Supporting Information

"Click" synthesis of small molecule-peptide conjugates for organellespecific delivery and inhibition of lysosomal cysteine proteases

Yuhui Loh, ${ }^{a}$ Haibin Shi, ${ }^{\text {a }}$ Mingyu Hu, ${ }^{\text {a }}$ Shao Q. Yao*a,b,c

Departments of Chemistry ${ }^{a}$ and Biological Sciences, ${ }^{\text {b }}$ NUS MedChem Program of the Life Sciences Institute, ${ }^{\text {c }}$ National University of Singapore, Singapore 117543

Contents

1. General information
2. Synthetic procedure and LC-MS profile of alkyne-functionalized inhibitor
3. Synthetic procedure and LC-MS profiles of azide-functionalized localization peptides
4. Synthetic procedure and LC-MS profiles of "click" inhibitor-peptide conjugates
5. Procedure for IC_{50} evaluation against recombinant cathepsin L
6. Cell culture
7. Procedure and results for western blot of HepG2 cell lysate
8. Procedure for IC_{50} evaluation against HepG2 cell lysate
9. Procedure and results for cell imaging with control peptides
10. Procedure and results for cell imaging with cell-permeable fluorogenic substrate
11. Procedure and results for flow cytometry analysis
12. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

1. General information

All ${ }^{1} \mathrm{H}$ NMR spectra were taken on a Bruker ACF-300/500 MHz NMR spectrometer, using CDCl_{3} or $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ as the solvent. Chemical shifts are reported in parts per million referenced with respect to residual solvent $\left(\mathrm{CDCl}_{3}=7.26 \mathrm{ppm}\right.$ and $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}=2.50 \mathrm{ppm}\right)$. LC-MS spectra were recorded using Shimadzu LC-MS IT-TOF. Extent of reaction was monitored by thin layer chromatography (TLC) using Merck $60 \mathrm{~F}_{254}$ pre-coated silica gel plates with fluorescent indicator UV254. After the plates were subjected to elution in the TLC chamber, the spots were visualized under UV light or using the appropriate stain $\left(I_{2}, \mathrm{KMNO}_{4}\right.$, ninhydrin, ceric ammonium molybdate (CAM)). Flash column chromatography was carried out using Merck silica gel (0.040-0.063).

2. Synthetic procedure and LC-MS profile of alkyne-functionalized inhibitor

(2)
(3)

Scheme S1 Synthesis of alkyne-functionalized inhibitor L1.

Procedure to (S)-tert-butyl 1-(1-methyl hydrazinyl)-1-oxo-3-phenylpropan-2-yl carbamate (2). N -Boc-L-phenylalanine (1) ($1 \mathrm{eq} . ; 3 \mathrm{mmol} ; 0.80 \mathrm{~g}$) was dissolved in dry THF (20 mL) and cooled to $-25^{\circ} \mathrm{C}$ in an acetone/dry ice bath under nitrogen atmosphere. To the stirred solution, N-methylmorpholine (NMM) (1.2 eq.; $3.6 \mathrm{mmol} ; 0.40 \mathrm{~mL}$), followed by isobutyl chloroformate (ISCF) (1.2 eq.; $3.6 \mathrm{mmol} ; 0.47 \mathrm{~mL}$) was added dropwise to the reaction mixture. The reaction was stirred for 3 h and filtered to remove the NMM. HCl salt. Methylhydrazine sulphate (1.2 eq .; $3.6 \mathrm{mmol} ; 0.52 \mathrm{~g})$ was dissolved in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$, and $5 \mathrm{~N} \mathrm{NaOH}(2 \mathrm{~mL})$ was added under ice cooling. The methylhydrazine solution was added dropwise to the filtrate at $-25^{\circ} \mathrm{C}$. The reaction was allowed to warm to room temperature and stirred for 18h. After evaporation of the solvent, the aqueous residue was extracted with EA ($3 \times 50 \mathrm{~mL}$). Organic phases were pooled, washed with saturated $\mathrm{NaHCO}_{3}(2 \times 30 \mathrm{~mL})$, brine $(2 \times 30 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by flash column chromatography (EA:Hexane, 1:1) afforded (2) as a
colourless oil ($0.45 \mathrm{~g}, 51 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.41$ (s, 9 H), 2.50 (bs, 2 H), 3.07 (s, 3 H), $3.34(\mathrm{~s}, 2 \mathrm{H}), 5.49(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{bs}, 1 \mathrm{H}), 7.23-7.29(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 28.3, 38.5, 40.0, 50.8, 79.3, 126.6, 128.1, 129.4, 155.2. LC-MS: m/z [M+H] ${ }^{+}$calcd: 294.17, found: 294.16.

Procedure to (S)-tert-butyl 1-(1,2-dimethyl hydrazinyl)-1-oxo-3-phenylpropan-2-yl carbamate (4). To a solution of (2) ($1 \mathrm{eq} . ; 0.58 \mathrm{mmol} ; 0.17 \mathrm{~g}$) in dry THF (10 mL) was added formaldehyde ($37 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}$) (1.2 eq.; $0.70 \mathrm{mmol} ; 0.05 \mathrm{~mL}$), followed by anhydrous MgSO_{4} (1 eq.; $0.58 \mathrm{mmol} ; 0.07 \mathrm{~g}$) and glacial acetic acid (0.3 eq.; $0.19 \mathrm{mmol} ; 0.02 \mathrm{~mL}$). The reaction was stirred at room temperature for 4 h . After removal of the solvent, resulting residue was dissolved in EA, washed with brine ($3 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give (S)-tertbutyl 1-(1-methyl-2-methylenehydrazinyl)-1-oxo-3-phenylpropan-2-ylcarbamate (3) a crude colourless oil and was used directly for next step without purification. (3) was dissolved in dry THF (10 mL) and cooled to $0^{\circ} \mathrm{C}$ under an ice water bath. Glacial acetic acid (6 mL), followed by $\mathrm{NaBH}_{3} \mathrm{CN}$ (2.5 eq.; $1.45 \mathrm{mmol} ; 0.09 \mathrm{~g}$) was added. The reaction was allowed to warm to room temperature and stirred overnight. After evaporation of solvent, resulting residue was cooled to $0^{\circ} \mathrm{C}$ and saturated NaHCO_{3} was added. Aqueous solution was extracted with $\mathrm{EA}(3 \times 50 \mathrm{~mL})$. The combined EA layers were washed with $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$, brine ($2 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Residue was dissolved in $\mathrm{MeOH}(13 \mathrm{~mL})$ and $1 \mathrm{~N} \mathrm{NaOH}(7$ mL) was added. The reaction was stirred at room temperature for 2 h and concentrated in vacuo. The aqueous residue was extracted with EA ($3 \times 50 \mathrm{~mL}$). Organic phases were pooled, washed with brine ($2 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by flash column chromatography (EA:Hexane, 1:1) afforded (4) as a white solid ($0.12 \mathrm{~g}, 68 \%$ yield over two steps). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.28(\mathrm{~s}, 9 \mathrm{H}), 2.45(\mathrm{~d}, \mathrm{~J}=6.30 \mathrm{~Hz}, 3 \mathrm{H}), 2.79(\mathrm{~s}, 1 \mathrm{H})$, 2.97-3.01 (m, 2 H), $3.04(\mathrm{~s}, 3 \mathrm{H}), 5.25(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.29(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $28.3,31.8,35.4,39.9,50.9,79.3,126.5,128.1,129.5,138.5,174.1$. LC-MS: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd: 308.19, found: 308.18.

Procedure to (S)-2-amino-N,N'-dimethyl-3-phenylpropanehydrazide (5). A solution of (4) (1 eq.; $2.39 \mathrm{mmol} ; 0.73 \mathrm{~g}$) in dry DCM (8 mL) was cooled to $0^{\circ} \mathrm{C}$ under an ice water bath and TFA (2 mL) was added dropwise. The reaction was allowed to warm to room temperature and stirred for 3h. After concentration in vacuo, resulting residue was neutralized to pH 10 using 1 N NaOH . Aqueous solution was extracted with DCM ($3 \times 50 \mathrm{~mL}$). The combined DCM layers were washed with brine ($2 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo, giving (5) as a colourless oil ($0.46 \mathrm{~g}, 93 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.17$ (bs, 2 H), $2.56(\mathrm{~s}, 3 \mathrm{H}), 2.76$ (dd, J = 13.2, $8.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.87(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 1 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 4.62(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.31(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 32.2,35.4,40.9,52.1,126.9,128.6,129.4,137.4,176.7 . \mathrm{LC}-\mathrm{MS}: \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$ calcd: 208.14, found: 208.13.

Procedure to (S)-N-(1-(1,2-dimethylhydrazinyl) -1-oxo-3-phenylpropan-2-yl)-4-(prop-2-ynyl oxy)benzamide (6). 4-(prop-2-ynyloxy)benzoic acid ($1.2 \mathrm{eq} . ; 0.71 \mathrm{mmol} ; 0.10 \mathrm{~g}$) was dissolved in dry DCM $(10 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$ under an ice water bath. To the stirred solution, HBTU (1.2 eq.; $0.71 \mathrm{mmol} ; 0.27 \mathrm{~g}$), followed by DIEA (1.2 eq.; $0.71 \mathrm{mmol} ; 0.12 \mathrm{~mL}$) was added to the reaction mixture. The reaction was stirred 10 min , after which (5) ($1 \mathrm{eq} . ; 0.60 \mathrm{mmol} ; 0.12 \mathrm{~g}$) was added. The reaction was stirred overnight at room temperature. After evaporation of the solvent, the residue was suspended in water and extracted with EA ($3 \times 50 \mathrm{~mL}$). Organic phases were pooled, washed with saturated $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL}), 1 \mathrm{~N} \mathrm{HCl}(2 \times 50 \mathrm{~mL})$, brine $(2 \times 50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by flash column chromatography (EA:Hexane, 1:1) afforded (6) as a colourless oil (0.21 g , 94% yield). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.\mathrm{d}_{6}\right) \delta 2.57(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.89-3.05(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~d}, \mathrm{~J}=2.13 \mathrm{~Hz}$, $2 \mathrm{H}), 5.49(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=8.55 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=8.52 \mathrm{~Hz}, 2 \mathrm{H}), 8.33(\mathrm{~d}$, $\mathrm{J}=8.55 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) $\delta 31.1,35.0,36.7,51.6,55.6,78.5,79.0,114.3$, 126.2, 127.2, 128.1, 129.1, 129.2, 139.1, 159.5, 165.7, 173.4. LC-MS: m/z [M+H] ${ }^{+}$calcd: 366.17, found: 366.21 .

Procedure to (S)-N-(1-(2-cyano-1,2-dimethyl hydrazinyl)-1-oxo-3-phenylpropan-2-yl)-4-(prop-2-ynyloxy)benzamide (L1). To a solution of (6) ($1 \mathrm{eq} . ; 0.56 \mathrm{mmol} ; 0.21 \mathrm{~g}$) in dry MeOH $(10 \mathrm{~mL})$ was added sodium acetate ($2.8 \mathrm{eq}$. ; $1.57 \mathrm{mmol} ; 0.13 \mathrm{~g}$), followed by cyanogen bromide (3.3 eq.; $1.85 \mathrm{mmol} ; 0.20 \mathrm{~g}$). The reaction was stirred overnight at room temperature. After evaporation of the solvent, residue was suspended in water and extracted with $\mathrm{EA}(3 \times 50 \mathrm{~mL})$. Organic phases were pooled, washed with brine ($2 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by flash column chromatography (EA:Hexane, 1:1) afforded (L1) as a yellow oil ($0.07 \mathrm{~g}, 30 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.53(\mathrm{~s}, 1 \mathrm{H}), 3.05(\mathrm{~m}, 2 \mathrm{H})$, 3.23 (s, 3H), 3.33 (s, 3H), 4.72 (d, J = $2.3 \mathrm{~Hz}, 2 \mathrm{H}$), 5.47 (m, 1H), 6.61 (d, J=7.89 Hz, 1H), 6.96 (d, $J=8.88 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.66(\mathrm{~d}, \mathrm{~J}=8.70 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=8.52 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.5,38.1,41.2,50.6,55.8,76.0,77.8,114.7,124.3,126.7,127.4,128.8$, 129.2, 129.6, 135.5, 160.3, 166.8, 173.3. LC-MS: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd: 391.17, found: 391.16.

L1

3. Synthetic procedure and LC-MS profiles of azide-functionalized localization peptides

3 microreactors containing Rink amide resin (150 mg ; loading $=0.6 \mathrm{mmol} / \mathrm{g}$) were swelled in DMF for 2 h . The solvent was removed, followed by Fmoc-deprotection with piperidine ($20 \mathrm{wt} \%$ in DMF; $20 \mathrm{~mL})$. The reaction was shaken at room temperature for 2 h . The resulting resins were washed with DMF ($3 \times 50 \mathrm{~mL}$), DCM ($3 \times 50 \mathrm{~mL}$), MeOH ($3 \times 50 \mathrm{~mL}$) and DMF ($1 \times 50 \mathrm{~mL}$). The extent of reaction was monitored by ninhydrin test, where the presence of a primary amine is indicated by the blue colour of the resin. The resins were then added to pre-activated solutions of Fmocprotected amino acid (4 eq.; 0.36 mmol), HOBT (4 eq.; $0.36 \mathrm{mmol} ; 0.05 \mathrm{~g}$), HBTU (4 eq.; 0.36 $\mathrm{mmol} ; 0.14 \mathrm{~g}$) and DIEA ($4 \mathrm{eq} . ; 0.36 \mathrm{mmol} ; 0.12 \mathrm{~mL}$) in DMF (15 mL). The reactions were shaken overnight at room temperature. The resulting resins were washed with DMF ($3 \times 50 \mathrm{~mL}$), DCM (3 $\times 50 \mathrm{~mL})$, $\mathrm{MeOH}(3 \times 50 \mathrm{~mL})$ and DMF ($1 \times 50 \mathrm{~mL}$). The extent of reaction was monitored by ninhydrin test, where the absence of primary amine is indicated by the red colour of the resin. Repeated cycles of Fmoc-deprotection and coupling to Fmoc-protected amino acids resulted in peptide elongation. Finally, the N-terminus of each resin-bound peptide was coupled to 4azidobutanoic acid ($4 \mathrm{eq} . ; 0.36 \mathrm{mmol} ; 0.05 \mathrm{~g}$) in the presence of HOBT ($4 \mathrm{eq} . ; 0.36 \mathrm{mmol} ; 0.05 \mathrm{~g}$), HBTU (4 eq.; $0.36 \mathrm{mmol} ; 0.14 \mathrm{~g}$) and DIEA (4 eq.; $0.36 \mathrm{mmol} ; 0.12 \mathrm{~mL}$) in DMF (15 mL). After a round of washings, the resins were dried under vacuum. The dried resins were transferred from their microreactors to separate reaction vessels. All three peptides were cleaved and deprotected from the solid support using TFA:TIS: $\mathrm{H}_{2} \mathrm{O}(95: 2.5: 2.5)$. Ether precipitation, followed by purification with preparatory HPLC, afforded the peptides as white solids. The peptides were characterized
using LC-MS IT-TOF. The m / z values obtained were fractions of the mass of target peptides due to positive charges present on the peptides, contributed by the protonation of arginine and lysine residues.
N_{3}-Tat: $\mathrm{N}_{3}-\left(\mathrm{CH}_{2}\right)_{3}$-CONH-RKKRRQRRR-CONH ${ }_{2}$
LC-MS: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd: 1449.92. $[\mathrm{M}+\mathrm{H}]^{3+}$ calcd: 483.97, found: 483.97.
N_{3}-SV40: $\mathrm{N}_{3}-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{CONH}-K K K R K V-\mathrm{CONH}_{2}$
LC-MS: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd: 896.62. $[\mathrm{M}+\mathrm{H}]^{2+}$ calcd: 448.81, found: 448.80.
\mathbf{N}_{3}-KK: N_{3} - $\left(\mathrm{CH}_{2}\right)_{3}$ - $\mathrm{CONH}-\mathrm{KK}$ (palmitoyl)-CONH ${ }_{2}$
LC-MS: m/z [M+H] calcd: 623.49, found: 623.48.

N_{3}-Tat

$\mathrm{N}_{3}-\mathrm{SV} 40$

N_{3}-KK

4. Synthetic procedure and LC-MS profiles of "click" inhibitor-peptide conjugates

General procedure for "click" assembly of inhibitor-peptide conjugates. To a $48 \mu \mathrm{~L}$ solution of DMSO: $\mathrm{H}_{2} \mathrm{O}$ (1:1) / ${ }^{\mathrm{t}} \mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}(1: 1)$ in a 2 mL eppendorf tube, were added $8 \mu \mathrm{~L}$ of alkynefunctionalized inhibitor $\mathbf{L 1}(20 \mathrm{mM})$ and $4 \mu \mathrm{~L}$ of azide-functionalized localization peptide (20 mM). $8 \mu \mathrm{~L}$ of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(4 \mathrm{mM})$ and $8 \mu \mathrm{~L}$ of TBTA (10 mM) were pre-mixed and added to the solution, followed by $4 \mu \mathrm{~L}$ of sodium ascorbate (50 mM). The tubes were capped and shaken at room temperature for one day, after which products were purified by preparatory HPLC. The conjugates were re-dissolved in $80 \mu \mathrm{~L}$ of 5% DMSO and analyzed by LC-MS IT-TOF.
L1-Tat: LC-MS: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd: $1840.09 .[\mathrm{M}+\mathrm{H}]^{3+}$ calcd: 614.03 , found: 614.37 .
L1-SV40: LC-MS: m/z [M+H] calcd: 1286.79. $[\mathrm{M}+\mathrm{H}]^{2+}$ calcd: 643.90 , found: 643.91 .
L1-KK: LC-MS: m/z [M+H] calcd: 1013.66, found: 1013.67.

L1-Tat

L1-SV40

L1-KK

L1-Tat

L1-SV40

L1-KK

Figure S1 Chemical structure of inhibitor-peptide conjugates.

5. Procedure for $I C_{50}$ evaluation against recombinant cathepsin L

IC_{50} measurements were performed to determine the potency of the alkyne-functionalized inhibitor L1 and its three conjugates against recombinant cathepsin L. The dose-dependent inhibition assays were performed by varying the concentration of inhibitors under fixed enzyme and fluorogenic substrate Z-FR-AMC (Biotium) concentrations of 5 nM and $20 \mu \mathrm{M}$ respectively. The fluorometric assays were performed in 384-well Greiner black plates, and the fluorescence readouts were monitored over 3h assay runs using BioTek Multi-Mode Microplate Reader for fluorescence background at an excitation wavelength of 360 nm and an emission wavelength of 460 nm . Kinetic endpoints were obtained and analyzed using GraphPad Prism software to plot out the IC_{50} graphs (Figure 2 a).

6. Cell culture

The HepG2 cell line was cultured in growth media (DMEM) supplemented with 10% fetal bovine serum and 1% penicillin. Cells were maintained in a humidified atmosphere of $5 \% \mathrm{CO}_{2}$ at $37^{\circ} \mathrm{C}$.

7. Procedure and results for western blot of HepG2 cell lysate

Figure S2 Western blot results of HepG2 cell lysate with anti-cathepsin L. Lane 1: 50 ng recombinant cathepsin L (Heavy chain -24 kD). Lane 2 : $10 \mu \mathrm{~g}$ HepG2 cell lysate (Heavy chain 21 kD).

An SDS-PAGE gel of HepG2 cell lysate was electrotransferred overnight at $4{ }^{\circ} \mathrm{C}$ to a PVDF membrane. The membrane was blocked with 3% BSA in 0.1% Tween 20 (TBS-T) for 1 h at $25^{\circ} \mathrm{C}$. After four 10 min washes with TBS-T, the membrane was treated with cathepsin L antibody (Abcam) in 3\% BSA in TBS-T (1:600 dilution) for 1 h at $25^{\circ} \mathrm{C}$. The membrane was then washed four times (10 min each wash) with TBS-T and subsequently incubated with goat anti-mouse HRP antibody (Pierce) (1:3000 dilution) for 1 h at $25^{\circ} \mathrm{C}$. The membrane was washed four times (10 min each wash) with TBS-T. Enhanced ChemiLuminescent (ECL) reagent was used and the image was acquired using dark room development facilities.

8. Procedure for IC_{50} evaluation against HepG2 cell lysate

IC_{50} measurements were performed to determine the potency of the alkyne-functionalized inhibitor L1 and its three conjugates against HepG2 cell lysate. The dose-dependent inhibition assays were performed by varying the concentration of inhibitors under fixed lysate and fluorogenic substrate Z-FR-AMC (Biotium) concentrations of $0.1 \mathrm{mg} / \mathrm{mL}$ and $5 \mu \mathrm{M}$ respectively. The fluorometric assays were performed in 384-well Greiner black plates, and the fluorescence readouts were monitored over 3h assay runs using BioTek Multi-Mode Microplate Reader for fluorescence background at an excitation wavelength of 360 nm and an emission wavelength of 460 nm . Kinetic endpoints were obtained and analyzed using GraphPad Prism software to plot out the IC_{50} graphs (Figure 2 b).

9. Procedure for cell imaging with control peptides

SG-Tat

SG-SV40

SG-KK

Figure S3 Chemical structure of SG-peptides.

HepG2 cells were seeded on glass-bottom dishes (Mattek) and grown till 70-80\% confluency. The growth medium was removed; the cells were first fixed with 3.7% paraformaldehyde in PBS for 15 min and washed twice with PBS. Next the fixed cells were incubated with $1 \mu \mathrm{M}$ SG-peptides for 2 h . The cells were then washed twice with PBS and incubated with $0.25 \mu \mathrm{~g} / \mathrm{mL}$ of organelle trackers according to the various SG-peptides: Lyso Tracker Red (Invitrogen) for SG-Tat; Hoechst stain (Cell Technology) for SG-SV40; Cell mask orange (Invitrogen) for SG-KK. After washing the cells with PBS, the cells were imaged with an Olympus IX71 inverted microscope, equipped with a 60X oil objective (NA 1.4, WD 0.13 mm) and CooISNAP HQ CCD camera (Roper Scientific). Images were processed with MetaMorph software (Molecular Devices) (Figure 3a).

Figure S4 Alternative procedure: Live HepG2 cells were first treated with $1 \mu \mathrm{M}$ SG-Tat for 2 h , followed by incubation with $0.25 \mu \mathrm{~g} / \mathrm{mL}$ of Lyso Tracker Red. Cells were then fixed with 3.7% paraformaldehyde in PBS for 15 min and imaged with Olympus BX61 confocal microscope. Scale bar $=20 \mu \mathrm{~m}$.
10. Procedure and results for cell imaging with cell-permeable fluorogenic substrate

Figure S5 Fluorescence images of fixed HepG2 cells after incubation with 2\% DMSO, followed by cell-permeable cathepsin L substrate, and finally Lyso Tracker Green and Hoechst stain.

HepG2 cells were seeded on glass-bottom dishes (Mattek) and grown till 70-80\% confluency. The growth medium was removed; the cells were fixed with 3.7% paraformaldehyde in PBS for 15 min and washed twice with PBS. Next the cells were incubated with $0.1 \mu \mathrm{M}$ of alkyne-functionalized inhibitor L1 and peptide conjugates for 2 h . The cells were then washed twice with PBS and incubated with $2.6 \mu \mathrm{M}$ of cell-permeable cathepsin L substrate (Cell Technology) for 30 min . After the cells were washed twice with PBS, they were incubated with $0.25 \mu \mathrm{~g} / \mathrm{mL}$ of Lyso Tracker

Green (Invitrogen), and subsequently $0.25 \mu \mathrm{~g} / \mathrm{mL}$ of Hoechst stain (Cell Technology). The cells were washed with PBS and imaged with an Olympus IX71 inverted microscope, equipped with a 60X oil objective (NA 1.4, WD 0.13 mm) and CoolSNAP HQ CCD camera (Roper Scientific). Images were processed with MetaMorph software (Molecular Devices) (Figure 3b).

11. Procedure and results for flow cytometry analysis

HepG2 cells were harvested, washed once with cold PBS, and fixed with 3.7\% paraformaldehyde in PBS for 15 min. Cells were washed once with cold PBS and resuspended in sodium acetate buffer (25 mM sodium acetate, 1.25 mM EDTA, pH 5.5). Cells were then incubated with $1 \mu \mathrm{M}$ alkyne-functionalized inhibitor L1 and peptide conjugates for 2 h , followed by $20 \mu \mathrm{M}$ of cellpermeable cathepsin L substrate (Cell Technology) for $2 h$. Flow cytometry analysis was performed on Guava EasyCyte Plus machine equipped with a 532 nm excitation laser and a 690/50 nm detection filter. Histograms were generated using Guava Express Pro analysis software. Mean fluorescence intensity (MFI) was computed based on events marked red as "M1" in plots shown in Figure S6.

Figure S6 Flow cytometry histograms after incubation with $1 \mu \mathrm{M}$ of the indicated inhibitors, followed by addition of cell-permeable fluorogenic substrate.

Inhibitor	MFI	Relative MFI
No inhibitor	491.89	1.00
L1	394.31	0.80
L1-Tat	362.60	0.74
L1-SV40	424.53	0.86
L1-KK	382.13	0.78

Table 1 Mean fluorescence intensity (MFI) from flow cytometry analysis.
12. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

C urrent D ata Parameters ** NAME : cxm0907 $\begin{array}{ll}\text { EXPNO: } & 5 \\ \text { PROCNO: } & 1\end{array}$
*** Acquisition Parameters *** IN STR UM: av500 LOCNUC: $\quad 2 \mathrm{H}$ NUCLEUS off 01 : 3088.51 Hz PULPROG zg30 SFO $1 \quad 5: 00.1330885 \mathrm{MHz}$ SOLVENT: CDCI3
SW : 20.6557 ppm TD : 32768 *** Processing Parameters *** ** 1D NMR Plot Parameters * NUCLEUS of

13C Standard AC 300
Compound 4

1H AM X500 09 Sep 2009
Compound 5

130 AM XbuU
Compound 5

C urrent D ata Parameters **
NAME: cxm0909
EXPNO: Cxm0909
PROCNO: $\quad 1$
*** Acquisition Parameters ***
IN STRUM: av500
LOCNUC: $\quad 2 \mathrm{H}$
NS : 15
NUCLEUS off
01 : 3088.51 Hz
PULPROG zg30
SFO $1 \quad 5: 00.1330885 \mathrm{MHz}$
SOLVENT: CDCI3
SW: 20.6557 ppm
TD : 32768 *** Processing Parameters .**
LB : $\quad 0.30 \mathrm{~Hz}$
**1D NMR Plot Parameters **
NUCLEUS off

1 H normal range AC 300
Compound 6

Briker

$$
\begin{aligned}
& \text { ** Current D ata Parameters ** } \\
& \text { NAME : se24su~1 } \\
& \text { EXPNO : } 9 \\
& \begin{array}{cc}
\text { PROCNO: } & 1 \\
\cdots & \text { Acquisition } \\
\text { Parameters }
\end{array} \\
& \text { IN STRUM: spect } \\
& \text { LOCNUC: } \quad 2 \mathrm{H} \\
& \text { NS : } 8 \\
& \text { NUCLEUS off } \\
& \begin{array}{lc}
\text { PULPROG } & \left.\begin{array}{c}
1853.43 \mathrm{H} \\
\mathrm{zg} 30
\end{array}\right]
\end{array} \\
& \text { SFO } 1 \quad 3: 00.1318534 \mathrm{MHz} \\
& \text { SOLVENT: DMSO } \\
& \text { SW : } 17.9519 \mathrm{ppm} \\
& \text { ** Processing Parameters ** } \\
& \text { LB } \quad: \quad 0.30 \mathrm{~Hz} \\
& \text { * } 1 \text { D NMR Plot Parameters * } \\
& \text { NUCLEUS of }
\end{aligned}
$$

13C normal range AC 300
Compound 6

$\begin{array}{lllllllllllllll}200 & 180 & 160 & 140 & 120 & 100 & 80 & 60 & 40 & 20 & 0 \\ (\mathrm{ppm})\end{array}$

