Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2010

Highly sensitive naked-eye and fluorescence "turn-on" detection of Cu²⁺ using Fenton reaction assisted signal amplification

Yi-Bin Ruan,^a Chun Li,^{a,b} Jie Tang^b and Juan Xie^a*

^a PPSM, Institut d'Alembert, ENS Cachan, CNRS, Universud, 61 av President Wilson, F-94230
Cachan, France
^bInstitute of Medicinal Chemistry, Department of Chemistry, East China Normal University, Shanghai
200062, China
Email: joanne.xie@ppsm.ens-cachan.fr

Electronic Supporting Information

1. Materials and Methods

Absorption spectra were recorded on a Uvikon-940 KON-TRON spectrophotometers and corrected emission spectra were performed on a Jobin-Yvon Spex Fluorolog 1681 spectrofluorometer (1 cm quartz cell was used). Stock solution (1.0 mM) of compounds **1** and **2** was prepared in DMSO. Stock solutions of metal nitrate/perchlorate salts were prepared in $H_2O/MeCN$, respectively.

The tested metal salts included $Cu(NO_3)_2$, CuI, $AgNO_3$, $Ca(ClO_4)_2$, $Ba(ClO_4)_2$, $Mn(ClO_4)_2$, $Mg(ClO_4)_2$, $Co(ClO_4)_2$, $Cd(ClO_4)_2$, $Zn(ClO_4)_2$, $Ni(ClO_4)_2$, $Fe(ClO_4)_2$, $Pb(ClO_4)_2$, and $Hg(ClO_4)_2$.

2. Procedure of detection of Cu²⁺

To the Mill-Q water solution containing 10 μ M of compound **1**, 1.0 mM NaAscH was first introduced, and then varying concentration of Cu²⁺ was subsequently added to the above solution. The solution was incubated for 7 min and then spectra were recorded.

Fig. S1 Absorption (top) and fluorescence (bottom) spectra of compound 1 in 10 mM HEPES solution under different pH conditions. [1] = 10.0 μ M, $\lambda_{ex} = 454$ nm.

Fig. S2 Absorption (left) and fluorescence (right) spectra of **1**, **1** in the absence and presence of Cu^{2+} in H₂O or **1** at pH 9.2. [**1**] = 10.0 μ M, [Cu²⁺] = 0.5 μ M, [AscH⁻] = 1.0 mM, $\lambda_{ex} = 454$ nm, reaction time 7 min.

Fig. S3 Kinetics profiles of 1 in the presence of 200 nM Cu²⁺ in H₂O. [1] = 10.0 μ M, [AscH⁻] = 1.0 mM, $\lambda_{ex} = 454$ nm.

Fig. S4 Fluorescence intensity at 517 nm of **1** in the presence of various metal ions in H₂O. [**1**] = 10.0 μ M, [Cu⁺] = [Cu²⁺] = 0.5 μ M and other metal ions 40 μ M, [AscH⁻] = 1.0 mM, reaction time 7 min.

Fig. S5 Fluorescence intensity at 517 nm (top), color (middle) and fluorescence (bottom) change of **1** in the presence of various metal ions and then further addition of Cu^{2+} in H₂O. [**1**] = 10.0 μ M, [Cu^{2+}] = 5.0 μ M and other metal ions 40 μ M, [AscH⁻] = 1.0 mM, illuminated under 365 nm, reaction time 5 min.

Fig. S6 Kinetics profiles of 1 in the presence of Cu^{2+} in H₂O. [1] = 10.0 μ M, [Cu^{2+}] = 0.5 μ M, [AscH⁻] = 1.0 mM, $\lambda_{ex} = 454$ nm.

Fig. S7 Fluorescence spectra of **1**, **1** + Cu⁺ in the absence and presence of AscH⁻ in H₂O. [**1**] = 10.0 μ M, [Cu⁺] = 0.5 μ M, [AscH⁻] = 1.0 mM, $\lambda_{ex} = 454$ nm.

Fig. S8 Fluorescence spectra of **1** in the absence and presence of Cu²⁺ in buffered solution. (a) 10 mM HEPES at pH 7.2; (b) 10 mM HEPES at pH 6.0; (c) 10 mM NaHPO₄-NaH₂PO₄ at pH 6.0. [**1**] = 10.0 μ M, [Cu²⁺] = 0.5 μ M, [AscH⁻] = 1.0 mM, λ_{ex} = 480 nm, reaction time 8 min.

Fig. S9 Kinetics profiles of **2** in the presence of Cu^{2+} in H₂O. [**2**] = 10.0 μ M, [Cu^{2+}] = 0.5 μ M, [AscH⁻] = 1.0 mM, $\lambda_{ex} = 454$ nm.