Supporting information

Assembly of the Au-diphosphine helical cage molecules via alkynyl-µ₄methylydine ligand transformation

Igor O. Koshevoy,^{*a} Matti Haukka,^a Stanislav I. Selivanov,^b Sergey P. Tunik^{*b} and Tapani A. Pakkanen^{*a}

^a University of Eastern Finland, Joensuu, Finland.

^b St.-Petersburg State University, Department of Chemistry, St.-Petersburg, Russia. E-mail: <u>igor.koshevoy@uef.fi</u>; <u>stunik@inbox.ru</u>; <u>tapani.pakkanen@uef.fi</u>

Experimental

General comments

Au(tht)Cl (tht = tetrahydrothiophene),¹ (AuC₂Ph)_n,² 3,6-bis(diphenylphosphino)pyridazine,³ PPh₂(C₆H₄)_nPPh₂ (n = 1-3)^{4,5} were synthesized according to published procedures. The complexes (AuC₂Ph)₂*PP* (*PP* = diphosphine) were obtained as described previously and used without purification.^{5,6} Diethyl ether was distilled over Na-benzophenoneketyl under nitrogen atmosphere prior to use. Other reagents and solvents were used as received. The solution 1D ¹H, ³¹P NMR and ¹H-¹H COSY spectra were recorded on Bruker Avance 400 and Bruker DPX 300 spectrometers. Mass spectra were determined in the ESI⁺ mode at St.-Petersburg State University. Microanalyses were carried out in the analytical laboratory of the University of Eastern Finland.

1,3-PPh₂C₂-C₆H₄-C₂PPh₂

1,3-Diethynylbenzene (0.5 g, 3.97 mmol) was dissolved in diethyl ether (60 cm³) under nitrogen atmosphere, the solution was cooled to -78 °C and 1.6 M solution of *n*-BuLi in hexanes (5.5 ml, 8.8 mmol) was added dropwise. The reaction mixture turned into white thick suspension upon slow warming to -20 °C (within ca. 2.5 h), then cooled to -78 °C again and was treated with neat PPh₂Cl (1.8 g, 8.2 mmol). The resulting suspension was stirred below -60 °C for 1 h, then slowly warmed to room temperature (within ca. 2.5 h) and stirring was continued overnight. The brownish reaction mixture was filtered and evaporated. The dark oily residue was dissolved in CH₂Cl₂ (3 cm³), diluted with hexanes (12 cm³) and transferred onto a Silica column (2×15 cm, eluent CH₂Cl₂-hexanes 1:4 v/v). Second fraction was collected and passed through a layer of Al₂O₃ (2×5 cm, neutral). The volatiles were removed and pale yellowish oil solidified upon standing at +5 °C overnight (1.45 g,

74 %). Analytically pure sample was obtained by washing the solid with hexane (upon cooling to - 30 °C, 2×10 cm³) and methanol (at room temperature, 2×10 cm³). ³¹P{¹H} NMR (CDCl₃; δ): -33.6 (s). ¹H NMR (CDCl₃; δ): 7.72 (t, 1H, *J* 1.6 Hz), 7.70-7.65 (m, 8H), 7.52 (dd, 2H, *J* 7.8 Hz, *J* 1.6 Hz), 7.41-7.31 (m, 13H). Anal. Calc. for C₅₄H₄₀P₂: C, 82.58; H, 4.89. Found: C, 82.54; H 5.17.

General method to generate $[{Au(tht)}_2PP](PF_6)_2 (PP = diphosphine)$ complexes exemplified by $PP = PPh_2C_6H_4PPh_2$

Au(tht)Cl (50 mg, 0.156 mol) was dissolved in CH_2Cl_2 (10 cm³) and PPh₂C₆H₄PPh₂ (35 mg, 0.078 mmol) was added. Colorless solution was stirred for 10 minutes and then treated by a solution of AgPF₆ (40 mg, 0.0158 mmol) in acetone. The resulting suspension was stirred in absence of light for 30 min., then filtered to remove precipitate of AgCl and evaporated to give colorless non-crystalline solid, which was used in further reaction without purification.

$[Au_8(\mu_4\text{-}CCOPh)_2(PPh_2C_6H_4PPh_2)_4](PF_6)_2 (1)$

 $(AuC_2Ph)_2PP$ (prepared from 15.5 mg, 0.052 mmol of $(AuC_2Ph)_n$ and $PP = PPh_2C_6H_4PPh_2$ 11.8 mg, 0.026 mmol) was suspended in acetone (3 cm³) and a solution of $[{Au(tht)}_2PP](PF_6)_2$ (prepared from 50 mg, 0.156 mol of Au(tht)Cl, $PP = PPh_2C_6H_4PPh_2$ 35 mg, 0.078 mmol and AgPF₆ 40 mg, 0.0158 mmol) in acetone (10 cm³) was added resulting in formation of a yellow-greenish transparent solution. Then H₂O (5 drops) and NEt₃ (2 drops) were added causing color fading and the reaction mixture was stirred overnight in absence of light. Dirty yellow opaque solution was filtered, evaporated, washed with ethanol $(2 \times 3 \text{ cm}^3)$, diethyl ether $(2 \times 3 \text{ cm}^3)$ and dried. Recrystallization by slow evaporation of its CH₂Cl₂-ethanol solution at room temperature gave paleyellow crystalline material (89 mg, 88%). The crystals suitable for X-ray diffraction study were obtained by gas phase diffusion of diethyl ether into concentrated acetonitrile solution of 1. ES MS (m/z): $[Au_8(CCOPh)_2(PPh_2C_6H_4PPh_2)_4]^{2+}$ 1798 (calcd 1798). ³¹P{¹H} NMR (acetone- d_6 ; δ): 31.9 (s, 8P), -144.8 (sept, 2PF₆). ¹H NMR (acetone- d_6 , -10°C, low temperature limiting spectrum; δ): diphosphine: P-C₆H₄-P 6.95 (m, A₂X₂, 16H,), two sets of inequivalent phenyl rings: (A) 7.77 (t, para-H, 8H; J (H–H) 7.6 Hz), 7.71-7.52 (AB system of ortho-H+meta-H, 32H), (B) 7.30 (t, para-H, 8H; J (H–H) 7.6 Hz), 7.11 (m, ortho-H, 16H, J (H–H) 7.9, J (H–P) 12.2 Hz), 6.75 (dd, meta-H, 16H; J (H-H) 7.6, 7.9 Hz); C-C(O)-Ph: 8.36 (m, ortho-H, 4H, J (H-H) ~7.8 Hz), 7.5-7.41 (m, AB system, meta-H and para-H, 6H). Anal. Calc. for Au₈C₁₃₆H₁₀₆F₁₂O₂P₁₀: C, 42.04; H, 2.75. Found: C, 42.04; H, 3.06.

$[Au_8(\mu_4-CCOPh)_2(PPh_2(C_6H_4)_2PPh_2)_4](PF_6)_2$ (2)

Analogously to **1**, pale yellow crystals, 80%. The crystals suitable for X-ray diffraction study were obtained by gas phase diffusion of diethyl ether into CH₂Cl₂-methanol solution of **2**. ES MS (*m/z*): $[Au_8(CCOPh)_2(PPh_2(C_6H_4)_2PPh_2)_4]^{2+}$ 1950 (calcd 1950). ³¹P{¹H} NMR (acetone-*d*₆; δ): 31.9 (s, 8P), -144.8 (sept, 2PF₆). ¹H NMR (acetone-*d*₆, -50°C, low temperature limiting spectrum; δ): **diphosphine**: **P-C_6H_4- C_6H_4-P** 6.97-6.90 (m, ABX, 32H,), **two sets of inequivalent phenyl rings**: (**A**) 7.60-6.80 (broad ABC multiplet, *ortho-meta-para*-H, 40H, (**B**) 7.38 (m, *ortho*-H, 16H, J (H–H) 8.4, J (H–P) 12 Hz), 7.32 (t, *para*-H, 8H; J (H–H) 8.1 Hz), 6.86 (dd, *meta*-H, 16H; J (H–H) 8.4, 8.1 Hz); **C-C(O)-Ph**: 8.50 (m, *ortho*-H, 4H, J (H–H) ~7 Hz), 7.62-7.48 (m, AB system, *meta*-H and *para*-H, 6H). ¹H NMR (acetone-*d*₆, +45°C, high temperature limiting spectrum; δ): **diphosphine**: **P-C**₆**H**₄-**C**₆**H**₄-**P** 7.26-7.12 (m, ABX, 32H, J (H–H) 8, J (H–P) 14 Hz), **one set of phenyl ring signals**: 7.30 (dd *meta*-H, 32H, J (H–H) 8.2 Hz), 7.56-7.45 (broad AB multiplet, *ortho-para*-H, 48H); **C-C(O)-Ph**: 8.45 (m, *ortho*-H, 4H), 7.49-7.45 (m, AB system, *meta*-H and *para*-H, 6H). Anal. Calc. for Au₈C₁₆₀H₁₂₂F₁₂O₂P₁₀: C, 45.86; H, 2.93. Found: C, 45.84; H, 3.24.

$[Au_8(\mu_4\text{-}CCOPh)_2(PPh_2(C_6H_4)_3PPh_2)_4](PF_6)_2$ (3)

Analogously to 1, pale yellow crystals, 78%. ES MS (m/z): $[Au_8(CCOPh)_2(PPh_2(C_6H_4)_3PPh_2)_4]^{2+}$ 2102 (calcd 2102). ³¹P{¹H} NMR (acetone- d_6 ; δ): 31.5 (s, 8P), -144.8 (sept, 2PF₆). ¹H NMR (acetone- d_6 , +45°C, high temperature limiting spectrum; δ): **diphosphine**: -C₆H₄-C₆<u>H</u>₄- C₆H₄- 7.21 (s, 16H,), -C₆H₄-C₆<u>H</u>₄-P; 7.37-7.30 (m, ABX system, 32H); P-<u>Ph</u> 7.51 (t, *para*-H, 16H; J (H–H) 8 Hz), 7.50 (m, *ortho*-H, 32H, J (H–H) 8, J (H–P) 15 Hz), 7.31 (m, *meta*-H, 32H; J (H–H) 8, J (H–P) 2 Hz); C-C(O)-<u>Ph</u>: 8.46 (m, *ortho*-H, 4H, J (H–H) ~8 Hz), 7.50-7.46 (m, AB system, *meta*-H and *para*-H, 6H). Anal. Calc. for Au_8C_{184}H_{138}F_{12}O_2P_{10}: C, 49.17; H, 3.09. Found: C, 48.87; H, 3.44.

$[Au_8(\mu_4\text{-}CCOPh)_2(PPh_2C_4N_2H_2PPh_2)_4](PF_6)_2$ (4)

Analogously to **1**, recrystallized by gas phase diffusion of diethyl ether into concentrated acetonitrile-methanol solution of **5** at +5 °C, yellow crystals, 53%. ES MS (*m/z*): $[Au_8(CCOPh)_2(PPh_2C_4N_2H_2PPh_2)_4]^{2+}$ 1802 (calcd 1802). ³¹P{¹H} NMR (acetone-*d*₆; δ): 30.5 (s, 8P), -144.8 (sept, 2PF₆). ¹H NMR (NCMe-*d*₃, +50°C, high temperature limiting spectrum; δ): **diphosphine**: **P-C_4N_2H_2-P** 6.95 (broad multiplet, 8H,), **P-Ph**: 7.45 (t, *para*-H, 8H; J (H–H) 7.4 Hz), 7.51 (m, *ortho*-H, 16H, J (H–H) 7.1, J (H–P) 11.9 Hz), 7.18 (dd, *meta*-H, 16H; J (H–H) 7.1, 7.4 Hz); **C-C(O)-Ph**: 8.17 (m, *ortho*-H, 4H, J (H–H) ~8 Hz), 7.38-7.29 (m, AB system, *meta*-H and *para*-H, 6H). Anal. Calc. for Au_8C₁₂₈H₉₈F₁₂N_8O_2P_{10}: C, 39.48; N, 2.88; H, 2.54. Found: C, 39.74; N, 2.86; H, 3.03.

$[Au_8(\mu_4-CCOPh)_2(1,3-PPh_2-C_2-C_6H_4-C_2-PPh_2)_4](PF_6)_2$ (5)

Analogously to **1**, yellow crystals, 62%. ES MS (*m*/*z*): $[Au_8(CCOPh)_2(PPh_2C_2C_6H_4C_2PPh_2)_4]^{2+}$ 1894 (calcd 1894). ³¹P{¹H} NMR (CD₂Cl₂; δ): 6.9 (s, 8P), -143.0 (sept, 2PF₆). ¹H NMR (CD₂Cl₂, +25°C, high temperature limiting spectrum; δ): **diphosphine**: **1,3(PPh_2)-C_6H_4** 7.13 (t, 4H, H⁵ J(H-H) 7.8 Hz), 6.79 (t, 4H, H² J(P-H) 1.5 Hz), 6.60 (dd, 8H, H^{4,6} J(H-H) 7.8, J(P-H)1.6 Hz); **P-Ph** 7.78 (dd, *ortho*-H, 32H, J (H–H) 8, J (H–P) 13 Hz), 7.51 (t, *para*-H, 16H; J (H–H) 8 Hz), 7.32 (ddd, *meta*-H, 32H; J (H–H) 8, J (H–P) 2 Hz); **C-C(O)-Ph**: 8.18 (dd, *ortho*-H, 4H, J (H–H) 8.2, 1.4 Hz), 7.39 (tt, *para*-H, 2H; J (H–H) 7.4, 1.4 Hz), 7.27 (dd, *meta*-H, 4H; J (H–H) 8.2, 7.4 Hz). Anal. Calc. for Au₈C₁₅₂H₁₀₆F₁₂O₂P₁₀: C, 44.77; H, 2.62. Found: C, 44.88; H, 2.92.

X-ray structure determination. The crystals of 1 and 5 were immersed in cryo-oil, mounted in a Nylon loop, and measured at a temperature of 100 K. The X-ray diffraction data were collected on a Nonius KappaCCD diffractometer (1) or on a Bruker Kappa Apex II Duo using Mo K α radiation (λ = 0.710 73 Å). The *Denzo-Scalepack*⁷ or *APEX2*⁸ program packages were used respectively for cell refinements and data reductions. The structures were solved by direct methods using the SHELXS- 97^9 program with the WinGX¹⁰ graphical user interface. A semi-empirical absorption correction (SADABS)¹¹ was applied to all data. Structural refinements were carried out using SHELXL-97.⁹ The structure of 1 was refined as a racemic twin in the space group P1. The BASF value was refined to 0.36672. The carbon atoms in one of the phenyl rings (C21 - C26) were restrained so that their U_{ii} components approximate to isotropic behavior. Some of the phenyl rings were slightly dynamically disordered by rotation of the ring. Because of this the U_{eq(max)}/U_{eq(min)} ratio remained relatively large. No satisfactory disorder model could be found to improve this ratio. In 5 dichloromethane of crystallization was partially lost and therefore CH₂Cl₂ molecules, including the guest molecule, were refined with the total occupancies 0.5. Furthermore, one of the chlorine atoms in one of the CH₂Cl₂ molecules was disordered over two sites with occupancies 0.25. The chlorine carbon-distances were restrained in all solvent molecules. Also, all heavy atoms of the solvent molecules were restrained so that their U_{ii} components approximate to isotropic behavior. For both 1 and 5 hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms, with C-H = 0.95-0.99 Å and U_{iso} = 1.2-1.5 U_{eq} (parent atom). The crystallographic details are summarized in Table S1.

_

Identification code	1	5
Empirical formula	$C_{152}H_{142}Au_8F_{12}N_2O_5P_{10}$	$C_{155}H_{112}Au_8Cl_6F_{12}O_2P_{10}$
Formula weight	4190.11	4332.58
Temperature	100(2) K	100(2) K
Wavelength	0.71073 Å	0.71073 Å
Crystal system	Triclinic	Monoclinic
Space group	P 1	C2/c
Unit cell dimensions	$a = 15.7044(2) \text{ Å}$ $\alpha = 69.282(7)^{\circ}$	$a = 20.8064(4) \text{ Å} \alpha = 90^{\circ}$
	$b = 15.9465(2) \text{ Å}$ $\beta = 75.031(7)^{\circ}$	$b = 20.5555(5) \text{ Å}$ $\beta = 91.8480(10)^{\circ}$
	$c = 17.4245(2) \text{ Å}$ $\gamma = 63.004(6)^{\circ}$	$c = 36.4529(9) \text{ Å}$ $\gamma = 90^{\circ}$
Volume	3611.6(2) Å ³	$15582.3(6) Å^3$
Ζ	1	4
Density (calculated)	1.927 Mg/m^3	1.847 Mg/m ³
Absorption coefficient	8.272 mm ⁻¹	7.770 mm ⁻¹
F(000)	1998	8200
Crystal size	0.44 x 0.34 x 0.30 mm ³	0.34 x 0.32 x 0.18 mm ³
Theta range for data collection	2.38 to 30.05°.	1.77 to 29.62°.
Index ranges	-22<=h<=22, -22<=k<=22, -24<=l<=24	-25<=h<=28, -27<=k<=28, -49<=l<=50
Reflections collected	73258	82208
Independent reflections	38565 [R(int) = 0.0325]	21720 [R(int) = 0.0433]
Completeness to theta = 29.62°	98.7 %	98.9 %
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents
Max. and min. transmission	0.1933 and 0.1230	0.3417 and 0.1793
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data / restraints / parameters	38565 / 39 / 1711	21720 / 42 / 921
Goodness-of-fit on F ²	1.043	1.070
Final R indices [I>2sigma(I)]	R1 = 0.0258, $wR2 = 0.0552$	R1 = 0.0429, WR2 = 0.0884
R indices (all data)	R1 = 0.0308, $wR2 = 0.0575$	R1 = 0.0663, WR2 = 0.0955
Largest diff. peak and hole	1.099 and -2.447 e.Å ⁻³	3.050 and -1.814 e.Å ⁻³

Table S1. Crystal data and structure refinement for 1 and 5.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Figure S1. ESI-MS spectra for the dicationic complexes 1–5. Red – calculated pattern.

Figure S2. VT ¹H NMR spectra of **2**, acetone- d_6 , 300 MHz.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Figure S3. ¹H-¹H COSY NMR spectra of **2**, **A** 318 K, **B** 223 K, acetone-*d*₆, 300 MHz.

Figure S4. ¹H-¹H COSY NMR spectra of **1**, **A** 263 K, acetone-*d*₆; **3**, **B** 318 K, acetone-*d*₆; **4**, **C** 323 K, acetonitrile-*d*₃; **5**, **D** 298 K, CD₂Cl₂.

Figure S5. ¹H NMR changes of **5** upon increase of CS₂ concentration, acetone-d₆, 400 MHz, 298 K (**a** – solution of **5**, **b** – 3 drops of CS₂, **c** – 6 drops). \checkmark denote signals corresponding to Hⁱ protons.

References

- 1. Uson, R.; Laguna, A.; Laguna, M. Inorg. Synth. 1989, 26, 85-91.
- 2. Coates, G. E.; Parkin, C. J. Chem. Soc. 1962, 3220-3226.
- Zhang, Z.-Z.; Wang, H.-K.; Shen, Y.-J.; Wang H.-G.; Wang, R. J. J. Organomet. Chem., 1990, 381, 45–52.
- 4. Baldwin, R. A.; Cheng, M. T. J. Org. Chem. 1967, 32, 1572–1577.
- Koshevoy, I. O.; Karttunen, A. J.; Tunik, S. P.; Haukka, M.; Selivanov, S. I.; Melnikov, A. S.; Serdobintsev, P. Y.; Khodorkovskiy, M. A.; Pakkanen, T. A. *Inorg. Chem.* 2008, 47, 9478– 9488.
- Koshevoy, I. O.; Koskinen, L.; Smirnova, E. S.; Haukka, M.; Pakkanen, T. A.; Melnikov, A. S.; Tunik S. P. Z. Anorg. Allg. Chem. 2010, 636, 795–802.
- Otwinowski, Z.; Minor, W. in *Methods in Enzymology, vol. 276, Macromolecular Crystallography, Part A*, Carter, C. W., Sweet, J., Eds.; Academic Press: New York, USA, 1997; pp 307–326.
- 8. *APEX2 Software Suite for Crystallographic Programs, Bruker AXS, Inc.: Madison, WI, USA, 2009.*
- 9. Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.
- 10. Farrugia, L. J. J. Appl. Cryst. 1999, 32, 837-838.
- Sheldrick, G. M. SADABS Bruker AXS scaling and absorption correction, Bruker AXS, Inc., Madison, Wisconsin, USA, 2008.