Supplementary Information for

The first syntheses of enantiopure 2,2'-biindoline

Steven M. Wales,^a Anthony C. Willis^b and Paul A. Keller^{*a}

^a School of Chemistry, University of Wollongong, NSW 2522, Australia

^b Research School of Chemistry, Australian National University

Contents

General Remarks	S2
Experimental procedures and characterisation data of products	S3
NMR spectra of (2 <i>S</i> ,2' <i>S</i>)-2,2'-biindoline	S11
HPLC traces of (2 <i>S</i> ,2' <i>S</i>)- <i>N</i> , <i>N'</i> -di- <i>tert</i> -butoxycarbonyl-2,2'-biindoline	S12
Crystallographic data for (2 <i>S</i> ,2' <i>S</i>)-2,2'-biindoline	S14
Crystallographic data for (2 <i>S</i> ,2' <i>S</i>)-2,2'-biindolinepalladium(II) dichloride	S21
Notes and References	S26

Dry THF and CH_2Cl_2 were obtained from a Pure Solv MD-5 solvent purification system. Anhydrous DMF and toluene were purchased and used without further purification. N₂ was dried by passage through a CaCl₂ tube. CuI was purified as previously described.^{S1} All other reagents and solvents were purchased reagent grade and used without further purification or drying.

All reactions were performed in acetone washed and oven dried glassware with magnetic stirring under a positive pressure of N_2 unless specified that the reaction was carried out in air. Reactions performed at -40 °C used liquid N_2 /CH₃CN slush baths. Thermal heating of reactions was carried out with paraffin oil baths. Microwave reactions were performed using a Discover CEM Focused Microwave Synthesis System in 10 mL closed vessels under N_2 (unless stated otherwise) with a power setting of 100 W.

Reactions heated either thermally or under microwave irradiation were cooled to RT before quenching and work-up. All organic extracts were dried with anhydrous MgSO₄ and gravity filtered. All solvents were evaporated under reduced pressure on a rotary evaporator and products dried under high vacuum at RT. Purification by column chromatography was performed using Flash Merck Silica Gel 60 (63-200 mesh) under a positive pressure of air. All organic solvent mixtures stated are in volume:volume proportions.

Melting points (m.p.) were determined using a Gallenkamp (Griffin) melting point apparatus. Temperatures are expressed in degrees Celsius (°C) and are uncorrected. High Performance Liquid Chromatography (HPLC) was performed using a Waters 1515 pump and a Daicel Chiralcel OD-H column with a flow rate of 0.5 mL/min and a detection wavelength of 254 nm.

Proton (¹H) and carbon (¹³C) nuclear magnetic resonance (NMR) spectra were recorded at 300 and 75 MHz respectively on a Varian Mercury 300 MHz spectrometer. NMR spectra were aquired in CDCl₃ with chemical shifts (δ) reported in parts per million (ppm) relative to TMS (¹H: δ = 0.00 ppm) and CDCl₃ (¹³C: δ = 77.0 ppm). Alternatively, where stated, spectra were aquired in (CD₃)₂CO with δ values relative to (CH₃)₂CO (¹H: δ = 2.05 ppm) and (<u>CD₃</u>)₂CO (¹³C: δ = 29.8 ppm). Coupling constants (*J*) are reported in Hertz (Hz). *J* values listed in ¹H NMR spectral data refer to coupling between hydrogen nuclei. Multiplicities are reported as singlet (s), broad singlet (bs), doublet (d), doublet of doublets (dd), triplet (t), quartet (q), pentet (p) or multiplet (m).

Electrospray (ES) mass spectra were obtained on a Micromass Platform LCZ spectrometer. Samples were injected as a solution in 50% CH₃CN. In some cases 1% aq. HCOOH was added to suppress dimerisation and/or aid in protonation; this is noted within by: (ES+, HCOOH). High Resolution (HR) ES mass spectrometry (MS) was performed on a Micromass QTOF2 Ultima Spectrometer. Electron Impact (EI) mass spectra were performed using a Shimadzu QP-5050 spectrometer. HR EI mass spectra were obtained using a Fison/VG Autospec-TOF spectrometer at 70 eV with a source temperature of 250 °C. Ion mass to charge (m/z) values of molecular ions (M), fragment peaks and adducts are stated with their relative abundances in parentheses. For compounds with more than one major isotope (eg: compounds containing bromine) all significant isotopic peaks are reported.

Infrared (IR) spectra were recorded with neat samples using a Nicolet Avatar 360 FT-IR spectrometer fitted with a Smart Omni-Sampler germanium crystal accessory. IR data is reported in nanometres (nm) with peak intensity assigned as weak (w), medium (m) or strong (s). Optical rotations were measured using a Jasco DIP-370 digital polarimeter with a 0.1 dm path length and a wavelength of 589 nm. Concentrations (*c*) are given in g/100 mL. X-ray crystallography studies were performed by Dr Anthony Willis at the Australian National University, Canberra.

Synthetic Procedures

Synthesis of (2S,2'S)-2,2'-Biindoline (1) from (2R,2R)-2,2'-Bioxirane (3)

(2R,3R)-1,4-Di(2-bromophenyl)-2,3-butanediol (4)

To a solution of 2-bromoiodobenzene (854 mg, 3.02 mmol) in THF (6 mL) at -40 °C was added *i*-PrMgCl (1.82 mL, 1.66 M in THF, 3.02 mmol) and the mixture was allowed to warm to -25 °C over 2 h. The solution was

cooled to -40 °C and added to a suspension of CuI (29 mg, 0.15 mmol) in THF (1 mL) at -40 °C. After 10 min, a solution of bioxirane (R,R)- 3^{S2} (98 mg, 1.14 mmol) in THF (2 mL) was added dropwise and the mixture was allowed to warm to -10 °C and maintained at this temp for 5 h. Saturated NH₄Cl (3 mL) was added slowly then the mixture was diluted with H₂O (3 mL) and EtOAc (15 mL), shaken and allowed to settle. The clear organic layer was decanted from the slurry and the process was twice repeated with EtOAc (2 x 15 mL). The combined organic layers were dried and concentrated to give a white solid (347 mg). Successive recrystallisations from EtOH (5 mL) provided two precipitate crops which were combined to give diol (R,R)-4 (194 mg, 43%) with minor impurities. A further recrystallisation from EtOH (5 mL) provided the pure diol (R,R)-4 (142

mg, 31%) as a white solid, m.p. 154 °C. $[\alpha]_D^{20}$ +21.1 (*c* 0.98, EtOH); ¹H NMR: δ 2.11 (d, *J* = 4.5 Hz, 2H, 2xOH), 2.97 (dd, *J* = 8.9, 13.7 Hz, 2H, H1_a, H4_a), 3.14 (dd, *J* = 3.8, 13.7 Hz, 2H, H1_b, H4_b), 3.86-3.94 (m, 2H, H2, H3), 7.10 (t, *J* = 8.1 Hz, 2H, 2xArH4), 7.22-7.32 (m, 4H, 2xArH5, 2xArH6), 7.55 (d, *J* = 8.1 Hz, 2H, 2xArH3); ¹³C NMR: δ 40.6 (C1, C4), 72.8 (C2, C3), 124.8 (2xArC2), 127.5 (2xArC5), 128.3 (2xArC4), 131.8 (2xArC6), 132.9 (2xArC3), 137.7 (2xArC1); FTIR *v* 3219 (w), 2923 (w), 1471 (w), 1440 (w), 1089 (m), 1023 (s), 917 (w), 754 (s), 739 (s); MS (ES+): 466 (45, M+Na+CH₃CN, ⁸¹Br, ⁸¹Br), 464 (100%, M+Na+CH₃CN, ⁸¹Br, ⁷⁹Br), 462 (46, M+Na+CH₃CN, ⁷⁹Br, ⁷⁹Br), 425 (15, M+Na, ⁸¹Br, ⁸¹Br), 423 (30, M+Na, ⁸¹Br, ⁷⁹Br), 421 (14, M+Na, ⁷⁹Br, ⁷⁹Br); HRMS (ES+) calcd for C₁₆H₁₆⁸¹Br⁷⁹BrO₂+Na 422.9394, found 422.9398.

(2R,3R)-1,4-Di(2-bromophenyl)-2,3-butanediol 2,3-Dimethanesulfonate (5)

To a solution of diol (R,R)-4 (139 mg, 0.35 mmol) and NEt₃ (88 mg, 0.87 Br OMs mmol) in CH₂Cl₂ (5 mL) at 0 °C was added dropwise a solution of MsCl (88 ŌMs Β̈́r mg, 0.77 mmol) in CH₂Cl₂ (1 mL) and the mixture was allowed to warm to RT and stirred in air for 3 h. The solution was diluted with CH₂Cl₂ (10 mL), washed with 5% CuSO₄ (15 mL) and saturated NaHCO₃ (15 mL), then dried and concentrated to give dimesylate (*R*,*R*)-5 (162 mg, 84%) as a white solid, m.p. 172-175 °C. $[\alpha]_D^{25}$ +32.9 (*c* 4.00, CH₂Cl₂); ¹H NMR: δ 2.39 (s, 6H, 2xCH₃), 3.21 (dd, J = 10.5, 14.1 Hz, 2H, H1_a, H4_a), 3.44 (d, J = 14.1 Hz, 2H, H1_b, H4_b), 5.23 (d, J = 10.5 Hz, 2H, H2, H3), 7.18 (t, J = 7.8 Hz, 2H, 2xArH4), 7.26-7.39 (m, 4H, 2xArH5, 2xArH6), 7.61 (d, J = 7.8 Hz, 2H, 2xArH3); ¹³C NMR: δ 36.5 (C1, C4), 37.4 (2xCH₃), 80.9 (C2, C3), 125.0 (2xArC2), 127.7 (2xArC5), 129.4 (2xArC4), 132.7 (2xArC6), 133.3 (2xArC3), 135.4 (2xArC1); FTIR v 2972 (w), 1468 (w), 1356 (s), 1320 (w), 1175 (s), 1022 (m), 967 (m), 954 (m), 895 (s), 809 (m), 762 (m), 754 (m); MS (ES+, HCOOH): 622 (60, M+Na+CH₃CN, ⁸¹Br, ⁸¹Br), 620 (100%, M+Na+CH₃CN, ⁸¹Br, ⁷⁹Br), 618 (52, M+Na+CH₃CN, ⁷⁹Br, ⁷⁹Br), 581 (56, M+Na, ⁸¹Br, ⁸¹Br), 579 (93, M+Na, ⁸¹Br, ⁷⁹Br), 577 (52, M+Na, ⁷⁹Br, ⁷⁹Br); HRMS (ES+) calcd for $C_{18}H_{20}^{81}Br^{79}BrO_6S_2$ +Na 578.8945, found 578.8950.

(2S,3S)-1,4-Di(2-bromophenyl)-2,3-butanediazide (6)

A mixture of dimesylate (*R*,*R*)-5 (159 mg, 0.29 mmol) and NaN₃ (111 mg, 1.71 mmol) in DMF (1 mL) was heated at 80 °C for 264 h. H₂O (5 mL) was added and the mixture was extracted with CH₂Cl₂ (3 x 10 mL). The combined extracts were dried and concentrated giving a crude mixture of the alkene elimination product (~30 mg, ~25% conversion) and diazide (*S*,*S*)-6 (~81 mg, ~63% conversion).

Br N3 2' 1' 1' 2" Br

 $(1E,3S)-3-Azido-1,4-di(2-bromophenyl)-1-butene: {}^{1}H NMR: \delta 3.06-3.22 (m, 2H, H4), 4.45 (q, J = 7.8 Hz, 1H, H3), 6.11 (dd, J = 7.8, 15.6 Hz, 1H, H2), 6.90 (d, J = 15.6 Hz, 1H, H1), 7.09-7.18 (m, 2H, 2xArH), 7.25-7.30 (m, 3H, 3H) (m, 2H, 2xArH), 7.25-7.30 (m, 3H), 7.25-7.30$

3xArH), 7.48-7.58 (m, 3H, 3xArH); ¹³C NMR: δ 41.3 (C4), 63.8 (C3), 123.7 (C2' or C2"), 124.7 (C2' or C2"), 127.3 (ArCH), 127.47 (ArCH), 127.52 (ArCH), 128.7 (ArCH), 129.2 (ArCH), 129.4 (C2), 132.0 (ArCH), 132.4 (C1), 132.9 (ArCH), 133.0 (ArCH), 136.0 (C1' or C1"), 136.4 (C1' or C1").

Br $H_2^{N_3}$ $H_2^{N_3}$ $H_2^{N_3}$ $H_2^{N_3}$ The crude mixture was dissolved in THF (3 mL), then a solution of KMnO₄ in H₂O (3 mL) was added and the mixture was stirred in air for 12 h. The brown slurry was diluted with CH₂Cl₂ (15 mL) and H₂O (10 mL), then 10% HCl (5 mL) and 10% Na₂SO₃ (1 mL) were added. The organic layer was separated and the aqueous solution extracted with CH₂Cl₂ (10 mL). The combined organic layers were dried, concentrated and subjected to column chromatography (1% EtOAc:hexanes) giving diazide (*S*,*S*)-6 (60 mg, 47% overall) as a viscous pale yellow oil. $[\alpha]_D^{22}$ -28.5 (*c* 3.00, CH₂Cl₂); ¹H NMR: δ 3.06-3.22 (m, 4H, H1, H4), 3.74 (t, *J* = 6.0 Hz, 2H, H2, H3), 7.09-7.18 (m, 2H, 2xArH4), 7.25-7.30 (m, 4H, 2xArH5, 2xArH6), 7.54 (d, *J* = 8.4 Hz, 2H, 2xArH3); ¹³C NMR: δ 38.5 (C1, C4), 63.2 (C2, C3), 124.5 (2xArC2), 127.8 (2xArC5), 129.0 (2xArC4), 131.8 (2xArC6), 133.1 (2xArC3), 136.1 (2xArC1); FTIR *v* 2105 (s), 1476 (w), 1443 (w), 1259 (w), 1024 (m), 749 (s); MS (EI+): 169 (100%).^{S3}

(2S,3S)-1,4-Di(2-bromophenyl)-2,3-butanediamine (7)

A solution of diazide (*S*,*S*)-**6** (45.6 mg, 0.10 mmol) and PPh₃ (58 mg, 0.22 mmol) in THF (1 mL) was stirred for 2 h. H₂O (2 drops) was added from a pasteur pipette and the solution was heated at reflux for 13 h. The mixture

was diluted with CH₂Cl₂ (20 mL), washed with H₂O (5 mL), dried and concentrated to give a white solid (96 mg). This was dissolved in 10% EtOAc:Et₂O (5 mL), then HCl (1 mL, 2.0 M in Et₂O) was added dropwise, forming a white precipitate. After stirring for 2 h, the suspension was vacuum filtered and the precipitate washed with Et₂O (4 x 5 mL) to give a pale yellow solid (49 mg) which was dissolved in a biphase of 15% NaOH (3 mL) and CH₂Cl₂ (3 mL). The mixture was diluted with H₂O (5 mL) and CH₂Cl₂ (15 mL), then the organic layer was separated, dried and concentrated to give diamine (*S*,*S*)-7 (28.6 mg, 71%) as a viscous colourless oil.^{S4} ¹H NMR: δ 1.83 (bs, 4H, 2xNH₂), 2.80 (dd, *J* = 8.1, 13.5 Hz, 2H, H1_a, H4_a), 3.00 (d, *J* = 13.5 Hz, 2H, H1_b, H4_b), 3.34-3.42 (m, 2H, H2, H3), 7.06 (t, *J* = 7.8 Hz, 2H, 2xArH4), 7.20-7.31 (m, 4H, 2xArH5, 2xArH6), 7.52 (d, *J* = 7.8 Hz, 2H, 2xArH3); ¹³C NMR: δ 41.1 (C1, C4), 64.1 (C2, C3), 124.6 (2xArC2), 127.5 (2xArC5), 128.0 (2xArC4), 131.3 (2xArC6), 132.8 (2xArC3), 138.8 (2xArC1); MS (ES+,

HCOOH): 401 (48, M+H, ⁸¹Br, ⁸¹Br), 399 (100%, M+H, ⁸¹Br, ⁷⁹Br), 397 (47, M+H, ⁷⁹Br, ⁷⁹Br); HRMS (ES+) calcd for $C_{16}H_{19}^{81}Br^{79}BrN_2$ 398.9894, found 398.9889.

(2*S*,2'*S*)-2,2'-Biindoline (1)

A mixture of $Pd(OAc)_2$ (3.2 mg, 14.4 µmol), ±-BINAP (17.9 mg, 28.7 µmol) and toluene (0.5 mL) in a microwave vessel was stirred for 30 min to give a yellow solution. A solution of diamine (*S*,*S*)-7 (28.6 mg, 71.8 µmol) in

toluene (0.5 mL) was added, followed by NaOt-Bu (20.7 mg, 0.22 mmol), and the burgundy solution was heated in a microwave at 120 °C for 4 h. The mixture was diluted with toluene (15 mL) and vacuum filtered through Celite. The filtrate was concentrated and subjected to column chromatography (5% to 10% EtOAc:hexanes) giving biindoline (*S*,*S*)-1 (9.7 mg, 57%) as a light brown solid m.p. 150-152 °C.^{S5 1}H NMR: δ 2.71 (dd, J = 8.1, 15.6 Hz, 2H, H3_a, H3'_a), 3.17 (dd, J = 8.7, 15.6 Hz, 2H, H3_b, H3'_b), 3.82-3.92 (m, 2H, H2, H2'), 4.20 (bs, 2H, 2xNH), 6.59 (d, J = 7.5 Hz, 2H, H8, H8'), 6.71 (t, J = 7.5 Hz, 2H, H6, H6'), 7.01 (t, J = 7.5 Hz, 2H, H7, H7'), 7.07 (d, J = 7.5 Hz, 2H, H5, H5'); ¹³C NMR: δ 33.3 (C3, C3'), 64.9 (C2, C2'), 109.5 (C8, C8'), 119.0 (C6, C6'), 124.7 (C5, C5'), 127.4 (C7, C7'), 128.6 (C4, C4'), 150.7 (C9, C9'); FTIR *v* 3360 (w), 2843 (w), 1603 (m), 1481 (m), 1460 (m), 1238 (s), 1066 (m), 745 (s); MS (ES+, HCOOH): 237 (100%, M+H); MS (EI+): 236 (5, M⁺), 119 (74), 118 (100%), 117 (45); HRMS (EI+) calcd for C₁₆H₁₆N₂ 236.1313, found 236.1312.

Preparation of the diBoc Derivative for Determination of Enantiomeric Purity

(2S,2'S)-N,N'-Di-tert-butoxycarbonyl-2,2'-biindoline

To a solution of biindoline (*S*,*S*)-1 (6.4 mg, 27.1 μ mol) and NEt₃ (6.0 mg, 59.6 μ mol) in THF (0.5 mL) was added a solution of Boc₂O (12.4 mg, 56.9 μ mol) in THF (0.5 mL) and the mixture was stirred in air for 144 h, during

which time three additional portions of Boc₂O (3 x ~15 mg) were added (after 3, 27 and 52 h). The mixture was diluted with CH₂Cl₂ (10 mL) and H₂O (5 mL), then the organic layer was separated, dried, concentrated and subjected to column chromatography (hexanes to 4% EtOAc:hexanes) to give the diBoc derivative (9.0 mg, 76%) as a white solid, mp. 182-184 °C. $[\alpha]_D^{21}$ -91.4 (*c* 0.45, CH₂Cl₂); HPLC analysis (2.5% *i*-PrOH:hexane, retention time: 10.5 min) showed the *ee* of the biindoline derivative was >99%; ¹H NMR: δ 1.54 (s, 18H, 6xCH₃), 2.72 (d, *J* = 16.8 Hz, 2H, H3_a, H3'_a), 3.16 (dd, *J* = 9.6, 16.8 Hz, 2H, H3_b, H3'_b), 4.96-5.04 (m, 2H, H2, H2'), 6.91 (t, *J* = 7.5 Hz, 2H, H6, H6'), 7.01 (d, *J* = 7.5 Hz, 2H, H5, H5'), 7.16 (t, *J* = 7.5 Hz, 2H, H7, H7'), 7.70 (bs, 2H, H8,

H8'); ¹³C NMR: δ 28.4 (6xCH₃), 29.2 (C3, C3'), 60.0 (C2, C2'), 81.3 (2x<u>C</u>(CH₃)₃), 115.5 (C8, C8'), 122.5 (C6, C6'), 124.5 (C5, C5'), 127.3 (C7, C7'), 130.2 (C4, C4'), 143.2 (C9, C9'), 152.6 (2xC=O); FTIR *v* 2966 (w), 2919 (w), 2848 (w), 1696 (s), 1485 (m), 1390 (s), 1373 (m), 1341 (s), 1161 (m), 1021 (m), 752 (s); MS (EI+): 436 (17, M⁺), 118 (100%); HRMS (EI+) calcd for C₂₆H₃₂N₂O₄ 436.2362, found 436.2345.

Synthesis of (2S,2'S)-2,2'-Biindoline (1) from (2S,2'S)-*N*,*N*'-Di-*tert*-butoxycarbonyl-2,2'-biaziridine (8)

Ring Opening

(4*S*,5*S*)-4,5-Di(2-bromobenzyl)-1-*tert*-butoxycarbonyl-2-imidazolidinone (9) (2*S*,3*S*)-1,4-Di(2-bromophenyl)-2,3-di(*N-tert*-butoxycarbonylamino)butane (10)

To a solution of 2-bromoiodobenzene (1.09 g, 3.86 mmol) in THF (4 mL) at Br BocHN -40 °C was added *i*-PrMgCl (1.61 mL, 2.0 M in THF, 3.22 mmol) and the **N**HBoc Β̈́r mixture was allowed to warm to -25 °C over 2.5 h. The solution was cooled to -40 °C and added dropwise to a suspension of CuBr.SMe₂ (99 mg, 0.48 mmol) and biaziridine (S,S)-8^{S6} (183 mg, 0.64 mmol) in THF (2 mL) at -40 °C. The solution was allowed to warm to -10 ^oC over 6 h, then saturated NH₄Cl (2 mL) was added slowly, followed by H₂O (5 mL) and the mixture was extracted with EtOAc (3 x 10 mL). The combined extracts were dried, concentrated and subjected to column chromatography (5% to 10% EtOAc:hexanes) affording dicarbamate (S,S)-**10** (94 mg, 24%) as a white solid, m.p. 172 °C. $[\alpha]_D^{21}$ -61.7 (*c* 1.97, CH₂Cl₂); ¹H NMR: δ 1.33 (s, 18H, 6xCH₃), 2.75-3.18 (m, 4H, H1, H4), 4.01-4.19 (m, 2H, H2, H3), 4.88 (bs, 2H, 2xNH), 7.02-7.14 (m, 2H, 2xArH4), 7.15-7.26 (m, 4H, 2xArH5, 2xArH6), 7.52 (d, J = 7.8 Hz, 2H, 2xArH3); ¹³C NMR: δ 28.3 (6xCH₃), 39.3 (C1, C4), 54.5 (C2, C3), 79.3 (2xC(CH₃)₃), 125.2 (2xArC2), 127.3 (2xArC5), 128.1 (2xArC4), 131.4 (2xArC6), 132.7 (2xArC3), 137.7 (2xArC1), 155.9 (2xC=O); FTIR v 3359 (w), 2972 (w), 1681 (s), 1525 (m), 1370 (w), 1299 (w), 1250 (w), 1167 (m), 1022 (w), 752 (m); MS (ES+, HCOOH): 601 (24, M+H, ⁸¹Br, ⁸¹Br), 599 (45, M+H, ⁸¹Br, ⁷⁹Br), 597 (22, M+H, ⁷⁹Br, ⁷⁹Br), 445 (48, M+H+HCOOH-2Boc, ⁸¹Br, ⁸¹Br), 443 (100%, M+H+HCOOH-2Boc, ⁸¹Br, ⁷⁹Br), 441 (50, M+H+HCOOH-2Boc, ⁷⁹Br, ⁷⁹Br); HRMS (ES+) calcd for C₂₆H₃₄⁷⁹Br₂N₂O₄+Na 619.0783, found 619.0812.

Further elution with 12% EtOAc:hexanes to 100% EtOAc yielded imidazolidinone (*S*,*S*)-9 (141 mg, 42%) as a pale yellow syrup. $[\alpha]_D^{21}$ - 33.8 (*c* 4.50, CH₂Cl₂); ¹H NMR: δ 1.50 (s, 9H, 3xCH₃), 2.85-2.93 (m, 3H, H7'_a, H7"), 3.24 (dd, *J* = 5.4, 13.2 Hz, 1H, H7'_b), 3.63 (t, *J* = 6.9 Hz,

1H, H4), 4.40 (dd, J = 5.4, 9.3 Hz, 1H, H5), 6.84 (bs, 1H, NH), 6.93-7.14 (m, 6H, H4', H4", H5', H5", H6', H6"), 7.36-7.43 (m, 2H, H3', H3"); ¹³C NMR: δ 28.0 (3xCH₃), 38.9 (C7'), 40.9 (C7"), 52.1 (C4), 58.0 (C5), 82.4 (<u>C</u>(CH₃)₃), 124.5 (C2' or C2"), 124.6 (C2' or C2"), 127.4 (C5' or C5"), 127.5 (C5' or C5"), 128.26 (C4' or C4"), 128.30 (C4' or C4"), 131.0 (C6' or C6"), 131.6 (C6' or C6"), 132.8 (C3' or C3"), 132.9 (C3' or C3"), 135.1 (C1' or C1"), 135.6 (C1' or C1"), 150.0 (*t*-BuOC=O), 155.6 (C2); FTIR *v* 3350 (m), 1768 (s), 1345 (m), 1242 (w), 1152 (m), 741 (s); MS (ES+, HCOOH): 527 (9, M+H, ⁸¹Br, ⁸¹Br), 525 (18, M+H, ⁸¹Br, ⁷⁹Br), 523 (8, M+H, ⁷⁹Br, ⁷⁹Br), 471 (48, M+HCOOH-Boc, ⁸¹Br, ⁸¹Br), 469 (100%, M+HCOOH-Boc, ⁸¹Br, ⁷⁹Br), 467 (48, M+HCOOH-Boc, ⁷⁹Br, ⁷⁹Br); HRMS (ES+) calcd for C₂₂H₂₄⁷⁹Br₂N₂O₃+Na 545.0051, found 545.0075.

Hydrolysis of the Imidazolidinone

(2S,3S)-1,4-Di(2-bromophenyl)-2,3-butanediamine (7)

Small Scale

A suspension of imidazolidinone (S,S)-9 (19.6 mg, 37.4 µmol) in 32% HCl (3 mL) was heated at 110 °C in a microwave under air for 12 h. The dark green suspension was vacuum filtered and the grey/brown solid was washed with H₂O (5 mL) and Et₂O (25 mL), then dissolved in a biphase of 15% NaOH (10 mL) and CH₂Cl₂ (10 mL). The acidic aqueous layer from the earlier filtration was added and alkalinity was maintained. The organic layer was separated and the aqueous solution extracted with CH₂Cl₂ (10 mL). The combined organic layers were dried and concentrated to give diamine (*S*,*S*)-7 (13.3 mg, 89%) as a viscous brown oil spectroscopically identical to the product synthesised from the bioxirane.

Larger Scale

A suspension of imidazolidinone (*S*,*S*)-9 (617 mg, 1.18 mmol) in EtOH (0.5 mL) and 32% HCl (3 mL) was heated at 110 °C in a microwave under air for 18 h. Et₂O (5 mL) was added to the slurry and the vessel was shaken and allowed to settle, then the supernatant liquid was decanted. This process was twice repeated with Et₂O (2 x 5 mL), then the remaining sticky solids were stirred vigorously for 1 h in 30% CH₂Cl₂:Et₂O (7 mL). The suspension was vacuum filtered and the

collected solid (~300 mg) was dried in a 110 °C oven for 30 min before being dissolved in a biphase of 5 M NaOH (3 mL) and CH₂Cl₂ (3 mL). The mixture was diluted with 5 M NaOH (20 mL) and CH₂Cl₂ (30 mL), then the acidic aqueous layer from the earlier decanting was added and alkalinity was maintained. The organic layer was separated and the aqueous layer extracted with CH₂Cl₂ (15 mL). The combined organic layers were dried and concentrated to give a viscous brown oil containing diamine (*S*,*S*)-7 (188 mg, 40% yield) and the Boc-deprotected imidazolidinone (94 mg, 19% yield).^{S7}

(4S,5S)-4,5-Di(2-bromobenzyl)-2-imidazolidinone: white solid, m.p. 116-117 °C. ¹H NMR: δ 2.90 (dd, J = 8.1, 13.5 Hz, 2H, 2xH7'_a), 3.03 (dd, J = 5.4, 13.5 Hz, 2H, 2xH7'_b), 3.85 (t, J = 5.4 Hz, 2H, H4, H5), 4.74 (bs, 2H, 2xNH), 7.06-7.12 (m, 2H, 2xH4'), 7.16-7.26 (m, 4H, 2xH5', 2xH6'), 7.51

(d, J = 8.1 Hz, 2H, 2xH3'); ¹³C NMR: δ 41.8 (2xC7'), 57.0 (C4, C5), 124.5 (2xC2'), 127.7 (2xC5'), 128.7 (2xC4'), 131.6 (2xC6'), 133.2 (2xC3'), 136.1 (2xC1'), 161.6 (C2); FTIR *v* 3201 (w), 2925 (w), 1702 (s), 1470 (w), 1441 (w), 1025 (m), 747 (m); MS (ES+): 468 (51, M+H+CH₃CN, ⁸¹Br, ⁸¹Br), 466 (100%, M+H+CH₃CN, ⁸¹Br, ⁷⁹Br), 464 (51, M+H+CH₃CN, ⁷⁹Br, ⁷⁹Br), 427 (43, M+H, ⁸¹Br, ⁸¹Br), 425 (86, M+H, ⁸¹Br, ⁷⁹Br), 423 (44, M+H, ⁷⁹Br, ⁷⁹Br); HRMS (ES+) calcd for C₁₇H₁₇⁸¹Br⁷⁹BrN₂O 424.9687, found 424.9694.

Cyclisation

(2*S*,2'*S*)-2,2'-Biindoline (1) (5*aS*,11*aS*)-5,5*a*,6,11,11*a*,12-Hexahydrodibenzo[*b*,*g*][1,5]naphthyridine (11)

This reaction followed the cyclisation procedure described above using $Pd(OAc)_2$ (7.4 mg, 33.0 µmol), ±-BINAP (41 mg, 65.8 µmol), toluene (2 mL), a solution of diamine (*S*,*S*)-7 (175 mg, 0.44 mmol) in toluene (2 mL), NaO*t*-Bu (190 mg, 1.98 mmol) and a 12 h reaction time. The crude mixture

was subjected to column chromatography (5% to 10% EtOAc:hexanes) giving naphthyridine (*S*,*S*)-**11** (3.0 mg, 3%) as a brown solid. ¹H NMR: δ 2.75 (dd, J = 3.6, 16.8 Hz, 2H, H6_x, H12_x), 3.16 (dd, J = 4.2, 16.8 Hz, 2H, H6_y, H12_y), 3.51 (bs, 2H, 2xNH), 3.79 (t, J = 3.0 Hz, 2H, H5_a, H11_a), 6.44 (d, J = 7.8 Hz, 2H, H4, H10), 6.63 (t, J = 7.5 Hz, 2H, H2, H8), 6.93-7.00 (m, 4H, H1, H3, H7, H9); ¹³C NMR: δ 33.5 (C6, C12), 46.8 (C5_a, C11_a), 114.5 (C4, C10), 117.2 (C6_a, C12_a), 117.3 (C2, C8), 127.1 (C3, C9), 129.9 (C1, C7), 143.6 (C4_a, C10_a); MS (ES+, HCOOH): 237 (100%, M+H); HRMS (EI+) calcd for C₁₆H₁₆N₂ 236.1313, found 236.1308.

Further elution provided biindoline (*S*,*S*)-1 (82 mg, 79%) as a light brown solid, spectroscopically identical to the product synthesised from the bioxirane. $[\alpha]_D^{23}$ +10.9 (*c* 3.84, CH₂Cl₂). A sample (~15 mg) was dissolved in 50% CH₂Cl₂:MeOH (1 mL) and the solution was allowed to stand in a capped NMR tube to provide colourless crystalline needles/rods suitable for X-ray analysis.

Determination of Enantiomeric Purity

(2S,2'S)-N,N'-Di-tert-butoxycarbonyl-2,2'-biindoline

additional portions of Boc₂O (3 x ~15 mg) affording the derivative (9.0 mg, 74%) as a white solid, spectroscopically identical to the product synthesised from the bioxirane. $[\alpha]_D^{22}$ -88.6 (*c* 0.45, CH₂Cl₂); HPLC analysis (2.5% *i*-PrOH:hexane, retention time: 11.3 min) showed the *ee* of the biindoline derivative was >99%.

Preparation of the Palladium(II) Dichloride Complex

(2S,2'S)-2,2'-Biindolinepalladium(II) Dichloride

To a solution of biindoline (*S*,*S*)-1 (9.3 mg, 39.4 μ mol) in CH₂Cl₂ (1 mL) was added a solution of Pd(CH₃CN)₂Cl₂ (10.2 mg, 39.4 μ mol) in CH₂Cl₂ (3 mL) and a yellow/orange precipitate formed. After stirring in air for 2 h, the mixture was allowed to stand in a freezer for 1 h before vacuum filtration.

The precipitate was dissolved in 50% acetone:MeOH (15 mL) and gravity filtered. The filtrate was dried and concentrated to give the Pd complex (15.4 mg, 95%) as a yellow/orange powder. ¹H NMR [(CD₃)₂CO]: δ 3.15-3.32 (m, 4H, H3, H3'), 3.96-4.04 (m, 2H, H2, H2'), 7.24-7.30 (m, 4H, 4xArH), 7.33-7.37 (m, 2H, 2xArH), 7.46 (bs, 2H, 2xNH), 8.08-8.12 (m, 2H, 2xArH); ¹³C NMR [(CD₃)₂CO]: δ 33.6 (C3, C3'), 69.3 (C2, C2'), 122.9 (2xArCH), 126.2 (2xArCH), 127.9 (2xArCH), 128.3 (2xArCH), 134.0 (2xC4), 146.4 (2xC9). A saturated solution of the complex in CH₃CN (~1 mg/mL) was allowed to stand in an uncapped NMR tube to provide orange crystals suitable for X-ray analysis.

NMR Spectra of (2S,2'S)-2,2'-Biindoline (1)

These spectra were acquired using the product synthesised from the biaziridine (S,S)-8 and are identical to the spectra of the product prepared from the bioxirane (R,R)-3.

¹H NMR (300 MHz, CDCl₃):

HPLC Traces

All traces were obtained using a Daicel Chiralcel OD-H column with a UV detector (254 nm) and 2.5% *i*-PrOH:hexane as the eluent with a flow rate 0.5 mL/min.

Trace 1: DiBoc derivative of the bindoline (S,S)-1 prepared from the bioxirane (R,R)-3.

Trace 2: DiBoc derivative of the biindoline (S,S)-1 prepared from the biaziridine (S,S)-8.

A sample of 2 spiked with 1 (to equal concentrations) gave a single peak at 10.55 min, as expected.

It should also be noted that both traces of the (*S*,*S*)-biindoline diBoc derivative (Traces 1 and 2) showed an unidentified impurity (<2% peak area) that was eluted prior to the chiral compound at ~10 min. This was *not* the *R*,*R*-enantiomer, which eluted after the *S*,*S*-product with a retention time of ~13 min (see Trace 3 below), nor the *meso* isomer - for which the NMR data was known from previous work in our laboratory.^{S8} No impurities were detected by NMR analysis of either sample (see page S11).

Trace **3:** DiBoc derivative of the biindoline (S,S)-1 + the *R*,*R*-enantiomer (from an *R*,*R*-enriched sample).^{S8}

Crystal Data for (2S,2'S)-2,2'-Biindoline

$C_{16}H_{16}N_2$ $M_r = 236.32$

Monoclinic, P21

a = 11.6395 (4) Å b = 7.8596 (3) Å c = 14.2979 (6) Å $\beta = 109.257 (3)^{\circ}$ $V = 1234.81 (8) \text{ Å}^{3}$ Z = 4 $F_{000} = 504$ $D_{\rm x} = 1.271 \text{ Mg m}^{-3}$ Mo Ka radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 53015 reflections $\theta = 2.6-27.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 200 KPlate, colourless $0.37 \times 0.16 \times 0.07 \text{ mm}$

Data collection

Area diffractometer	2134 reflections with $I > 2.0\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.052$
T = 200 K	$\theta_{max} = 27.5^{\circ}$
ϕ and ω scans with CCD	$\theta_{min} = 2.8^{\circ}$
Absorption correction: integration via Gaussian method (Coppens, 1970) implemented in maXus (2000)	$h = -15 \rightarrow 14$
$T_{\min} = 0.977, T_{\max} = 0.995$	$k = -10 \rightarrow 10$
25324 measured reflections	$l = -18 \rightarrow 18$
3033 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	Only H-atom coordinates refined
$R[F^2 > 2\sigma(F^2)] = 0.040$	Method = Modified Sheldrick $w = 1/[\sigma^2(F^2) + (0.05P)^2 + 0.0P]$, where $P = (\max(F_0^2, 0) + 2F_c^2)/3$
$wR(F^2) = 0.095$	$(\Delta/\sigma)_{max} = 0.006$
<i>S</i> = 0.87	$\Delta\rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
3033 reflections	$\Delta\rho_{min} = -0.25 \text{ e} \text{ Å}^{-3}$
421 parameters	Extinction correction: None

1 restraint

Absolute structure: The enantiomer has been assigned by reference to an unchanging chiral centre in the synthetic procedure.

Primary atom site location: structure-invariant direct methods

	x	У	z	$U_{\rm iso}$ */ $U_{\rm eq}$
N1	0.76128 (18)	0.3973 (3)	0.28078 (16)	0.0396
C2	0.8008 (2)	0.3985 (4)	0.3862 (2)	0.0381
C3	0.7438 (3)	0.4710 (4)	0.4478 (2)	0.0474
C4	0.7988 (3)	0.4502 (5)	0.5492 (2)	0.0548
C5	0.9056 (3)	0.3599 (5)	0.5882 (2)	0.0538
C6	0.9622 (3)	0.2871 (4)	0.5251 (2)	0.0442
C7	0.9091 (2)	0.3070 (4)	0.42448 (19)	0.0389
C8	0.9453 (2)	0.2442 (4)	0.3397 (2)	0.0414
С9	0.8714 (2)	0.3560 (4)	0.25294 (19)	0.0378
C10	0.8415 (2)	0.2722 (4)	0.15361 (19)	0.0379
C11	0.9565 (2)	0.2213 (4)	0.1289 (2)	0.0390
C12	0.9160 (2)	0.2411 (3)	0.01828 (18)	0.0340
C13	0.9695 (2)	0.1901 (4)	-0.0502 (2)	0.0389
C14	0.9143 (2)	0.2313 (4)	-0.1496 (2)	0.0434
C15	0.8066 (2)	0.3249 (4)	-0.1788 (2)	0.0433
C16	0.7519 (2)	0.3782 (4)	-0.1104 (2)	0.0390
C17	0.8082 (2)	0.3363 (3)	-0.01203 (19)	0.0339
N18	0.77660 (18)	0.3844 (3)	0.07049 (16)	0.0398
N21	0.47174 (19)	0.2313 (3)	0.18044 (16)	0.0389
C22	0.4371 (2)	0.2390 (3)	0.07655 (18)	0.0335
C23	0.5007 (3)	0.1787 (4)	0.0164 (2)	0.0410
C24	0.4475 (3)	0.1996 (4)	-0.0861 (2)	0.0440
C25	0.3342 (2)	0.2739 (4)	-0.1265 (2)	0.0426
C26	0.2697 (2)	0.3283 (3)	-0.0651 (2)	0.0368
C27	0.3226 (2)	0.3124 (3)	0.03620 (18)	0.0321
C28	0.2756 (2)	0.3579 (4)	0.1194 (2)	0.0373
C29	0.3906 (2)	0.3476 (4)	0.21167 (19)	0.0352
C30	0.3643 (2)	0.2854 (4)	0.30244 (18)	0.0351
C31	0.2786 (2)	0.4049 (4)	0.33398 (19)	0.0373
C32	0.3259 (2)	0.3967 (4)	0.44522 (18)	0.0335
C33	0.2763 (3)	0.4546 (4)	0.5154(2)	0.0423
C34	0.3447 (3)	0.4344 (4)	0.6161 (2)	0.0453
C35	0.4571 (3)	0.3584 (4)	0.6441 (2)	0.0461
C36	0.5083 (2)	0.3017 (4)	0.57421 (19)	0.0402
C37	0.4406 (2)	0.3210 (3)	0.47384 (18)	0.0340
N38	0.47369 (18)	0.2808 (3)	0.39152 (16)	0.0381
H11	0.727 (2)	0.498 (4)	0.2531 (19)	0.0465*
H31	0.664 (3)	0.534 (4)	0.418 (2)	0.0569*
H41	0.752 (3)	0.506 (4)	0.592 (2)	0.0687*
H51	0.940 (3)	0.346 (4)	0.658 (2)	0.0618*

H61	1.045 (2)	0.221 (4)	0.5518 (18)	0.0516*
H81	0.918(2)	0.132 (4)	0.327 (2)	0.0488*
H82	1.036 (2)	0.253 (4)	0.3528 (18)	0.0490*
H91	0.922 (2)	0.460 (4)	0.2557 (18)	0.0434*
H101	0.789 (2)	0.159 (4)	0.1565 (18)	0.0435*
H111	0.982 (2)	0.111 (4)	0.154 (2)	0.0440*
H112	1.024(2)	0.304 (3)	0.164 (2)	0.0436*
H131	1.045 (2)	0.127 (4)	-0.027 (2)	0.0464*
H141	0.953 (2)	0.189 (4)	-0.2031 (19)	0.0499*
H151	0.769(2)	0.352 (4)	-0.252 (2)	0.0495*
H161	0.674(2)	0.444 (4)	-0.1338 (18)	0.0438*
H181	0.699(2)	0.401 (4)	0.0639 (19)	0.0466*
H211	0.555(2)	0.251 (4)	0.2140 (18)	0.0455*
H231	0.583(2)	0.117 (4)	0.047 (2)	0.0492*
H241	0.490 (2)	0.165 (4)	-0.131 (2)	0.0563*
H251	0.299 (2)	0.291 (4)	-0.201 (2)	0.0513*
H261	0.192 (2)	0.393 (4)	-0.0913 (18)	0.0427*
H281	0.215 (2)	0.275 (4)	0.1290 (18)	0.0439*
H282	0.237 (2)	0.468 (4)	0.1111 (19)	0.0440*
H291	0.431 (2)	0.468 (4)	0.2312 (18)	0.0404*
H301	0.332 (2)	0.170 (4)	0.2905 (18)	0.0389*
H311	0.186 (2)	0.375 (4)	0.3053 (18)	0.0432*
H312	0.284(2)	0.521 (4)	0.3084 (19)	0.0424*
H331	0.197 (3)	0.509 (4)	0.494 (2)	0.0502*
H341	0.306 (2)	0.482 (4)	0.668 (2)	0.0541*
H351	0.502 (2)	0.339 (4)	0.719 (2)	0.0508*
H361	0.586(2)	0.242 (4)	0.5911 (17)	0.0441*
H381	0.522 (2)	0.192 (4)	0.3929 (19)	0.0441*

Atomic displacement parameters (A^2)

	U^{11}	U^{22}	U ³³	U^{12}	U ¹³	U^{23}
N1	0.0369 (11)	0.0403 (13)	0.0436 (13)	0.0092 (10)	0.0159 (9)	0.0058 (11)
C2	0.0374 (13)	0.0345 (15)	0.0455 (16)	-0.0058 (12)	0.0178 (11)	0.0005(13)
C3	0.0495 (16)	0.0417 (16)	0.057 (2)	-0.0045 (14)	0.0256 (14)	-0.0072 (15)
C4	0.070 (2)	0.0498 (19)	0.056 (2)	-0.0151 (17)	0.0363 (18)	-0.0125 (16)
C5	0.0632 (19)	0.057(2)	0.0422 (17)	-0.0186 (18)	0.0187 (14)	-0.0003 (16)
C6	0.0494 (14)	0.0437 (17)	0.0391 (16)	-0.0051 (15)	0.0140 (12)	0.0036 (15)
C7	0.0383 (12)	0.0375 (16)	0.0429 (16)	-0.0023 (12)	0.0161 (11)	0.0033 (13)
C8	0.0350 (13)	0.0456 (18)	0.0432 (15)	0.0069 (13)	0.0126 (11)	0.0064 (14)
C9	0.0374 (12)	0.0396 (16)	0.0381 (15)	0.0009 (13)	0.0145 (11)	0.0017(13)
C10	0.0354 (12)	0.0373 (15)	0.0411 (15)	0.0026 (12)	0.0126 (10)	0.0025(13)
C11	0.0338 (13)	0.0396 (16)	0.0411 (15)	0.0070 (12)	0.0089 (11)	0.0002 (13)
C12	0.0303 (12)	0.0304 (14)	0.0395 (14)	-0.0017 (11)	0.0090 (10)	-0.0021 (12)
C13	0.0319 (12)	0.0351 (15)	0.0492 (16)	0.0002 (12)	0.0126 (11)	-0.0043 (13)
C14	0.0468 (15)	0.0416 (17)	0.0445 (16)	-0.0070 (13)	0.0188 (12)	-0.0061 (13)
C15	0.0473 (14)	0.0407 (17)	0.0386 (15)	-0.0037 (13)	0.0098 (12)	-0.0006 (12)
C16	0.0371 (12)	0.0365 (15)	0.0400 (15)	-0.0008 (13)	0.0079 (11)	-0.0015(13)

C17	0.0314(11)	0.0290 (14)	0.0414 (15)	-0.0040 (11)	0.0119 (10)	-0.0039 (12)
N18	0.0342 (10)	0.0429 (13)	0.0409 (13)	0.0061 (11)	0.0105 (9)	0.0006 (12)
N21	0.0358 (11)	0.0456 (14)	0.0359 (12)	0.0044 (11)	0.0126 (9)	0.0007(11)
C22	0.0331 (12)	0.0302 (15)	0.0398 (14)	-0.0008 (11)	0.0153 (10)	0.0006 (12)
C23	0.0416 (13)	0.0381 (16)	0.0485 (18)	-0.0005 (13)	0.0220 (13)	-0.0024 (14)
C24	0.0529 (16)	0.0412 (16)	0.0478 (17)	-0.0041 (14)	0.0299 (14)	-0.0045 (14)
C25	0.0614(17)	0.0340 (15)	0.0347 (15)	-0.0043 (15)	0.0190 (12)	0.0003 (13)
C26	0.0383 (13)	0.0350 (16)	0.0367 (15)	-0.0025 (12)	0.0116 (11)	0.0008 (12)
C27	0.0377 (12)	0.0266 (15)	0.0356 (14)	-0.0028 (11)	0.0169 (11)	-0.0008 (11)
C28	0.0393 (13)	0.0415 (17)	0.0350 (14)	0.0044 (13)	0.0174 (11)	0.0018 (13)
C29	0.0354(12)	0.0372 (16)	0.0343 (14)	-0.0009 (12)	0.0133 (10)	0.0007(13)
C30	0.0385 (13)	0.0368 (15)	0.0297 (13)	-0.0024 (13)	0.0107 (10)	-0.0018 (12)
C31	0.0304(12)	0.0462 (17)	0.0344 (14)	0.0009 (12)	0.0093 (10)	-0.0014 (13)
C32	0.0327(11)	0.0350 (15)	0.0327 (13)	-0.0037 (11)	0.0108 (10)	0.0003 (12)
C33	0.0458 (15)	0.0425 (16)	0.0414 (17)	0.0017 (13)	0.0182 (13)	0.0005 (14)
C34	0.0591 (17)	0.0429 (18)	0.0400 (16)	-0.0050 (14)	0.0247 (14)	-0.0019 (13)
C35	0.0578 (16)	0.0429 (17)	0.0335 (15)	-0.0094 (15)	0.0095 (12)	0.0011 (13)
C36	0.0408 (13)	0.0392 (17)	0.0355 (14)	0.0034 (12)	0.0056 (11)	0.0048 (12)
C37	0.0358 (12)	0.0334 (16)	0.0328 (13)	-0.0007 (12)	0.0113 (10)	0.0023 (11)
N38	0.0356 (11)	0.0431 (13)	0.0353 (12)	0.0069 (11)	0.0114 (9)	-0.0008 (11)

Geometric parameters (Å, °)

N1—C2	1.424 (3)	N21—C22	1.406 (3)
N1—C9	1.498 (3)	N21—C29	1.485 (3)
N1—H11	0.92 (3)	N21—H211	0.94 (2)
C2—C3	1.388 (4)	C22—C23	1.391 (4)
C2—C7	1.396 (4)	C22—C27	1.391 (3)
C3—C4	1.387 (4)	C23—C24	1.400 (4)
С3—Н31	1.01 (3)	C23—H231	1.04 (3)
C4—C5	1.379 (5)	C24—C25	1.382 (4)
C4—H41	1.04(3)	C24—H241	0.96 (3)
C5—C6	1.404 (4)	C25—C26	1.397 (4)
C5—H51	0.95(3)	C25—H251	1.02 (3)
C6—C7	1.374 (4)	C26—C27	1.380 (4)
С6—Н61	1.05(3)	C26—H261	0.99 (3)
C7—C8	1.493 (4)	C27—C28	1.507 (3)
С8—С9	1.532 (4)	C28—C29	1.541 (3)
C8—H81	0.93 (3)	C28—H281	1.00 (3)
C8—H82	1.02 (3)	C28—H282	0.96 (3)
C9—C10	1.499 (4)	C29—C30	1.510 (3)
С9—Н91	1.00(3)	C29—H291	1.05 (3)
C10—C11	1.546 (3)	C30—C31	1.541 (4)
C10—N18	1.472 (4)	C30—N38	1.475 (3)
C10—H101	1.09 (3)	С30—Н301	0.97 (3)
C11—C12	1.502 (4)	C31—C32	1.503 (3)
C11—H111	0.95(3)	С31—Н311	1.04 (2)
С11—Н112	1.02 (3)	C31—H312	0.99 (3)
C12—C13	1.382 (4)	C32—C33	1.390 (4)

C12—C17	1.401 (3)	C32—C37	1.394 (3)
C13—C14	1.392 (4)	C33—C34	1.406 (4)
C13—H131	0.97 (3)	C33—H331	0.97 (3)
C14—C15	1.394 (4)	C34—C35	1.372 (4)
C14—H141	1.06 (3)	C34—H341	1.05 (3)
C15—C16	1.395 (4)	C35—C36	1.395 (4)
C15—H151	1.01 (3)	С35—Н351	1.04 (3)
C16—C17	1.381 (4)	C36—C37	1.399 (4)
C16—H161	1.00 (3)	C36—H361	0.98 (3)
C17—N18	1.399 (3)	C37—N38	1.390 (3)
N18—H181	0.89 (2)	N38—H381	0.89 (3)
N1…N21	3.454 (3)	N38…C3	3.331 (4)
N18…C23	3.448 (4)	N38…C34 ⁱⁱ	3.470 (4)
N18…C25 ⁱ	3.515 (4)	N38…C35 ⁱⁱ	3.493 (4)
N18…C26 ⁱ	3.527 (3)	C5···C8 ⁱⁱⁱ	3.467 (5)
C2—N1—C9	106.05 (19)	C22—N21—C29	107.57 (19)
C2—N1—H11	113.2 (17)	C22—N21—H211	114.9 (15)
C9—N1—H11	111.3 (17)	C29—N21—H211	113.4 (17)
N1—C2—C3	128.3 (2)	N21—C22—C23	127.8 (2)
N1—C2—C7	110.3 (2)	N21—C22—C27	111.0 (2)
C3—C2—C7	121.4 (3)	C23—C22—C27	121.2 (2)
C2—C3—C4	117.5 (3)	C22—C23—C24	117.8 (3)
С2—С3—Н31	120.0 (17)	C22—C23—H231	120.2 (15)
С4—С3—Н31	122.5 (17)	C24—C23—H231	122.0 (15)
C3—C4—C5	121.8 (3)	C23—C24—C25	121.2 (3)
C3—C4—H41	114.5 (17)	C23—C24—H241	121.0 (17)
C5-C4-H41	123.7 (17)	C25—C24—H241	117.8 (17)
C4—C5—C6	120.1 (3)	C24—C25—C26	120.2 (3)
С4—С5—Н51	119.8 (19)	C24—C25—H251	119.3 (15)
С6—С5—Н51	120.1 (19)	C26—C25—H251	120.4 (15)
C5—C6—C7	118.8 (3)	C25—C26—C27	119.0 (2)
С5—С6—Н61	122.6 (14)	C25—C26—H261	122.0 (15)
С7—С6—Н61	118.6 (14)	C27—C26—H261	118.5 (15)
C2—C7—C6	120.3 (2)	C22—C27—C26	120.5 (2)
C2—C7—C8	108.2 (2)	C22—C27—C28	108.6 (2)
C6—C7—C8	131.5 (2)	C26—C27—C28	130.9 (2)
С7—С8—С9	103.5 (2)	C27—C28—C29	102.9 (2)
С7—С8—Н81	107.6 (18)	C27—C28—H281	114.1 (16)
С9—С8—Н81	108.6 (18)	C29—C28—H281	107.4 (14)
С7—С8—Н82	112.6 (15)	C27—C28—H282	112.9 (16)
С9—С8—Н82	112.5 (16)	C29—C28—H282	112.9 (16)
H81—C8—H82	112 (2)	H281—C28—H282	107(2)
C8—C9—N1	102.2 (2)	C28—C29—N21	103.5 (2)
C8—C9—C10	114.1 (2)	C28—C29—C30	112.81 (19)
N1—C9—C10	113.3 (2)	N21—C29—C30	112.9 (2)
С8—С9—Н91	105.8 (15)	C28—C29—H291	111.4 (14)
N1—C9—H91	110.7 (15)	N21—C29—H291	111.4 (13)
С10—С9—Н91	110.3 (14)	С30—С29—Н291	105.1 (14)

C9—C10—C11	112.4 (2)	C29—C30—C31	112.9 (2)
C9—C10—N18	113.5 (2)	C29—C30—N38	112.83 (19)
C11—C10—N18	102.9 (2)	C31—C30—N38	102.7 (2)
C9—C10—H101	106.4 (14)	С29—С30—Н301	109.0 (15)
C11—C10—H101	109.6 (13)	C31—C30—H301	111.7 (15)
N18—C10—H101	112.1 (13)	N38—C30—H301	107.5 (14)
C10—C11—C12	102.6 (2)	C30—C31—C32	103.7 (2)
C10—C11—H111	109.9 (16)	C30—C31—H311	115.3 (15)
C12—C11—H111	116.2 (16)	C32—C31—H311	112.1 (14)
C10—C11—H112	107.6 (14)	C30—C31—H312	109.1 (15)
C12—C11—H112	112.4 (15)	C32—C31—H312	112.6 (15)
H111—C11—H112	108 (2)	H311—C31—H312	104(2)
C11—C12—C13	131.1 (2)	C31—C32—C33	131.0 (2)
C11—C12—C17	108.6 (2)	C31—C32—C37	108.1 (2)
C13—C12—C17	120.2 (2)	C33—C32—C37	120.9 (2)
C12—C13—C14	119.5 (2)	C32—C33—C34	118.2 (3)
C12—C13—H131	119.0 (16)	C32—C33—H331	119.4 (17)
C14—C13—H131	121.5 (16)	C34—C33—H331	122.4 (17)
C13—C14—C15	119.7 (3)	C33—C34—C35	120.7 (3)
C13—C14—H141	120.3 (14)	C33—C34—H341	116.8 (15)
C15—C14—H141	120.0 (14)	C35—C34—H341	122.4 (15)
C14—C15—C16	121.5 (3)	C34—C35—C36	121.5 (3)
C14—C15—H151	117.4 (16)	C34—C35—H351	118.0 (15)
C16—C15—H151	121.1 (15)	C36—C35—H351	120.4 (15)
C15—C16—C17	118.0 (3)	C35—C36—C37	118.1 (2)
C15—C16—H161	119.7 (14)	C35—C36—H361	123.9 (14)
C17—C16—H161	122.3 (14)	C37—C36—H361	117.9 (14)
C12—C17—C16	121.2 (2)	C36—C37—C32	120.6 (2)
C12—C17—N18	109.9 (2)	C36—C37—N38	128.6 (2)
C16—C17—N18	128.8 (2)	C32—C37—N38	110.8 (2)
C10—N18—C17	108.2 (2)	C30—N38—C37	108.9 (2)
C10—N18—H181	114.1 (19)	C30—N38—H381	113.5 (17)
C17—N18—H181	119.6 (17)	C37—N38—H381	120.6 (18)
N1—C2—C3—C4	177.9 (3)	C10—C11—C12—C13	-168.3 (3)
N1—C2—C7—C6	-178.1 (3)	C10—C11—C12—C17	15.2 (3)
N1—C2—C7—C8	1.2 (3)	C11—C10—N18—C17	27.6 (3)
N1—C9—C8—C7	-28.9 (3)	C11—C12—C13—C14	-177.3 (3)
N1—C9—C10—N18	67.0 (3)	C11—C12—C17—C16	178.2 (2)
N1—C9—C10—C11	-176.7 (2)	C12—C13—C14—C15	0.7 (4)
N18—C10—C9—C8	-176.7 (2)	C12—C17—C16—C15	-0.9 (4)
N18—C10—C11—C12	-25.3 (3)	C13—C12—C17—C16	1.3 (4)
N18—C17—C12—C11	1.6 (3)	C13—C14—C15—C16	-0.3 (4)
N18—C17—C12—C13	-175.3 (2)	C14—C13—C12—C17	-1.2 (4)
N18—C17—C16—C15	175.1 (3)	C14—C15—C16—C17	0.4 (4)
N21—C22—C23—C24	179.5 (3)	C22—N21—C29—C28	24.6 (3)
N21—C22—C27—C26	-178.3 (2)	C22—N21—C29—C30	146.9 (2)
N21—C22—C27—C28	-0.1 (3)	C22—C23—C24—C25	-1.6 (5)
N21—C29—C28—C27	-23.6 (3)	C22—C27—C26—C25	-1.8 (4)
N21-C29-C30-N38	64.9 (3)	C22—C27—C28—C29	15.2 (3)

N21-C29-C30-C31	-179.2 (2)	C23—C22—N21—C29	166.4 (3)
N38—C30—C29—C28	-178.1 (2)	C23—C22—C27—C26	-0.5 (4)
N38—C30—C31—C32	-22.2 (3)	C23—C22—C27—C28	177.7 (3)
N38—C37—C32—C31	0.8 (3)	C23—C24—C25—C26	-0.7 (5)
N38—C37—C32—C33	-177.1 (3)	C24—C23—C22—C27	2.2 (4)
N38—C37—C36—C35	177.3 (3)	C24—C25—C26—C27	2.3 (4)
C2-N1-C9-C8	30.3 (3)	C25—C26—C27—C28	-179.5 (3)
C2-N1-C9-C10	153.5 (3)	C26—C27—C28—C29	-166.9 (3)
C2—C3—C4—C5	-0.5 (5)	C27—C22—N21—C29	-16.0 (3)
C2—C7—C6—C5	0.1 (5)	C27—C28—C29—C30	-145.9 (2)
C2—C7—C8—C9	17.9 (3)	C28—C29—C30—C31	-62.3 (3)
C3—C2—N1—C9	161.7 (3)	C29—C30—N38—C37	145.6 (2)
C3—C2—C7—C6	-0.2 (5)	C29—C30—C31—C32	-144.0 (2)
C3—C2—C7—C8	179.2 (3)	C30—N38—C37—C32	-16.2 (3)
C3—C4—C5—C6	0.5 (6)	C30—N38—C37—C36	166.9 (3)
C4—C3—C2—C7	0.4 (5)	C30—C31—C32—C33	-168.5 (3)
C4—C5—C6—C7	-0.3 (5)	C30—C31—C32—C37	13.8 (3)
C5—C6—C7—C8	-179.1 (3)	C31—C30—N38—C37	23.8 (3)
C6—C7—C8—C9	-162.9 (3)	C31—C32—C33—C34	-177.6 (3)
C7—C2—N1—C9	-20.5 (3)	C31—C32—C37—C36	178.0 (3)
C7—C8—C9—C10	-151.5 (2)	C32—C33—C34—C35	-0.4 (5)
C8—C9—C10—C11	-60.4(3)	C32—C37—C36—C35	0.7 (4)
C9-C10-N18-C17	149.5 (2)	C33—C32—C37—C36	0.0 (4)
C9—C10—C11—C12	-147.8 (2)	C33—C34—C35—C36	1.2 (5)
C10—N18—C17—C12	-19.1 (3)	C34—C33—C32—C37	-0.2 (5)
C10—N18—C17—C16	164.6 (3)	C34—C35—C36—C37	-1.4 (5)
Symmetry codes: (i) $-x+1$, $y+1/2$, $-z$;	(ii) $-x+1$, $y-1/2$, $-z+1$; (iii)	-x+2, v+1/2, -z+1.	

Crystal Data for (2S,2'S)-2,2'-Biindolinepalladium(II) Dichloride

Primary atom site location: structure-invariant direct Flack parameter: -0.02 (3)

Special details

Refinement. The compound is enantiometrically pure. The absolute structure of the crystal has been determined by refinement of the Flack parameter and this establishes the absolute configuration of the molecule. It is in agreement with the configuration expected on the basis of the synthetic precursors.

Away from the $[(C_{16}H_{16}N_2)PdCl_2]$ molecule there is a region of residual electron density about a crystallographic twofold axis that appears to be a solvate molecule. This has been modelled as a disordered acetonitrile molecule of crystallization. Restraints were imposed on distances, angles and displacement parameters as the atomic sites overlap with their symmetry-related counterparts. From its size it was clear that the molecule has less than full occupancy, so this has been included as a refinable parameter.

H atoms, excluding those of the acetonitrile, were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 Å) and with U_{iso} (H) in the range 1.2–1.5 times U_{eq} of the parent atom, after which the positions of those attached to N were refined without restraints and those attached to C were refined with riding constraints. Displacement parameters were held fixed. The acetonitrile H atoms were not located.

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Pd1	0.291328 (9)	0.38821 (2)	0.50433 (2)	0.0256	
C11	0.34667 (4)	0.49237 (10)	0.70241 (8)	0.0379	
C12	0.20788 (4)	0.31574 (9)	0.65395 (8)	0.0396	
N1	0.36153 (11)	0.4479 (3)	0.3568 (3)	0.0272	
N18	0.24563 (10)	0.3017 (3)	0.3236 (3)	0.0268	
N93	-0.0061 (10)	-0.116 (3)	0.157 (2)	0.0913	0.225 (4)
C2	0.42258 (12)	0.3622 (3)	0.3541 (3)	0.0289	
С3	0.45722 (13)	0.3150 (4)	0.4750 (4)	0.0372	
C4	0.51434 (15)	0.2366 (4)	0.4491 (4)	0.0466	
C5	0.53466 (14)	0.2050 (4)	0.3069 (4)	0.0465	
C6	0.49904 (15)	0.2555 (4)	0.1870 (4)	0.0428	
C7	0.44202 (12)	0.3359 (3)	0.2106 (3)	0.0326	
C8	0.39517(13)	0.4051 (4)	0.1040 (3)	0.0362	
С9	0.33610 (13)	0.4292 (3)	0.2010 (3)	0.0271	
C10	0.29304 (13)	0.2813 (3)	0.1997 (3)	0.0275	
C11	0.25248 (13)	0.2718 (4)	0.0589 (3)	0.0327	
C12	0.19461 (13)	0.3672 (3)	0.1027(3)	0.0291	
C13	0.14565 (13)	0.4274 (3)	0.0178 (3)	0.0352	
C14	0.09638 (14)	0.5085 (4)	0.0856 (3)	0.0394	
C15	0.09587 (14)	0.5302 (4)	0.2372 (4)	0.0409	
C16	0.14452 (13)	0.4707 (3)	0.3236 (3)	0.0340	
C17	0.19250 (12)	0.3885 (3)	0.2546 (3)	0.0270	
C91	0.0274 (11)	0.180 (3)	0.190 (3)	0.1107	0.225 (4)
C92	0.0069 (8)	0.014 (3)	0.1676 (9)	0.0981	0.225 (4)
H11	0.3623 (15)	0.550 (4)	0.374 (4)	0.0406*	
H31	0.4429	0.3320	0.5714	0.0452*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H41	0.5367	0.2092	0.5228	0.0565*
H51	0.5714	0.1456	0.2930	0.0563*
H61	0.5137	0.2476	0.0896	0.0508*
H81	0.4088	0.5022	0.0651	0.0447*
H82	0.3863	0.3340	0.0221	0.0438*
H91	0.3125	0.5265	0.1789	0.0319*
H101	0.3177	0.1819	0.2189	0.0319*
H111	0.2717	0.3142	-0.0257	0.0390*
H112	0.2408	0.1602	0.0364	0.0396*
H131	0.1461	0.4114	-0.0827	0.0423*
H141	0.0640	0.5513	0.0297	0.0472*
H151	0.0619	0.5809	0.2798	0.0489*
H161	0.1445	0.4885	0.4234	0.0414*
H181	0.2307 (14)	0.197 (4)	0.346 (4)	0.0398*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pd1	0.02690 (9)	0.02797 (9)	0.02207 (9)	0.00175 (8)	0.00035 (11)	0.00010 (10)
C11	0.0421 (4)	0.0417 (4)	0.0300 (4)	0.0070 (3)	-0.0094 (3)	-0.0067(3)
C12	0.0394 (4)	0.0508 (4)	0.0288 (3)	-0.0038 (4)	0.0098 (4)	0.0021 (3)
N1	0.0266 (12)	0.0305 (12)	0.0247 (12)	-0.0012 (10)	0.0002 (10)	-0.0001 (10)
N18	0.0261 (12)	0.0300 (12)	0.0244 (12)	0.0000 (10)	0.0000 (9)	0.0002 (10)
N93	0.034 (9)	0.182 (13)	0.058 (8)	-0.012 (17)	-0.001 (8)	-0.001 (12)
C2	0.0235 (13)	0.0262 (14)	0.0370 (15)	-0.0031 (11)	0.0025 (11)	0.0000 (11)
C3	0.0318 (14)	0.0412 (15)	0.0386 (19)	0.0018 (12)	-0.0007 (13)	0.0048 (14)
C4	0.0310 (16)	0.0482 (18)	0.061 (2)	0.0037 (14)	-0.0093 (15)	0.0093 (15)
C5	0.0247 (15)	0.0424 (18)	0.072 (3)	0.0025 (13)	0.0034 (16)	-0.0050 (17)
C6	0.0277 (15)	0.0496 (18)	0.051 (2)	-0.0078 (14)	0.0060 (15)	-0.0138 (16)
C7	0.0236 (13)	0.0341 (15)	0.0403 (16)	-0.0067 (12)	0.0025 (12)	-0.0050 (13)
C8	0.0322 (15)	0.0429 (18)	0.0336 (15)	-0.0092 (14)	0.0047 (12)	-0.0022 (14)
C9	0.0281 (14)	0.0290 (14)	0.0242 (13)	0.0007 (11)	-0.0017 (11)	0.0010 (10)
C10	0.0243 (12)	0.0331 (13)	0.0250 (12)	0.0018 (12)	0.0032 (12)	-0.0020 (10)
C11	0.0289 (16)	0.0419 (17)	0.0274 (14)	-0.0039 (13)	-0.0006 (11)	-0.0070 (12)
C12	0.0277 (14)	0.0293 (14)	0.0303 (13)	-0.0046 (11)	-0.0001 (11)	0.0013 (12)
C13	0.0327 (14)	0.0428 (15)	0.0301 (16)	-0.0070 (11)	-0.0051 (13)	0.0023 (13)
C14	0.0321 (16)	0.0382 (16)	0.0478 (19)	0.0013 (14)	-0.0100 (13)	0.0037 (14)
C15	0.0285 (15)	0.0401 (17)	0.054 (2)	0.0054 (13)	0.0022 (14)	-0.0040 (15)
C16	0.0305 (15)	0.0382 (16)	0.0333 (15)	-0.0003 (12)	0.0034 (13)	-0.0043 (13)
C17	0.0227 (13)	0.0310 (13)	0.0275 (13)	-0.0029 (11)	-0.0001 (10)	0.0014(12)
C91	0.053 (12)	0.2044 (10)	0.075 (11)	-0.014 (16)	0.010 (10)	-0.005 (14)
C92	0.035 (10)	0.194 (10)	0.066 (7)	-0.021 (18)	0.010 (9)	0.000 (13)

Geometric parameters (Å, °)

Pd1—Cl1	2.3115 (7)	С8—С9	1.536 (4)
Pd1—Cl2	2.2998 (8)	C8—H81	0.925
Pd1—N1	2.055 (2)	C8—H82	0.968
Pd1—N18	2.035 (2)	C9—C10	1.524 (4)

N1—C2	1.467 (3)	C9—H91	0.968
N1—C9	1.522 (3)	C10—C11	1.541 (4)
N1—H11	0.86 (3)	C10—H101	0.989
N18—C10	1.513 (3)	C11—C12	1.505 (4)
N18—C17	1.469 (3)	C11—H111	0.938
N18—H181	0.95 (3)	C11—H112	0.978
N93—C92	1.117 (10)	C12—C13	1.380 (4)
C2—C3	1.375 (4)	C12—C17	1.394 (4)
C2—C7	1.385 (4)	C13—C14	1.380 (4)
C3—C4	1.386 (4)	C13—H131	0.924
С3—Н31	0.937	C14—C15	1.389 (4)
C4—C5	1.387 (5)	C14—H141	0.921
C4—H41	0.850	C15—C16	1.381 (4)
C5—C6	1.387 (5)	C15—H151	0.914
С5—Н51	0.925	C16—C17	1.369 (4)
C6—C7	1.388 (4)	C16—H161	0.919
C6—H61	0.940	C91—C92	1.452 (10)
C7—C8	1.497 (4)		
Cl1…C91 ⁱ	3.22 (2)	C3…C91 ⁱⁱ	3.38 (3)
Cl1…N18 ⁱ	3.224 (2)	C3…C3 ^v	3.556 (6)
Cl1…C92 ⁱ	3.30 (2)	C4C91 ⁱⁱ	3.36 (3)
Cl1…C17 ⁱ	3.408 (3)	C6…C91 ^{vi}	3.52 (3)
Cl1…N93 ⁱⁱ	3.50 (2)	C8…C92 ^{vii}	3.34 (1)
Cl1…C92 ⁱⁱ	3.57 (2)	C8…C92 ^{vi}	3.47 (1)
Cl2…N1 ⁱⁱⁱ	3.382 (3)	C13···C91	3.58 (2)
Cl2…C9 ⁱⁱⁱ	3.586 (3)	C14C91	3.23 (3)
N93····C6 ^{iv}	3.31 (2)	C15C91	3.27 (2)
N93····C8 ^{iv}	3.33 (2)	C15C91 ^{viii}	3.56 (2)
N93…C3 ⁱⁱⁱ	3.55 (2)		
Cl1—Pd1—Cl2	91.18 (3)	C9—C8—H82	111.4
Cl1—Pd1—N1	93.29 (7)	H81—C8—H82	107.3
Cl2—Pd1—N1	175.50 (7)	C8—C9—N1	105.3 (2)
Cl1—Pd1—N18	177.29 (7)	C8—C9—C10	111.8 (2)
Cl2—Pd1—N18	91.47 (7)	N1—C9—C10	107.3 (2)
N1—Pd1—N18	84.06 (9)	C8—C9—H91	113.8
Pd1—N1—C2	121.51 (18)	N1—C9—H91	106.8
Pd1—N1—C9	109.32 (16)	С10—С9—Н91	111.4
C2—N1—C9	104.1 (2)	C9—C10—N18	107.2 (2)
Pd1—N1—H11	97 (2)	C9—C10—C11	112.1 (2)
C2—NI—HII	118 (2)	NI8—CI0—CII	105.1 (2)
C9—NI—HII	106 (2)	C9—C10—H101	110.9
Pai—NI8—CI0	109.24 (16)	NIS-CIU-HI0I	107.9
$\frac{10}{10} \frac{10}{10} 10$	122.06 (18)		11.5.2
$UIU = NI\delta = UI/$	103.8 (2)		101.3 (2)
rui—NIS—HISI C10—NIS—HISI	107.8 (20)	C10-C11-H111	115.1
UIV-INIO-11101	100.0(19)	$\cup 12 - \cup 11 - \Pi \Pi \Pi$	111.0

C17—N18—H181	106.9 (19)	C10—C11—H112	111.2
N1—C2—C3	126.0 (3)	C12—C11—H112	110.4
N1—C2—C7	110.5 (2)	H111—C11—H112	107.0
C3—C2—C7	123.5 (3)	C11—C12—C13	130.2 (3)
C2—C3—C4	117.2 (3)	C11—C12—C17	110.8 (2)
C2—C3—H31	122.3	C13—C12—C17	119.0 (3)
C4—C3—H31	120.6	C12—C13—C14	119.1 (3)
C3—C4—C5	120.9 (3)	C12—C13—H131	119.6
C3—C4—H41	118.1	C14—C13—H131	121.3
C5—C4—H41	121.0	C13—C14—C15	120.8 (3)
C4—C5—C6	120.6 (3)	C13—C14—H141	119.7
C4—C5—H51	119.0	C15—C14—H141	119.5
C6—C5—H51	120.3	C14—C15—C16	120.8 (3)
C5—C6—C7	119.3 (3)	C14—C15—H151	119.1
C5—C6—H61	122.8	C16—C15—H151	120.0
C7-C6-H61	117.6	C15 - C16 - C17	117.6 (3)
C6-C7-C2	118.5 (3)	C15 - C16 - H161	120.2
C6 - C7 - C8	110.5(3) 130.7(3)	C17 - C16 - H161	120.2
$C_{1}^{2} - C_{2}^{2} - C_{3}^{2}$	130.7(3)	N18-C17-C12	122.2 109.7 (2)
$C_2 - C_1 - C_0$	110.8(2) 102.1(2)	N18 C17 C16	103.7(2)
$C_7 = C_8 = C_9$	102.1 (2)	C12 - C17 - C16	127.5(2)
C_{1} C_{2} C_{3} C_{1} C_{3} C_{1} C_{2} C_{3} C_{1} C_{3} C_{3	112.2	C12 - C17 - C10	122.7(3) 175.2(12)
C_{2} C_{8} H_{81}	110.9	C91—C92—N93	175.5 (15)
С/—Со—пог	115.1		
Pd1—N1—C2—C3	-41.5 (4)	C2—N1—C9—C8	-25.7 (3)
Pd1—N1—C2—C7	139.4 (2)	C2—N1—C9—C10	93.6 (2)
Pd1—N1—C9—C8	-156.8 (2)	C2—C3—C4—C5	-1.2 (5)
Pd1—N1—C9—C10	-37.6 (2)	C2—C7—C6—C5	-0.3 (4)
Pd1—N18—C10—C9	-42.2 (2)	C2—C7—C8—C9	-16.8 (3)
Pd1—N18—C10—C11	-161.7 (2)	C3—C2—N1—C9	-165.0 (3)
Pd1—N18—C17—C12	144.8 (2)	C3—C2—C7—C6	1.0 (4)
Pd1—N18—C17—C16	-39.3 (4)	C3—C2—C7—C8	-178.4 (3)
Cl1—Pd1—N1—C2	71.1 (2)	C3—C4—C5—C6	1.9 (5)
Cl1—Pd1—N1—C9	-167.9 (2)	C4—C3—C2—C7	-0.3 (4)
Cl1—Pd1—N18—C10	29 (2)	C4—C5—C6—C7	-1.1 (5)
Cl1—Pd1—N18—C17	-92 (2)	C5—C6—C7—C8	178.9 (3)
Cl2—Pd1—N1—C2	-116.4 (9)	C6—C7—C8—C9	164.0 (3)
Cl2—Pd1—N1—C9	5(1)	C7—C2—N1—C9	15.8 (3)
Cl2—Pd1—N18—C10	-163.5 (2)	C7—C8—C9—C10	-90.6 (3)
Cl2—Pd1—N18—C17	75.4(2)	C8—C9—C10—C11	-78.2 (3)
N1—Pd1—N18—C10	17.0(2)	C9-C10-N18-C17	89.4 (2)
N1—Pd1—N18—C17	-104.0 (2)	C9—C10—C11—C12	-88.7 (3)
N1—C2—C3—C4	-179.3 (3)	C10-N18-C17-C12	21.1 (3)
N1—C2—C7—C6	-179.8 (2)	C10-N18-C17-C16	-162.9 (3)
N1—C2—C7—C8	0.8 (3)	C10—C11—C12—C13	167.2 (3)
N1—C9—C8—C7	25.6 (3)	C10—C11—C12—C17	-15.1 (3)
N1—C9—C10—N18	52.1 (3)	C11—C10—N18—C17	-30.0 (3)
N1—C9—C10—C11	166.8 (2)	C11—C12—C13—C14	178.2 (3)
N18—Pd1—N1—C2	-109.5 (2)	C11—C12—C17—C16	-179.7 (2)
N18—Pd1—N1—C9	11.6 (2)	C12—C13—C14—C15	0.2 (4)
N10 C10 C0 C0	1/7 0 /02		1.7.(4)
N18 - C10 - C9 - C8	167.0 (2)	C12— $C17$ — $C16$ — $C15$	1.7 (4)
N18—C10—C11—C12	27.4 (3)	C13—C12—C17—C16	-1.8 (4)
N18—C17—C12—C11	-3.5 (3)	C13-C14-C15-C16	-0.2(5)
N18—C17—C12—C13	174.4 (2)	C14—C13—C12—C17	0.7 (4)
N18—CI7—C16—C15	-173.7 (3)	C14—C15—C16—C17	-0.7 (4)

Symmetry codes: (i) -x+1/2, y+1/2, -z+1; (ii) x+1/2, -y+1/2, -z+1; (iii) -x+1/2, y-1/2, -z+1; (iv) -x+1/2, y-1/2, -z; (v) -x+1, -y+1, z; (vi) x+1/2, -z; (vii) -x+1/2, y+1/2, -z; (vii) -x+1/2, y+1/2, -z; (viii) -x-y+1, z.

Notes and References

S1. W. L. F. Armarego, C. L. L. Chai. *Purification of Laboratory Chemicals*, Fifth Ed. Butterworth-Heinemann, USA, 2003.

S2. M. A. Robbins, P. N. Devine and T. Oh, Org. Synth., 1999, 76, 101-109.

S3. No molecular ion was detected. Attempts to detect any characteristic ions by ES MS analysis were also unsuccessful.

S4. A small amount of the PPh₃O by-product (~8 mg) was still present after this purification process. This sample was used in the subsequent cyclisation without further purification.

S5. The quantity obtained from this synthesis was insufficient to obtain a precise optical rotation. See the specific rotation of biindoline (S,S)-1 synthesised from biaziridine (S,S)-8.

S6. T. Kanger, K. Ausmees, A.-M. Muurisepp, T. Pehk and M. Lopp, *Synlett*, 2003, 1055-1057. Note that we prepared the biaziridine *via* the S_N^2 cyclisation sequence. Repeated attempts to prepare the product using the alternative shorter Staudinger approach resulted in poor yields (20-25%).

S7. This mixture was used in the subsequent cyclisation without further purification of the diamine. The Boc-deprotected imidazolidinone was inert to the cyclisation conditions.

S8. M. J. Gresser, P. A. Keller and S. M. Wales, *Tetrahedron*, 2010, 66, 6965-6976.