A general and mild domino approach to substituted 1-aminoindoles

Nis Halland, * Marc Nazaré , Jorge Alonso, Omar R'kyek and Andreas Lindenschmidt*

Supporting information

General information	S2
Synthesis of 2-halo-phenylacetylenes	S2
General procedure for the 1-aminoindole formation	S2
Analytical data for 1-aminoindoles 3	S3-S10
1H-NMR spectra for 1-aminoindoles 3	S11-S34

General: The ¹H and ¹³C-NMR spectra were recorded at 500 and 100 MHz respectively using TMS as an internal standard. All hydrazines, alkynes and 1,2-dihalobenzenes were commercially available and used as received without further purification. Transition metal salts, ligands, bases and other reagents as well as anhydrous solvents were also obtained from commercial sources and used as received. Flash chromatography was carried out on silica gel 60 (15-40 μ m).

General procedure for the Pd/Cu catalyzed preparation 2-chlorophenylacetylenes 1 from 1-chloro-2-iodobenzenes and terminal alkynes.¹ To a solution of $PdCl_2(PPh_3)_2$ (2.8 mol%), CuI (5.6 mol%), PPh₃ (5.6 mol%) in diisopropylamine was added the 1-chloro-2-iodobenzene (1.0 equiv.) and alkyne (1.1 equiv.) and the mixture stirred for 1-6 h at rt to 50°C. Then the reaction mixture was filtered and evaporated, dissolved in EtOAc and washed with NaHCO₃ (aq, sat.) solution. After drying over Na₂SO₄ and evaporation the crude product was purified FC on silica gel using EtOAc/heptane as the eluent. This procedure usually afforded >90% yield of the desired 2-chlorophenylcetylene in high purity.

General procedure for the one-pot domino formation of 1-aminoindoles 3: To a screwcap test tube was added $PdCl_2$ (5 mol%), tBu₃PHBF₄ (10 mol%), Cs₂CO₃ (1.4 equiv.) a magnetic stirring bar and commercially available anhydrous DMF (2.5 mL) and the mixture was stirred under argon at ambient temperature for 15 min. Then the 2-chlorophenylacetylene 1 (0.5mmol) and the hydrazine (1.4 equiv.) were added and the mixture was heated to 110°C for 3h. After cooling, the reaction mixture was diluted with NaHCO₃ (aq, sat) and extracted with EtOAc (x2) and the organic phase dried over Na₂SO₄ and evaporated. The crude product was purified by FC on silica gel using EtOAc/heptane as the eluent.

¹ I. Bytschkov, H. Siebeneicher, S. Doye, Eur. J. Org. Chem. 2003, 2888.

Ph^{-N}Boc **Phenyl-(2-phenyl-indol-1-yl)-carbamic acid tert-butyl ester 3a** was prepared as described in the general procedure above and obtained as a slightly yellowish oil. ¹H-NMR (DMSO-d₆) δ 1.25 (s, 9H), 6.85 (s, 1H), 7.10-7.14 (m, 3H), 7.15-7.18 (m, 1H), 7.23 (d, 2H, *J* = 4.0 Hz), 7.26-7.30 (m, 2H), 7.39-7.41 (m, 1H), 7.44 (t, *J* = 7.2 Hz, 2H), 7.52 (d, 2H, *J* = 7.9 Hz), 7.65 (d, 1H, *J* = 7.8 Hz); ¹³C-NMR (DMSO-d₆) δ 27.3, 82.5, 101.4, 109.2, 120.8, 121.0, 123.1, 125.3, 125.7, 127.4, 128.4, 128,7, 128.8, 130.5, 136.7, 139.7, 140.9, 152.0; HRMS (FAB): Calculated for C₂₅H₂₅N₂O₂ (M+H⁺) 385.1916, found 385.1917.

Ph^{N}Boc **(6-Fluoro-2-phenyl-indol-1-yl)-phenyl-carbamic acid tert-butyl ester 3b** was prepared as described in the general procedure above and obtained as a colorless oil. ¹H-NMR (DMSO-d₆) δ 1.27 (s, 9H), 6.87 (s, 1H), 7.03 (ddd, 1H, J = 9.8, 8.6, 2.3 Hz), 7.07-7.16 (m, 4H), 7.29 (t, 2H, J = 7.9 Hz), 7.39-7.42 (m, 1H), 7.43-7.47 (m, 2H), 7.49-7.52 (m, 2H), 7.66 (dd, 1H, J = 8.7, 5.3 Hz); ¹³C-NMR (DMSO-d₆) δ 27.3, 82.7, 95.9 (d, J = 27.2 Hz), 101.4, 109.7 (d, J = 24.3 Hz), 121.2, 122.2 (d, J = 9.9 Hz), 122.3, 125.5, 127.4, 128.5, 128.8, 128.9, 136.9 (d, J = 11.9 Hz), 140.5 (d, J = 4.3 Hz), 140.6, 151.8, 159.7 (d, J = 238.6 Hz); HRMS (FAB): Calculated for C₂₅H₂₄N₂O₂F (M+H⁺) 403.1822, found 403.1815.

Ph^N_{Boc} Phenyl-(2-phenyl-5-trifluoromethyl-indol-1-yl)-carbamic acid tertbutyl ester 3c was prepared as described in the general procedure above and obtained as a colorless oil. ¹H-NMR (DMSO-d₆) δ 1.25 (s, 9H), 7.03 (s, 1H), 7.11-7.17 (m, 3H), 7.30 (t, 2H, J = 7.9 Hz), 7.41-7.49 (m, 4H), 7.52-7.56 (m, 3H), 8.08 (s, 1H); ¹³C-NMR (DMSO-d₆) δ 27.3, 83.0, 102.1, 110.1, 118.5, 119.7, 122.2 (q, J = 31.3 Hz), 125.1 (q, J = 271.6 Hz), 125.2, 125.6, 127.6, 128.3 (q, J = 39.0 Hz), 128.9, 129.0, 129.8, 138.1, 140.6, 141.7, 151.7; HRMS (FAB): Calculated for C₂₆H₂₄N₂O₂F₃ (M+H⁺) 453.1790, found 453.1785.

Ph^{/N} Boc (6-Methoxy-2-phenyl-indol-1-yl)-phenyl-carbamic acid tert-butyl ester 3d was prepared as described in the general procedure above and obtained as a colorless oil. ¹H-NMR (DMSO-d₆) δ 1.27 (s, 9H), 3.74 (s, 3H), 6.67 (d, 1H, J = 1.9 Hz), 6.76 (d, 1H, J = 0.6 Hz), 6.83 (dd, 1H, J = 8.5, 2.2 Hz), 7.10-7.13 (m, 3H), 7.27 (t, 2H, J = 7.8 Hz), 7.33-7.37 (m, 1H), 7.41 (t, 2H, J = 7.6 Hz), 7.45-7.48 (m, 2H), 7.53 (d, 1H, J = 8.5 Hz); ¹³C-NMR (DMSO-d₆) δ 27.3, 55.3, 82.4, 92.8, 101.3, 110.5, 119.7, 121.0, 121.6, 125.2, 127.1, 127.9, 128.6, 128.8, 130.8, 137.8, 138.5, 140.8, 151.9, 156.8; HRMS (FAB): Calculated for C₂₆H₂₇N₂O₃ (M+H⁺) 415.2022, found 415.2028.

Ph^NBoc **Phenyl-(2-phenyl-pyrrolo[3,2-c]pyridin-1-yl)-carbamic acid tert-butyl** ester 3e was prepared as described in the general procedure above and obtained as a colorless oil. ¹H-NMR (DMSO-d₆) δ 1.26 (br s, 9H), 7.00 (s, 1H), 7.10-7.17 (m, 3H), 7.26-7.36 (m, 3H), 7.42-7.51 (m, 3H), 7.51-7.55 (m, 2H), 8.32 (d, 1H, *J* = 5.5 Hz), 8.94 (br s, 1H); ¹³C-NMR (DMSO-d₆) δ 27.3, 82.9, 100.3, 104.6, 121.2, 122.3, 125.7, 127.7, 128.8, 129.0, 129.7, 140.4, 140.5, 140.7, 142.2, 143.4, 151.5; HRMS (FAB): Calculated for C₂₄H₂₄N₃O₂ (M+H⁺) 386.1869, found 386.1882.

Ph^N_{CO₂Et **Phenyl-(2-phenyl-indol-1-yl)-carbamic acid ethyl ester 3f** was prepared as described in the general procedure above and obtained as a colorless oil. ¹H-NMR (DMSO-d₆) δ 1.06 (br t, 3H, *J* = 6.7 Hz), 4.21 (m, 2H), 6.86 (s, 1H), 7.06 (d, 2H, *J* = 7.8 Hz), 7.12 (t, 1H, *J* = 7.4 Hz), 7.17 (t, 1H, *J* = 7.4 Hz), 7.22-7.28 (m, 3H), 7.33 (d, 1H, *J* = 8.0 Hz), 7.38-7.42 (m, 1H), 7.45 (t, 1H, *J* = 7.4 Hz), 7.50-7.53 (m, 2H), 7.65 (d, 1H, *J* = 7.8 Hz); ¹³C-NMR (DMSO-d₆) δ 14.0, 62.8, 101.7, 109.4, 120.8, 121.3, 121.4, 123.2, 125.6, 125.8, 127.4, 128.4, 128.8, 128.9, 130.4, 136.5, 139.3, 140.6, 153.6; HRMS (FAB): Calculated for C₂₃H₂₁N₂O₂ (M+H⁺) 357.1603, found 357.1595.}

[2-(6-Methoxy-naphthalen-2-yl)-indol-1-yl]-phenyl-

carbamic acid tert-butyl ester 3g was prepared as described in the general procedure above and obtained as a yellowish solid. ¹H-NMR (DMSO-d₆) δ 1.30 (s, 9H), 3.92 (s, 3H), 6.95 (s, 1H), 7.11-7.17 (m, 3H), 7.19-7.35 (m, 6H), 7.39 (d, 1H, *J* = 2.3 Hz), 7.66 (dd, 1H, *J* = 8.7, 1.6 Hz), 7.70 (d, 1H, *J* = 7.8 Hz), 7.74 (d, 1H, *J* = 9.2 Hz), 7.93 (d, 1H, *J* = 8.9 Hz), 7.98 (s, 1H); ¹³C-NMR (DMSO-d₆) δ 27.6, 55.2, 82.5, 101.5, 105.9, 109.2, 119.3, 120.7, 121.2, 123.1, 125.4, 125.6, 125.8, 126.1, 127.1, 128.1, 128.5, 128.8, 129.4, 133.8, 136.9, 139.8, 141.0, 152.1, 157.8; HRMS (ESI): Calculated for C₃₀H₂₉N₂O₃ (M+H⁺) 465.2178, found 465.2175.

Phr CO₂Et **Phenyl-[2-(4-trifluoromethyl-phenyl)-indol-1-yl]-carbamic acid ethyl ester 3h** was prepared as described in the general procedure above and obtained as a colourless crystalline solid. ¹H-NMR (DMSO-d₆) δ 1.08 (t, 3H, J = 7.1 Hz), 4.26 (m, 2H), 7.08 (s, 1H), 7.11 (d, 2H, J = 8.6 Hz), 7.17 (t, 1H, J = 7.6 Hz), 7.25 (t, 1H, J = 7.6 Hz), 7.28-7.35 (m, 3H), 7.41 (d, 1H, J = 8.6 Hz), 7.75 (d, 1H, J = 7.9 Hz), 7.80 (d, 2H, J = 8.31 Hz), 7.91 (d, 2H, J = 8.6 Hz) ; ¹³C-NMR (DMSO-d₆) δ 14.0, 63.1, 103.5, 109.6, 121.2, 121.3, 121.6, 124.0, 124.0, (q, J = 272.6 Hz), 125.4, 125.8 (q, J = 3.6 Hz), 125.9, 127.9, 128.4 (q, J =32.1 Hz), 129.0, 134.3, 136.9, 137.5, 140.4, 153.5; HRMS (ESI): Calculated for C₂₄H₂₀N₂O₂F₃ (M+H⁺) 425.1477, found 425.1476.

Ph^{-N}Boc **Phenyl-(2-pyridin-2-yl-indol-1-yl)-carbamic acid tert-butyl ester 3i** was prepared as described in the general procedure above and obtained as a colorless oil. ¹H-NMR (DMSO-d₆) δ 1.23 (br s, 9H), 7.05-7.09 (m, 1H), 7.15 (t, 1H, *J* = 7.4 Hz), 7.22-7.31 (m, 8H), 7.67 (d, 1H, *J* = 7.8 Hz), 7.86 (dt, 1H, *J* = 1,7, 7.4 Hz), 7.92 (d, 1H, *J* = 8.0 Hz), 8.53 (d, 1H, *J* = 4.7 Hz);); ¹³C-NMR (DMSO-d₆) δ 27.4, 81.5, 102.9, 109.1, 121.1, 121.6, 121.8, 122.5, 123.9, 124.7, 124.8, 128.4, 136.7, 136.8, 137.2, 141.4, 149.1, 149.8, 151.9; HRMS (FAB): Calculated for C₂₄H₂₄N₃O₂ (M+H⁺) 386.1869, found 386.1874.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Ph^{N}Boc **1-(tert-Butoxycarbonyl-phenyl-amino)-2-cyclopropyl-1H-indole-6-carboxylic acid tert-butyl ester 3j** was prepared as described in the general procedure above and obtained as a colorless oil. ¹H-NMR (DMSO-d₆) δ 0.67-0.77 (m, 2H), 0.85-0.92 (m, 1H), 1.01-1.07 (m, 1H), 1.35 (s, 9H), 1.52 (s, 9H), 1.71-1.77 (m, 1H), 6.28 (s, 1H), 7.21 (t, 1H, J = 7.4 Hz), 7.30 (d, 2H, J = 7.5 Hz), 7.38 (d, 1H, J = 7.4 Hz), 7.40 (d, 1H, J = 7.3 Hz), 7.55 (d, 1H, J = 8.2 Hz), 7.64 (dd, 1H, J = 8.3, 1.5 Hz), 7.68 (s, 1H);); ¹³C-NMR (DMSO-d₆) δ 6.5, 7.4, 7.9, 27.4, 27.8, 80.1, 82.7, 96.1, 109.0, 119.7, 121.3, 124.6, 125.5, 129.0, 129.1, 135.1, 140.9, 147.1, 151.7, 165.5; HRMS (FAB): Calculated for C₂₇H₃₃N₂O₄ (M+H⁺) 449.2440, found 449.2459.

^{Ph⁻⁺⁻CO₂Et (2-Pentyl-indol-1-yl)-phenyl-carbamic acid ethyl ester 3k was prepared as described in the general procedure above and obtained as a brown oil. ¹H-NMR (DMSOd₆) δ 0.82 (t, 3H, *J* = 7.3 Hz), 1.11 (t, 3H, *J* = 7.3 Hz), 1.21-1.34 (m, 4H), 1.53-1.66 (m, 2H), 2.56 (t, 2H, *J* = 7.7 Hz), 4.19-4.28 (m, 2H), 6.40 (s, 1H), 7.12 (dt, 1H, *J* = 1.2, 7.7 Hz), 7.14-7.18 (m, 1H), 7.20-7.28 (m, 4H), 7.37-7.42 (m, 2H), 7.57 (d, 1H, *J* = 7.6 Hz); ¹³C-NMR (DMSO-d₆) δ 13.7, 14.1, 21.7, 24.8, 26.8, 30.7, 62.8, 98.6, 108.4, 120.0, 120.5, 121.0, 121.9 125.5, 125.6, 129.0, 135.3, 140.6, 140.8, 153.3; HRMS (ESI): Calculated for C₂₂H₂₇N₂O₂ (M+H⁺) 351.2073, found 351.2072.}

^{Ph⁻} CO₂Et (2-tert-Butyl-indol-1-yl)-phenyl-carbamic acid ethyl ester 3l was prepared as described in the general procedure above and obtained as a brown oil. ¹H-NMR (DMSO-d₆) δ 1.03 (t, 3H, *J* = 7.3 Hz), 1.12 (s, 9H), 4.16 (q, 2H, *J* = 7.3 Hz), 6.43 (s, 1H), 7.06 (d, 1H, *J* = 8.1 Hz), 7.15 (t, 1H, *J* = 7.4 Hz), 7.17-7.24 (m, 4H), 7.37-7.42 (m, 2H), 7.61 (d, 1H, *J* = 7.8 Hz); ¹³C-NMR (DMSO-d₆) δ 14.0, 29.4, 31.9, 62.8, 98.7, 108.2, 119.8, 120.4, 120.7, 122.4, 124.7, 124.8, 128.8, 137.3, 141.4, 147.7, 153.6; HRMS (ESI): Calculated for C₂₁H₂₅N₂O₂ (M+H⁺) 337.1916, found 337.1918.

Ph^{-/N}Boc (2-tert-Butoxymethyl-indol-1-yl)-phenyl-carbamic acid tert-butyl ester **3m** was prepared as described in the general procedure above and obtained as a yellowish oil. ¹H-NMR (DMSO-d₆) δ 1.11 (s, 9H), 1.34 (s, 9H), 4.41 (s, 2H), 6.58 (s, 1H), 7.10-7.14 (m, 4H), 7.32-7.43 (m, 4H), 7.62 (d, 2H, *J* = 7.9 Hz); ¹³C-NMR (DMSO-d₆) δ 26.9, 27.4, 55.1, 73.1, 82.1, 101.3, 108.4, 120.5, 120.7, 121.3, 122.6, 124.9, 125.1, 128.4, 136.0, 137.8, 141.1, 151.8; HRMS (ESI): Calculated for C₂₄H₃₁N₂O₃ (M+H⁺) 395.2335, found 395.2329.

Ph^{-N}Boc **1-(tert-Butoxycarbonyl-phenyl-amino)-1H-indole-2-carboxylic acid tert-butyl ester 3n** was prepared as described in the general procedure above and obtained as a brown oil. ¹H-NMR (DMSO-d₆) δ 1.32 (br s, 9H), 1.46 (s, 9H), 7.15 (t, 1H, *J* = 7.2 Hz), 7.20 (t, 1H, *J* = 7.4 Hz), 7.26-7.30 (m, 3H), 7.33 (d, 1H, *J* = 8.0 Hz), 7.36 (d, 1H, *J* = 8.5 Hz), 7.75 (d, 1H, *J* = 8.0 Hz); ¹³C-NMR (DMSO-d₆) δ 27.5, 27.7, 81.4, 82.0, 109.4, 109.9, 120.9, 121.7, 122.6, 123.2, 124.9, 126.3, 128.3, 128.5, 137.4, 141.0, 151.6, 158.8; HRMS (FAB): Calculated for C₂₄H₂₈N₂O₄Na (M+Na⁺) 431.1947, found 431.1952.

Ph^{-/}Boc (2-Diethylaminomethyl-indol-1-yl)-phenyl-carbamic acid tert-butyl ester 30 was prepared as described in the general procedure above and obtained as a black oil. ¹H-NMR (DMSO-d₆) δ 1.04 (t, 6H, *J* = 7.4 Hz), 1.34 (s, 9H), 2.57 (q, 4H, *J* = 7.4 Hz), 3.71 (s, 2H), 6.68 (d, 1H, *J* = 8.4 Hz), 6.78 (dt, 1H, *J* = 1.0, 7.7 Hz), 7.17 (t, 1H, *J* = 7.5 Hz), 7.23 (t, 1H, *J* = 7.9 Hz), 7.31 (dd, 1H, *J* = 1.4, 7.9 Hz), 7.36-7.41 (m, 2H), 7.60 (d, 2H, *J* = 8.1 Hz), 8.16 (s, 1H); ¹³C-NMR (DMSO-d₆) δ 12.5, 27.6, 41.3, 46.7, 80.0, 81.0, 91.4, 106.8, 110.5, 118.9, 122.1, 124.4, 128.2, 129.2, 132.1, 142.7, 148.9, 153.1; HRMS (ESI): Calculated for C₂₄H₃₂N₃O₂ (M+H⁺) 394.2495, found 394.2492.

Methyl-phenyl-[2-(4-trifluoromethyl-phenyl)-indol-1-yl]-amine

3p was prepared as described in the general procedure above and obtained as a brown oil. ¹H-NMR (DMSO-d₆) δ 3.48 (s, 3H), 6.50 (d, 2H, J = 8.1 Hz), 6.84 (t, 1H, J = 7,6 Hz), 7.01-7.04 (m, 1H), 7.04 (s, 1H), 7.16 (dd, 2H, J = 2.9, 6.3 Hz), 7.23 (dd, 2H, J = 7.6, 8.9 Hz), 7.71-7.75 (m, 1H), 7.82 (d, 2H, J = 8.6 Hz), 7.93 (d, 2H, J = 8.6 Hz); ¹³C-NMR (DMSO-d₆) δ 39.8, 101.8, 110.6, 112.0, 119.5, 121.1, 121.4, 124.1 (q, J = 273 Hz), 123.1, 125.5 (q, J = 3.7 Hz), 126.1, 128.0, 128.1 (q, J = 32 Hz), 129.4, 134.8, 135.2, 137.7, 148.5; HRMS (FAB): Calculated for C₂₂H₁₈F₃N₂ (M+H⁺) 367.1422, found 367.1410.

^{Ph^{-/·}Me} **Methyl-phenyl-(2-phenyl-5-trifluoromethyl-indol-1-yl)-amine 3q** was prepared as described in the general procedure above and obtained as a brown oil. ¹H-NMR (DMSO-d₆) δ 3.50 (s, 3H), 6.50 (d, 2H, *J* = 7.9 Hz), 6.87 (t, 1H, *J* = 7.6 Hz), 7.06 (s, 1H), 7.23-7.29 (m, 3H), 7.43-7.52 (m, 4H), 7.72 (d, 2H, *J* = 7.7 Hz), 8.14 (s, 1H); ¹³C-NMR (DMSO-d₆) δ 39.8, 101.0, 111.1, 111.9, 118.5, 118.7, 119.6, 121.8 (q, *J* = 31 Hz), 125.2 (q, *J* = 270 Hz), 125.6, 127.8, 128.6, 128.7, 129.5, 130.2, 136.5, 141.6, 148.2; HRMS (FAB): Calculated for C₂₂H₁₈F₃N₂ (M+H⁺) 367.1422, found 367.1426.

2-Phenyl-1-piperidin-1-yl-1H-indole 3r was prepared as described in the general procedure above and obtained as a brown oil. ¹H-NMR (DMSO-d₆) δ 1.41 (br s, 2H), 1.65 (quintet, 4H, *J* = 5.6 Hz), 2.75 (br s, 4H), 6.06 (s, 1H), 6.72 (t, 1H, *J* = 7.5 Hz), 7.19 (d, 1H, *J* = 8.5 Hz), 7.29 (t, 1H, *J* = 7.8 Hz), 7.37 (t, 1H, *J* = 7.8 Hz), 7.46-7.56 (m, 3H), 7.67 (d, 2H, *J* = 7.8 Hz); ¹³C-NMR (DMSO-d₆) δ 23.1, 25.6, 55.8, 85.7, 94.9, 105.0, 112.0, 117.3, 122.6, 128.4, 128.5, 130.0, 131.2, 132.0, 148.3; HRMS (ESI): Calculated for C₁₉H₂₁N₂ (M+H⁺) 277.1705, found 277.1700.

1-Morpholin-4-yl-2-phenyl-1H-indole 3s was prepared as described in the general procedure above and obtained as a brown oil. ¹H-NMR (DMSO-d₆) δ 2.83 (br s, 4H), 3.75 (br s, 4H), 6.34 (s, 1H), 6.75 (dt, 1H, J = 1.2, 7.5 Hz), 7.24 (d, 1H, J = 8.2 Hz), 7.39 (dd, 1H, J = 1.4, 7.8 Hz), 7.47-7.54 (m, 3H), 7.70 (dd, 2H, J = 1.7, 8.2 Hz); ¹³C-NMR (DMSO-d₆) δ 54.8, 66.3, 85.7, 94.9, 105.3, 112.1, 117.5, 122.7, 128.4, 128.5, 130.0, 131.3, 132.1, 148.0; HRMS (ESI): Calculated for C₁₈H₁₉N₂O (M+H⁺) 279.1497, found 279.1497.

^{Me} **1-(4-Methyl-piperazin-1-yl)-2-phenyl-1H-indole 3t** was prepared as described in the general procedure above and obtained as a brown oil. ¹H-NMR (DMSO-d₆) δ 2.22 (s, 3H), 2.48 (br s, 4H), 2.83 (s, 4H), 6.18 (s, 1H), 6.72 (dt, 1H, *J* = 1.1, 7.6 Hz), 7.18 (d, 1H, *J* = 8.6 Hz), 7.28 (t, 1H, *J* = 8.2 Hz), 7.36 (dd, 1H, *J* = 1.4, 7.8 Hz), 7.44-7.53 (m, 3H), 7.68 (dd, 2H, *J* = 1.8, 8.3 Hz); ¹³C-NMR (DMSO-d₆) δ 45.5, 54.1, 54.7, 85.8, 94.9, 105.2, 112.1, 117.4, 122.7, 128.4, 128.5, 130.0, 131.3, 132.1, 148.2; HRMS (ESI): Calculated for C₁₉H₂₂N₃ (M+H⁺) 292.1814, found 292.1812.

1-(2-Phenyl-indol-1-yl)-pyrrolidin-2-one 3u was prepared as described in the general procedure above and obtained as a colourless crystalline solid. ¹H-NMR (DMSO-d₆) δ 1.92-2.04 (m, 1H), 2.15-2.25 (m, 1H), 2.37-2.45 (m, 1H), 2.63-2.72 (m, 1H), 3.27-3.32 (m, 1H), 3.76 (m, 1H), 6.82 (s, 1H), 7.21 (t, 1H, *J* = 7.6 Hz), 7.28 (t, 1H, *J* = 7.6 Hz), 7.40 (d, 1H, *J* = 8.3 Hz), 7.48 (m, 1H), 7.55 (t, 2H, *J* = 7.5 Hz), 7.59-7.62 (m, 2H), 7.68 (d, 1H, *J* = 8.5 Hz); ¹³C-NMR (DMSO-d₆) δ 16.6, 27.9, 47.6, 101.3, 109.5, 120.7, 121.1, 122.7, 125.9, 127.3, 128.3, 128.8, 130.3, 135.8, 139.3, 173.4; HRMS (ESI): Calculated for C₁₈H₁₇N₂O (M+H⁺) 277.1341, found 277.1340.

2-Phenyl-1-pyrrol-1-yl-1H-indole 3v was prepared as described in the general procedure above and obtained as a colourless crystalline solid. ¹H-NMR (DMSO-d₆) δ 6.28 (t, 2H, *J* = 2.3 Hz), 6.89 (d, 1H, *J* = 8.0 Hz), 6.99 (s, 1H), 7.15 (t, 2H, *J* = 2.3 Hz), 7.20-7.28 (m, 2H), 7.36, (br s, 5H), 7.72 (d, 1H, *J* = 7.6 Hz); ¹³C-NMR (DMSO-d₆) δ 101.1, 108.1, 108.6, 120.6, 121.5, 122.5, 123.3, 125.0, 126.6, 128.1, 128.5, 129.8, 138.7, 139.2; HRMS (ESI): Calculated for C₁₈H₁₅N₂ (M+H⁺) 259.1235, found 259.1232.

2-Phenyl-[1,1']biindolyl 3w was prepared as described in the general procedure above and obtained as a brown oil. ¹H-NMR (DMSO-d₆) δ 6.64 (d, 1H, *J* = 8.3 Hz), 6.67 (d, 1H, *J* = 8.0 Hz), 6.74 (dd, 1H, *J* = 0.8, 3.5 Hz), 7.08 (s, 1H), 7.09-7.15 (m, 2H), 7.17 (dt, 1H, *J* = 1.0, 8.3 Hz), 7.24 (dt, 1H, *J* = 1.0, 7.6 Hz), 7.27-7.32 (m, 3H), 7.40-7.44 (m, 2H), 7.71 (d, 1H, *J* = 8.0 Hz), 7.78 (d, 1H, *J* = 8.0 Hz), 7.92 (d, 1H, *J* = 3.5 Hz); ¹³C-NMR (DMSO-d₆) δ 101.8, 102.1, 108.4, 108.8, 120.9, 121.2, 121.7, 123.1, 123.4, 125.6, 125.9, 126.9, 128.2, 128.5, 129.5, 129.9, 136.0, 138.5, 140.2; HRMS (ESI): Calculated for C₂₂H₁₇N₂ (M+H⁺) 309.1392, found 309.1390.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

ω ___

х 0,5

Instrument: FN-DRX500

31

.....

3n

ω 0

9.0

β Ω

9.0

З К

9.0

