Development of High-Performance Supercapacitor Electrodes

Using Novel Ordered Mesoporous Tungsten Oxide Materials with

High Electrical Conductivity

Songhun Yoon*^a, Eunae Kang^b, Jin Kon Kim,^b Chul Wee Lee^a, Jinwoo Lee*^b,

^a Green Chemical Technology Division, Korea Research Institute of Chemical Technology(KRICT), Daejeon 305-600, Korea, E-mail: yoonshun@rkrict.re.kr

^b Department of Chemical Engineering, Pohang University of Science and Technology, Kyungbuk 790-784, Korea, Email: <u>jinwoo03@postech.ac.kr</u>

Synthesis of m-WO_{3-X}, m-WO₃ and b-WO₃: Mesoporous silica KIT-6 was used as a hard template and synthesized following the reported procedure.¹ KIT-6 was impregnated with phosphotungstic acid in two steps. In first impregnation stage, 1.2 g of phosphotungstic acid was incorporated into the pores of 0.45 g KIT-6 by impregnation method and calcined at 350 °C under air. In the second impregnation step, 0.6 g of phosphotungstic acid was incorporated into the pores of prepared composite, and calcined at 550 °C under air to obtain WO₃/KIT-6. HF etching of WO₃/KIT-6 generated m-WO₃. To obtain m-WO_{3-X}, WO₃/KIT-6 composite was heat-treated at 600 °C under Ar/H₂ (4 wt%) atmosphere for 4 hours and further stirred with 5 wt% HF solution for the removal of silica.² b-WO_{3-X} (bulk WO_{3-X}) was prepared following the same procedure for m-WO_{3-X} except KIT-6 was not used.

Figure S1. TEM images of (a) m-WO_{3-X} and (b) m-WO₃. Both materials were

synthesized using KIT-6 hard template and have the same ordered pore structure.

Figure S2. (a) Nitrogen adsorption-desorption isotherms of m-WO_{3-X} and m-WO₃ (b) Pore size distributions of m-WO_{3-X} and m-WO₃ estimated from adsorption branch using BJH (Barett-Joyner-Halenda). The pore structure of m-WO₃ judged by N_2 isotherm and pore size distributions is nearly identical to that of m-WO_{3-X}. An N_2 adsorption shows

two distinct jumps at ~0.5 P/P₀ and ~0.9 P/P₀, corresponding to uniform 3.5 nm pores and ~20 nm pores observed in pore size distributions, respectively. ~20 nm sized pores might be produced by filling phosphotungstic acid in either one of two chiral channels and removal of KIT-6 template.²

Figure S3. (a) XRD patterns of m-WO_{3-X} and m-WO₃. Diffraction peaks in m-WO_{3-X}

can be indexed to the cubic WO_{3-X} phase (JCDPS:46-1096). The XRD pattern of m-WO₃ is well-matched with tetragonal phase (JCDPS:89-1287) (b) Small angle X-ray scattering (SAXS) patterns of m-WO_{3-X} and m-WO₃. (c) XRD pattern of b-WO_{3-X}. Diffraction peaks in b-WO_{3-X} can be indexed to the cubic WO_{3-X} phase (JCDPS:46-1096)

Figure S4. Cyclic voltamograms with change of scan rate from 5 to 50 mV/s for b- WO_{3-X} (a), m- WO_{3-X} (b) and m- WO_3 (c)

Figure S5. Galvanostatic charge-discharge patterns with change of applied current from 1 to 20 mA/cm² for b-WO_{3-X} (a), m-WO_{3-X} (b) and m-WO₃ (c)

Figure S6. (a) Electrochemical impedance spectra for three tungsten oxide electrodes when 5 mV voltage magnitude from 5 mHz to 10^5 Hz at open circuit voltage (OCV). (b) Change of capacity with cycles of m-WO_{3-X} electrodes.

References

- 1. F. Kleitz, S. H. Choi, R. Ryoo, Chem. Commun. 2003, 2136.
- 2. (a) Shi, Y.; Guo, B.; Corr, S. A.; Shi, Q.; Hu, Y. -S.; Heier, K. R.; Chen, L.;

Seshadri, R.; Stucky, G. D. Nano Lett. 2009, 9, 4215. (b) Kang, E.; An, S.; Yoon, S.;

Kim, J. K.; Lee, J. J. Mater. Chem. 2010, 20, 7416.