boronic ester **2a** (47 mg, 0.1 mmol), NaN₃ (7.8 mg, 0.12 mmol) and CuSO₄ (1.6 mg, 0.01 mmol) in methanol (0.5 mL) was stirred at room temperature for 2 hours. The resulting dark solution was concentrated in vacuo and the crude product purified by flash chromatography on silica gel using a gradient mixture of Et₂O/petroleum ether as eluent to give indole azide **13** (36 mg, 93%) as a colourless oil. ¹H NMR (250 MHz, CDCl₃) δ ; 8.40 (1 H, d, *J* = 8.0 Hz, ArH), 7.64 (1 H, d, *J* = 8.0 Hz, ArH), 7.52-7.43 (6 H, m, ArH), 7.36 (1 H, dd, *J* = 7.0, 1.0 Hz, ArH), 7.31 (2 H, d, *J* = 8.0 Hz, ArH), 7.10 (2 H, d, *J* = 8.0 Hz, ArH), 2.34 (3 H, s, CH₃). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 144.9 (C x 2), 136.4, 134.4, 131.5, 129.4, 129.2, 129.0, 127.6, 126.9, 126.0, 125.9, 124.5, 121.1, 117.9, 116.9, 21.6. FTIR 3064 (w), 2934 (w), 2111 (s), 1602 (m), 1454 (s), 1367 (s), 1177 (s), 1093 (s), 744 (s), 675 (s). HRMS (EI+) calculated for C₂₁H₁₇N₄O₂S: 389.1072. Found: 389.1070.

A mixture of indole boronic ester **2a** (47 mg, 0.1 mmol), NaN₃ (7.8 mg, 0.12 mmol) and CuSO₄ (1.6 mg, 0.01 mmol) in methanol (0.5 mL) was stirred at room temperature for 2 hours before a solution of phenylacetylene (20 mg, 0.2 mmol) and sodium ascorbate (10 mg, 0.05 mmol) in 1: 1 DCM/H₂O (1 mL) was added. The reaction mixture was stirred at room temperature for 16 hours and then the resulting dark solution was concentrated in vacuo and the crude product purified by flash chromatography on silica gel using a gradient mixture of Et₂O/petroleum ether as eluent to give indole azide **14** (42 mg, 86%) as a colourless solid. Mp 204-205 °C. ¹H NMR (250 MHz, CDCl₃) δ ; 8.48 (1 H, d, *J* = 8.0 Hz, ArH), 7.73-7.67 (3 H, m, ArH), 7.55-7.28 (13 H, m, ArH), 7.14 (2 H, d, *J* = 8.0 Hz, ArH), 2.36 (3 H, s, CH₃). ¹³C NMR (100.6 MHz, CDCl₃) δ ; 147.1, 145.6, 135.7, 135.0, 133.6, 131.4, 130.03, 130.00, 129.7, 128.8, 128.3, 128.1, 127.8, 127.0, 126.5, 125.7, 125.2, 125.1, 121.0, 120.8, 119.4, 116.0, 21.6. FTIR 2923 (w), 1602 (m), 1450 (s), 1381 (s), 1180 (s), 1093 (s), 1002 (s), 766 (s), 573 (s). HRMS (EI+) calculated for C₂₉H₂₃N₄O₂S: 491.1542. Found: 491.1522.

(ppm)

