## Supporting Information for:

## Nickel-Catalyzed Intermolecular Codimerization of Acrylates and Alkynes

Hiroaki Horie, Ichiro Koyama, Takuya Kurahashi,\* and Seijiro Matsubara\*

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

## Contents

| Instrumentation and Chemicals                      | S2         |
|----------------------------------------------------|------------|
| Experimental Procedure and Characterization Data   | <b>S</b> 3 |
| <sup>1</sup> H NMR and <sup>13</sup> C NMR Spectra | S10        |
| ORTEP Drawing of A'                                | S22        |

#### **Instrumentation and Chemicals**

All manipulations of oxygen- and moisture-sensitive materials were conducted in a dry box or with a standard Schlenk technique under a purified argon atmosphere. Nuclear magnetic resonance spectra were taken on Varian UNITY INOVA 500 (<sup>1</sup>H, 500 MHz; <sup>13</sup>C, 125.7 MHz) spectrometer using tetramethylsilane (<sup>1</sup>H) as an internal standard. <sup>1</sup>H NMR data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextet, sept = septet, br = broad, m = multiplet), coupling constants (Hz), integration, and identification. GC-MS analyses and High-resolution mass spectra were obtained with a JEOL JMS-700 spectrometer by electron ionization at 70 eV. Preparative recycling gel permeation chromatography (GPC) was performed with JAI LC-908 equipped with JAIGEL-1H and -2H columns (toluene as an eluent). Elemental analyses were carried out with a YANAKO MT2 CHN CORDER machine at Kyoto University Elemental Analysis Center. Infrared spectra (IR) spectra were determined on a SHIMADZU FTIR-8200PC spectrometer. In-situ IR spectra were obtained with Mettler Toledo ReactIR 45M equipped with AgX Fiber (9.5 mm). Melting points were determined using a YANAKO MP-500D. TLC analyses were performed by means of Merck Kieselgel 60 F<sub>254</sub> (0.25 mm) Plates. Visualization was accomplished with UV light (254 nm) and/or an aqueous alkaline KMnO<sub>4</sub> solution followed by heating. Flash column chromatography was carried out using Kanto Chemical silica gel (spherical, 40-50 mm). Unless otherwise noted, commercially available reagents were used without purification. Toluene was purchased from Wako Pure Chemical Co. stored over slices of sodium. Bis(1,5-cyclooctadiene)nickel and ligands were purchased from Strem Chemicals, Inc.

## **Experimental Procedure and Characterization Data**

## Synthesis of *N*-phenyl-2-aminopyridine (3b).<sup>1</sup>

The reaction was performed in a 20 mL sealed tube equipped with a Teflon-coated magnetic stirrer tip. A mixture of 2-bromopyridine (1.58 g, 10 mmol) and aniline (1.83 mL, 20 mmol) was heated at 160 °C for 2 h. Saturated NaHCO<sub>3</sub> aq. was added slowly to the reaction mixture and the mixture was extracted with ethyl acetate ( $3 \times 40$  mL). The combined organic layers were washed with brine, dried over sodium sulfate and concentrated *in vacuo*. Aniline was removed by distillation under reduced pressure. The residue was recrystallized from hexane to give *N*-phenylaminopyridine (1.40 g, 82%). Another 2-aminopyridine derivatives were also synthesized in this method.

## Experimental Procedure for the Nickel-catalyzed Codimerization of Acrylates and Alkynes.

*General procedure.* The reaction was performed in a 5 mL sealed vessel equipped with a Teflon-coated magnetic stirrer tip. An acrylate (0.60 or 1.0 mmol) and an alkyne (0.50 mmol) were added to a solution of bis(1,5-dicyclooctadiene)nickel (14 mg, 0.050 mmol), tricyclohexylphosphine (14 mg, 0.050 mmol) and *N*-aryl-2-aminopyridine (0.10 mmol) in toluene (5 mL) in a dry box. The VIAL was taken outside the dry box and heated at 100 °C for 24 h. The reaction mixture was poured into 0.5N HCl aq. (30 mL) and the mixture was extracted with ethyl acetate (3 × 10 mL). The combined organic layers were washed with brine, dried over sodium sulfate and concentrated *in vacuo*. The residue was purified by flash silica gel column chromatography (hexane/AcOEt = 40/1) to give the corresponding conjugated diene.

## Methyl (2E,4E)-4-propyl-2,4-octadienoate (4aa).<sup>2</sup>

MeO

PrColorless oil. TLC:  $R_f$  0.46 (hexane/AcOEt = 10/1). <sup>1</sup>H NMR(500 MHz, CDCl<sub>3</sub>): δ 7.25 (d, J = 15.5 Hz, 1H), 5.88 (t, J = 7.5 Hz, 1H), 5.80 (d, J = 15.5 Hz, 1H), 3.75 (s, 3H), 2.21 (t, J = 9.5 Hz, 2H), 2.16 (q, J = 7.5 Hz, 2H), 1.43 (m, 4H), 0.93 (t, J = 7.0 Hz, 3H), 0.92 (t, J = 7.0 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 168.15, 149.28, 142.78, 137.35, 114.58, 51.42, 30.79, 28.57, 22.41, 21.90, 14.19, 13.88.IR (neat): 2960, 2873, 1722, 1625, 1464, 1434, 1378, 1307, 1265, 1191, 1168, 1043,

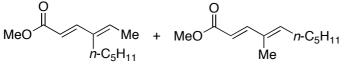
985, 858 cm<sup>-1</sup>. MS (EI): m/z (%): 196 ([M]<sup>+</sup>, 40), 167 ([M–Et]<sup>+</sup>, 36), 153 ([M–Pr], 100), 137 ([M–CO<sub>2</sub>Me], 31). HRMS calcd for C<sub>12</sub>H<sub>20</sub>O<sub>2</sub>: 196.1463. Found: 196.1462. Anal calcd for C<sub>12</sub>H<sub>20</sub>O<sub>2</sub>: C, 73.43; H, 10.27. Found: C, 73.18; H, 10.51.

## tert-Butyl (2E,4E)-4-propyl-2,4-octadienoate (4ba).

t-BuO Pr

<sup> $\dot{P}r$ </sup> Colorless oil. TLC: R<sub>f</sub> 0.66 (hexane/AcOEt = 10/1). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.14 (d, J = 15.5 Hz, 1H), 5.83 (t, J = 7.0 Hz, 1H), 5.72 (d, J = 15.5 Hz, 1H), 2.20 (t, J = 8.0 Hz, 2H), 2.15 (q, J = 7.0 Hz, 2H), 1.49 (s, 9H), 1.43 (m, 4H), 0.92 (t, J = 7.5 Hz, 6H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  167.13, 147.96, 141.77, 137.38, 116.94, 79.93, 30.74, 28.65, 28.21, 22.47, 21.94, 14.20, 13.87. IR (neat): 2961, 2872, 1709, 1624, 1456, 1368, 1308, 1285, 1256, 1152, 1086, 984, 858 cm<sup>-1</sup>. MS (EI): m/z (%): 238 ([M]<sup>+</sup>, 27), 182 ([M–CH<sub>2</sub>=C(CH<sub>3</sub>)<sub>2</sub>]<sup>+</sup>, 38), 165 ([M–(CH<sub>3</sub>)<sub>3</sub>CO]<sup>+</sup>, 35), 153 ([M–CH<sub>2</sub>=C(CH<sub>3</sub>)<sub>2</sub>–Pr]<sup>+</sup>, 100). HRMS calcd for C<sub>15</sub>H<sub>26</sub>O<sub>2</sub>: 238.1933. Found: 238.1935.

## Methyl (2E,4E)-4-pentyl-2,4-decadienoate (4ab).


<sup>C<sub>5</sub>H<sub>11</sub></sup> Colorless oil. TLC: R<sub>f</sub> 0.53 (hexane/AcOEt = 10/1). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.24 (d, *J* = 16.0 Hz, 1H), 5.86 (t, *J* = 7.5 Hz, 1H), 5.80 (d, *J* = 16.0 Hz, 1H), 3.75 (s, 3H), 2.21 (t, *J* = 7.5 Hz, 2H), 2.17 (q, *J* = 7.5 Hz, 2H), 1.46-1.25 (m, 12H), 0.89 (t, *J* = 7.0 Hz, 6H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  168.14, 149.27, 142.74, 137.52, 114.58, 51.37, 32.02, 31.57, 28.86, 28.71, 28.44, 26.62, 22.52, 22.50, 13.99, 13.96. IR (neat): 2956, 2860, 1722, 1622, 1467, 1435, 1379, 1308, 1268, 1166, 1096, 1044, 985, 851 cm<sup>-1</sup>. MS (EI): *m/z* (%): 252 ([M]<sup>+</sup>, 35), 195 ([M–Bu]<sup>+</sup>, 36), 181 ([M–C<sub>5</sub>H<sub>11</sub>]<sup>+</sup>, 100). HRMS calcd for C<sub>16</sub>H<sub>28</sub>O<sub>2</sub>: 252. 2089. Found: 252.2084.

## Methyl (2*E*,4*E*)-4-propylidene-2-octenoate and methyl (2*E*,4*E*)-4-ethyl-2,4-nonadienoate (1:1 mixture) (4ac).



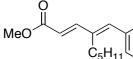
Bu Et Colorless oil. TLC: R<sub>f</sub> 0.46 (hexane/AcOEt = 10/1). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 7.24 (d, J = 16.0 Hz, 0.5H), 7.23 (d, J = 16.0 Hz, 0.5H), 5.85 (t, J = 7.5 Hz, 0.5H), 5.84 (t, J = 7.5 Hz, 0.5H), 5.82 (d, J = 16.0 Hz, 0.5H), 5.81 (d, J = 16.0 Hz, 0.5H), 3.75 (s, 3H), 2.28-2.16 (m, 4H), 1.44-1.29 (m, 4H), 1.03 (t, J = 7.5 Hz, 1.5H), 1.01 (t, J = 7.5 Hz, 1.5H), 0.91 (t, J = 7.5Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 168.14, 149.24, 148.79, 144.05, 142.22, 138.91, 137.01, 114.69, 114.50, 51.40, 31.35, 30.98, 28.25, 26.32, 22.89, 22.44, 22.02, 19.67, 13.94, 13.91, 13.67, 13.31. IR (neat): 2959, 2874, 1721, 1624, 1458, 1435, 1296, 1265, 1167, 1086, 984, 845 cm<sup>-1</sup>. MS (EI): m/z (%): 196 ([M]<sup>+</sup>, 71), 167 ([M–Et], 88), 139 ([M–Bu], 100), 137 ([M–CO<sub>2</sub>Me], 50). HRMS calcd for C<sub>12</sub>H<sub>20</sub>O<sub>2</sub>: 196.1463. Found: 196.1458.

## Methyl (2*E*,4*E*)-4-ethylidene-2-nonenoate and methyl (2*E*,4*E*)-4-methyl-2,4-decadienoate (5:1 mixture) (4ad).<sup>2</sup>



<sup>*n*-C<sub>5</sub>H<sub>11</sub> Me Colorless oil. TLC: R<sub>f</sub> 0.48 (hexane/AcOEt = 10/1). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.32 (d, *J* = 15.5 Hz, 0.17H), 7.24 (d, *J* = 16.0 Hz, 0.83H), 5.96 (q, *J* = 7.0 Hz, 0.83H), 5.91 (t, *J* = 7.0 Hz, 0.17H), 5.80 (d, *J* = 16.0 Hz, 0.83H), 5.78 (d, *J* = 15.5 Hz, 0.17H), 3.75 (s, 3H), 2.23 (t, *J* = 8.0 Hz, 1.67H), 2.19 (q, *J* = 7.0 Hz, 0.33H), 1.80 (d, *J* = 7.0 Hz, 2.5H), 1.76 (s, 0.50H), 1.45-1.27 (m, 6H), 0.89 (t, *J* = 7.0 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  168.17, 149.04, 138.63, 136.58, 114.43, 51.42, 31.95, 28.10, 26.21, 22.54, 14.48, 14.02. IR (neat): 2959, 2873, 1721, 1624, 1435, 1308, 1269, 1192, 1167, 984, 818 cm<sup>-1</sup>. MS (EI): *m/z* (%): 196 ([M]<sup>+</sup>, 56), 181 ([M–Me], 40), 139 ([M–Bu]<sup>+</sup>, 87), 125 ([M–C<sub>3</sub>H<sub>11</sub>]<sup>+</sup>, 100). HRMS calcd for C<sub>12</sub>H<sub>20</sub>O<sub>2</sub>: 196.1463. Found: 196.1454.</sup>

## Methyl (2*E*,4*E*)-4-isopropyl-2,4-hexadienoate and methyl (2*E*,4*E*)-4,6-dimethyl-2,4-heptadienoate (10:1 mixture) (4ae).




Me Colorless oil. TLC:  $R_f$  0.43 (hexane/AcOEt = 10/1). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.34 (d, J = 15.5 Hz, 0.09H), 7.24 (d, J = 16.0 Hz, 0.91H), 5.96 (d, J = 16.0 Hz, 0.91H), 5.89 (q, J = 7.0 Hz, 0.91H), 5.78 (d, J = 15.5 Hz, 0.09H), 5.71 (d, J = 9.0 Hz, 0.09H), 3.74 (s, 3H), 2.92 (sept, J = 7.0 Hz, 0.91H), 2.68 (dsept, J = 9.0, 7.0 Hz, 0.09H), 1.78 (d, J = 7.0 Hz, 0.91H), 1.77 (s, 0.09H), 1.11 (d, J = 7.0 Hz, 5.45H), 1.01 (d, J = 7.0 Hz, 0.55H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  167.91, 146.99, 143.05, 130.93, 115.98, 51.39, 27.23, 20.76, 14.10. IR (neat): 2963, 2874, 1722, 1621, 1435, 1300, 1270, 1173, 1045, 985, 865, 821 cm<sup>-1</sup>. MS (EI): m/z (%): 168 ([M]<sup>+</sup>, 50), 153 ([M–Me]<sup>+</sup>, 100), 109 ([M–CO<sub>2</sub>Me]<sup>+</sup>, 72). HRMS calcd for C<sub>10</sub>H<sub>16</sub>O<sub>2</sub>: 168.1150. Found: 168.1158.

## Methyl (2E,4E)-4-benzylidene-2-heptenoate (4af).<sup>2</sup>

MeO Pr Colorless oil. TLC:  $R_f 0.35$  (hexane/AcOEt = 10/1). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.42 (d, J = 16.0 Hz, 1H), 7.38 (t, J = 7.5 Hz, 2H), 7.31 (m, 3H), 6.81 (s, 1H), 5.99 (d, J = 16.0 Hz, 1H), 3.79 (s, 3H), 2.45 (t, J = 8.0 Hz, 2H), 1.56 (m, 2H), 0.99 (t, J = 7.0 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  167.82, 149.44, 138.99, 138.83, 136.63, 129.04, 128.45, 127.78, 116.74, 51.54, 29.36, 22.18, 14.28. IR (neat): 2957, 2873, 1717, 1619, 1435, 1309, 1266, 1168, 1084, 1031, 983, 851, 696 cm<sup>-1</sup>. MS (EI): m/z (%): 230 ([M]<sup>+</sup>, 26), 201 ([M–Et]<sup>+</sup>, 28), 171 ([M–CO<sub>2</sub>Me]<sup>+</sup>, 66), 141 (76), 129 ([M–PhCH<sub>2</sub>]<sup>+</sup>, 100). HRMS calcd for C<sub>15</sub>H<sub>18</sub>O<sub>2</sub>: 230.1307. Found: 230.1301.

## Methyl (2E,4E)-4-(4-methoxybenzylidene)-2-nonenoate (4ag).



OMe White solid, mp. 35-37 °C (hexane-AcOEt). TLC: R<sub>f</sub> 0.30 (hexane/AcOEt = 10/1). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.41 (d, J = 15.5 Hz, 1H), 7.29 (d, J = 9.0 Hz, 2H), 6.91 (d, J = 9.0 Hz, 2H), 6.73 (s, 1H), 5.94 (d, J = 15.5 Hz, 1H), 3.83 (s, 3H), 3.78 (s, 3H), 2.46 (t, J = 7.5 Hz, 2H), 1.56 (m, 2H), 1.37 (m, 4H), 0.92 (t, J = 7.0 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  167.98, 159.34, 149.98, 138.60, 137.44, 130.65, 129.24, 115.67, 113.98, 55.29, 51.47, 32.17, 28.38, 27.31, 22.44, 14.04. IR (neat): 2954, 2871, 1717, 1618, 1601, 1509, 1435, 1306, 1255, 1165, 1035, 982, 851, 824, 730 cm<sup>-1</sup>. MS (EI): m/z (%): 288 ([M]<sup>+</sup>, 68), 229 ([M–CO<sub>2</sub>Me]<sup>+</sup>, 65), 171 (73), 159 (62), 121 ([MeO-C<sub>6</sub>H<sub>4</sub>-CH<sub>2</sub>]<sup>+</sup>, 100). HRMS calcd for C<sub>18</sub>H<sub>24</sub>O<sub>3</sub>: 288.1725. Found: 288.1728. Anal calcd for C<sub>18</sub>H<sub>24</sub>O<sub>3</sub>: C, 74.97; H, 8.39. Found: C, 74.98; H, 8.68.

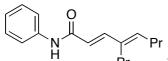
## Methyl (2E,4E)-4-(4-fluorobenzylidene)-2-nonenoate (4ah).

MeO

<sup>C</sup><sub>5</sub>H<sub>11</sub> <sup>F</sup> Colorless oil. TLC: R<sub>f</sub> 0.36 (hexane/AcOEt = 10/1). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.39 (d, *J* = 16.0 Hz, 1H), 7.29 (dd, *J*<sub>HH</sub> = 9.0 Hz, *J*<sub>HF</sub> = 5.0 Hz, 2H), 7.07 (dd, *J*<sub>HH</sub> = 9.0 Hz, *J*<sub>HF</sub> = 9.0 Hz, 2H), 6.75 (s, 1H), 5.98 (d, *J* = 16.0 Hz, 1H), 3.79 (s, 3H), 2.43 (t, *J* = 8.0 Hz, 2H), 1.53 (m, 2H), 1.34 (m, 4H), 0.90 (t, *J* = 7.0 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  167.76, 162.20 (d, *J*<sub>CF</sub> = 247 Hz), 149.18, 139.04, 137.36, 132.75 (d, *J*<sub>CF</sub> = 3.4 Hz), 130.75 (d, *J*<sub>CF</sub> = 7.8 Hz), 116.89, 115.49 (d, *J*<sub>CF</sub> = 21.5 Hz), 51.55, 32.08, 28.48, 27.23, 22.37, 13.98. IR(neat): 2954, 2872, 1706, 1622, 1598, 1506, 1435, 1312, 1269, 1235, 1167, 1091, 981, 855, 826, 728 cm<sup>-1</sup>. MS (EI): *m/z* (%): 276 ([M]<sup>+</sup>, 56), 219 ([M–Bu]<sup>+</sup>, 85), 159 (100), 109 ([F-C<sub>6</sub>H<sub>4</sub>-CH<sub>2</sub>]<sup>+</sup>, 60). HRMS calcd for C<sub>17</sub>H<sub>21</sub>FO<sub>2</sub>: 276.1526. Found: 276.1521. Anal calcd for C<sub>17</sub>H<sub>21</sub>FO<sub>2</sub>: C, 73.89; H, 7.66. Found: C, 73.63; H, 7.66.

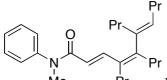
#### Methyl (2E,4E)-4-cyclopropyl-5-phenyl-2,4-pentadienoate (4ai).

MeO


White powder, mp. 62-65 °C (Et<sub>2</sub>O). TLC: R<sub>f</sub> 0.41 (hexane/AcOEt = 10/1). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.52 (d, *J* = 7.5 Hz, 2H), 7.41 (d, *J* = 15.5 Hz, 1H), 7.35 (t, *J* = 7.5 Hz, 2H), 7.28 (t, *J* = 7.5 Hz, 1H), 6.84 (s, 1H), 6.36 (d, *J* = 15.5 Hz, 1H), 3.79 (s, 3H), 1.61 (m, 1H), 0.89 (m, 2H), 0.25 (m, 2H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  167.92, 149.56, 140.07, 138.53, 136.11, 130.06, 127.94, 127.89, 117.99, 51.47, 9.71, 8.89. IR (KBr): 3026, 2988, 2949, 1709, 1615, 1447, 1429, 1309, 1292, 1195, 1162, 1006, 857, 694 cm<sup>-1</sup>. MS (EI): *m/z* (%): 228 ([M]<sup>+</sup>, 71), 169

 $([M-CO_2Me]^+, 100), 168 (62).$  HRMS calcd for  $C_{15}H_{16}O_2$ : 228.1150. Found: 228.1156. Anal calcd for  $C_{15}H_{16}O_2$ : C, 78.92; H, 7.06. Found: C, 78.85; H, 7.20.

# Experimental Procedure for the Nickel-catalyzed Reaction of Acrylamides and Alkynes.


*General procedure.* The reaction was performed in a 5 mL sealed vessel equipped with a Teflon-coated magnetic stirrer tip. An acrylamide (0.50 mmol) and an alkyne (0.60 mmol) were added to a solution of bis(1,5-dicyclooctadiene)nickel (14 mg, 0.050 mmol) and tricyclohexylphosphine (14 mg, 0.050 mmol) in 1,4-dioxane (5 mL) in a dry box. The VIAL was taken outside the dry box and heated at 80 °C for 24 h. The resulting reaction mixture was cooled to ambient temperature and filtered through a silica gel pad, concentrated *in vacuo*. The residue was purified by flash silica gel column chromatography (hexane/AcOEt = 10/1) to give the corresponding conjugated diene.

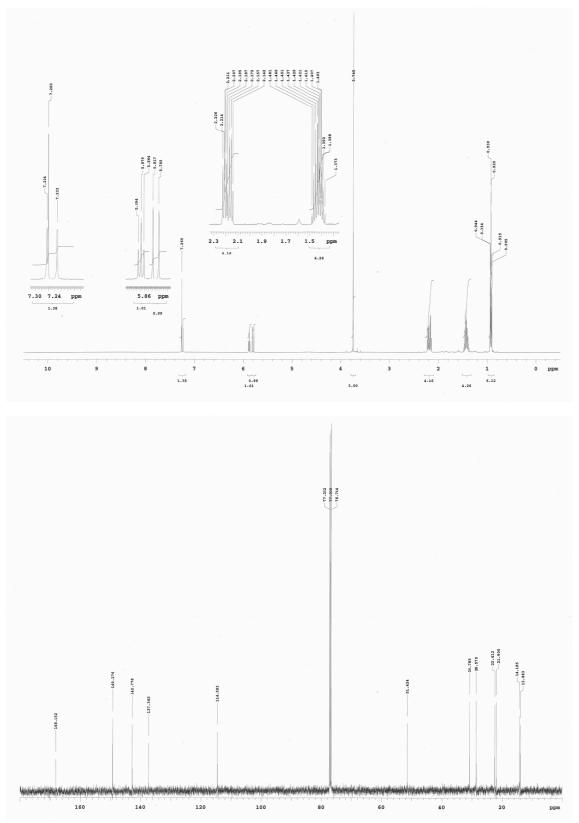
## (2E,4E)-N-Phenyl-4-propyl-2,4-octadienamide (7aa).

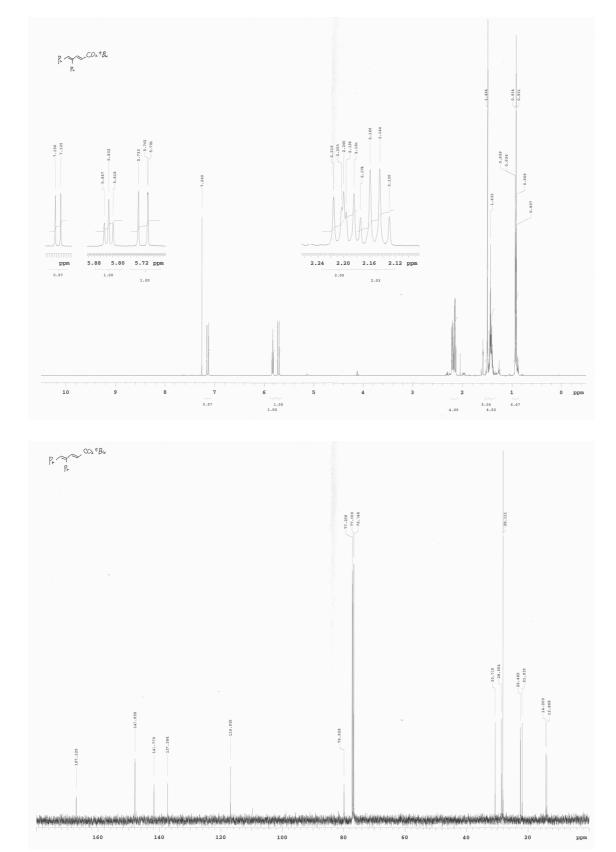


<sup>H</sup>  $\stackrel{P}{Pr}$  White powder, mp. 107-108 °C (CH<sub>2</sub>Cl<sub>2</sub>). TLC: R<sub>f</sub> 0.39 (hexane/AcOEt = 5/1). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.59 (d, *J* = 7.5 Hz, 2H), 7.46 (br, 1H), 7.32 (t, *J* = 7.5 Hz, 2H), 7.30 (d, *J* = 15.5 Hz, 1H), 7.09 (d, *J* = 7.5 Hz, 1H), 5.92 (d, *J* = 15.5 Hz, 1H), 5.87 (t, *J* = 7.5 Hz, 1H), 2.23 (t, *J* = 8.0 Hz, 2H), 2.16 (q, *J* = 7.5 Hz, 2H), 1.44 (m, 4H), 0.93 (t, *J* = 7.5 Hz, 6H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  164.89, 146.64, 142.09, 138.29, 137.04, 128.96, 124.07, 119.82, 117.57, 30.79, 28.80, 22.44, 21.96, 14.20, 13.87. IR (KBr): 3254, 2959, 2870, 1655, 1599, 1541, 1499, 1441, 1339, 1246, 1182, 1087, 901, 866, 754, 690 cm<sup>-1</sup>. MS (EI): *m/z* (%): 257 ([M]<sup>+</sup>, 84), 165 ([M–PhNH]<sup>+</sup>, 100). HRMS calcd for C<sub>17</sub>H<sub>23</sub>NO: 257.1780. Found: 257.1786. Anal calcd for C<sub>17</sub>H<sub>23</sub>NO: C, 79.33; H, 9.01; N, 5.44. Found: C, 79.42; H, 9.13; N, 5.43.

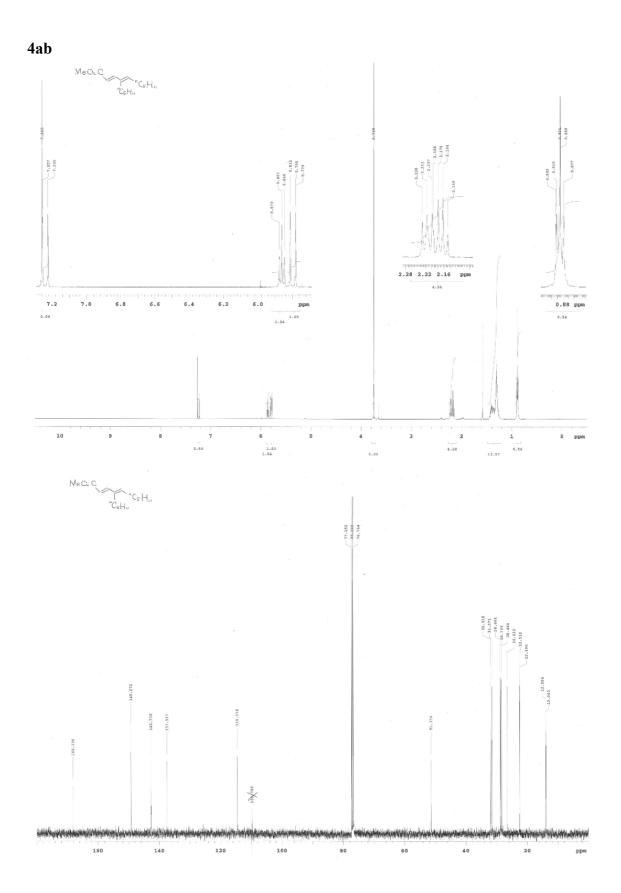
(2E,4Z,6E)-N-Methyl-N-phenyl-4,5,6-tripropyldeca-2,4,6-trienamide (8ba).

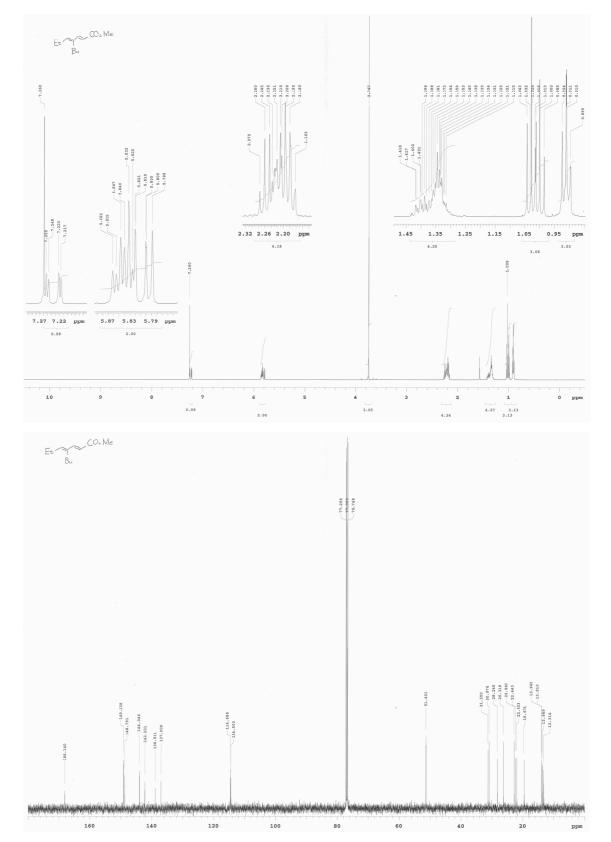



Me Pr Pale yellow oil.  $R_f = 0.45$  (hexane/AcOEt = 10/1). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.70 (d, J = 15.5 Hz, 1H), 7.39 (t, J = 7.5 Hz, 2H), 7.30 (t, J = 7.5 Hz, 1H), 7.19 (d, J = 7.5 Hz, 2H), 5.66 (d, J = 15.5 Hz, 1H), 5.03 (t, J = 7.5 Hz, 1H), 3.35 (s, 3H), 2.12 (m, 6H), 1.94 (t, J = 7.5 Hz, 2H), 1.46 (m, 2H), 1.38 (m, 4H), 1.18 (m, 2H), 0.94 (t, J = 7.5 Hz, 3H), 0.90 (t, J = 7.5 Hz, 3H), 0.85 (t, J = 7.5 Hz, 3H), 0.67 (t, J = 7.5 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  167.37, 152.32, 144.30, 142.75, 138.69, 132.63, 131.78, 129.29, 127.39, 127.07, 115.86, 37.12, 33.26, 31.87, 30.16, 30.14, 23.03, 22.20, 21.81, 21.37, 14.52, 14.13, 14.06, 13.99. IR (neat): 2958, 2871, 1657, 1596, 1496, 1362, 1289, 1122, 990, 898, 857, 772, 700 cm<sup>-1</sup>. MS (EI): m/z (%): 381 ([M]<sup>+</sup>, 44), 275 ([M–NMePh]<sup>+</sup>, 100), 247 ([M–C(O)NMePh]<sup>+</sup>, 75), 205 (82). HRMS calcd for C<sub>26</sub>H<sub>39</sub>NO: 381.3032. Found: 381.3031.

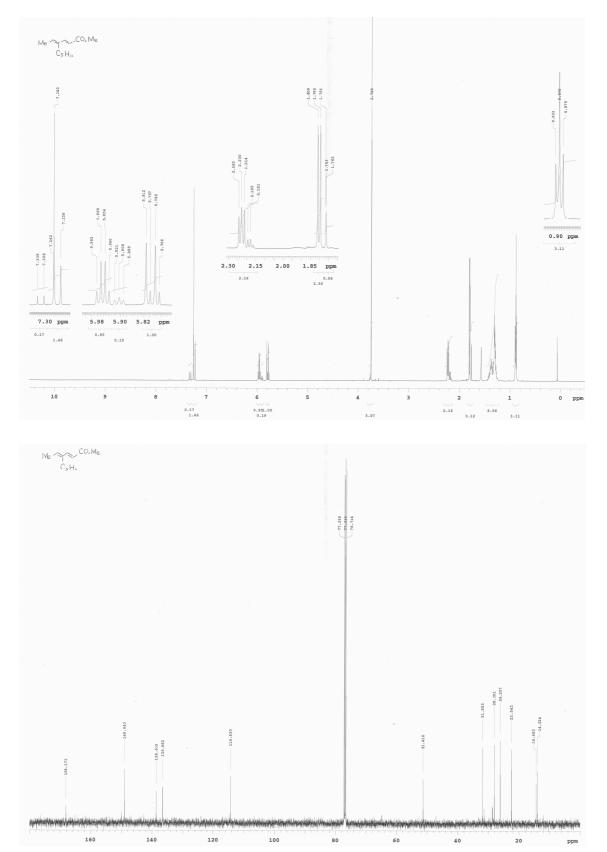

[References]

- 1. T. Hisano, T. Matsuoka, K. Tsutsumi, K. Muraoka, M. Ichikawa, *Chem. Pharm. Bull.* 1981, **29**, 3706.
- 2. N. M. Neisius, B. Plietker, Angew. Chem., Int. Ed. 2009, 48, 5752.

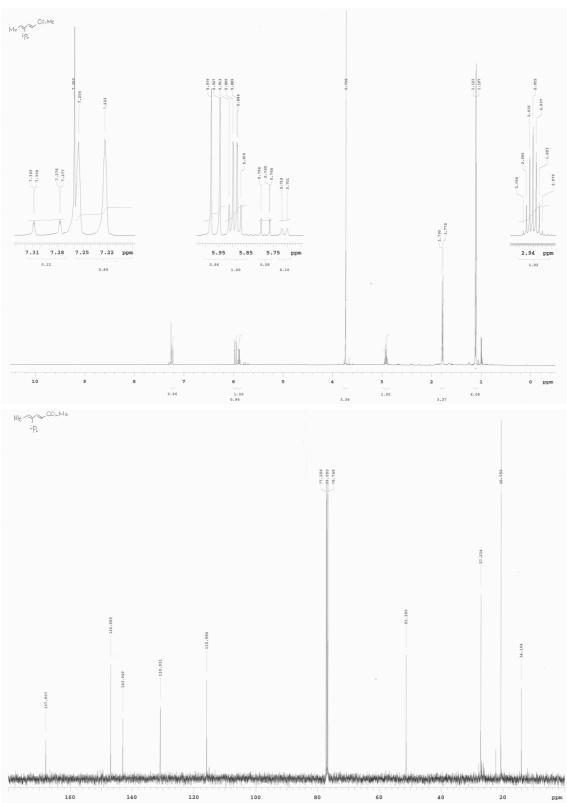

<sup>1</sup>H NMR and <sup>13</sup>C NMR Spectra


4aa



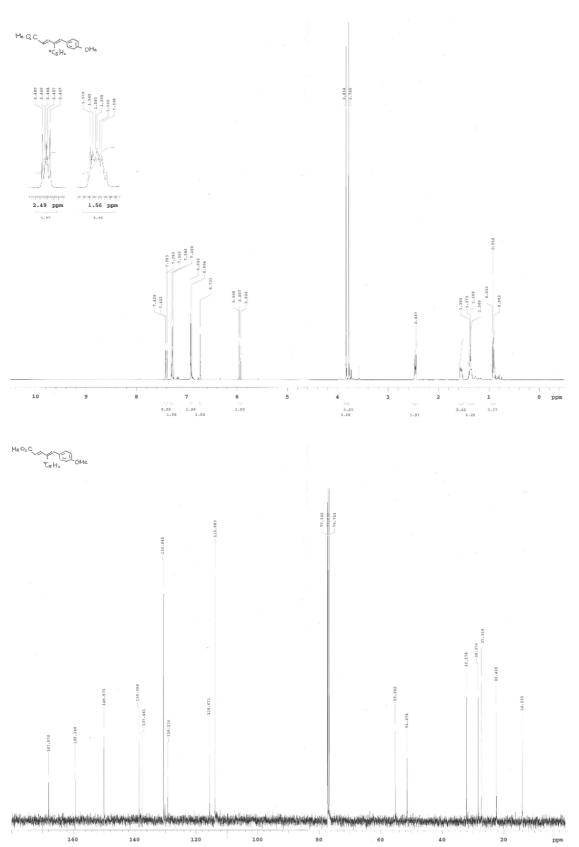




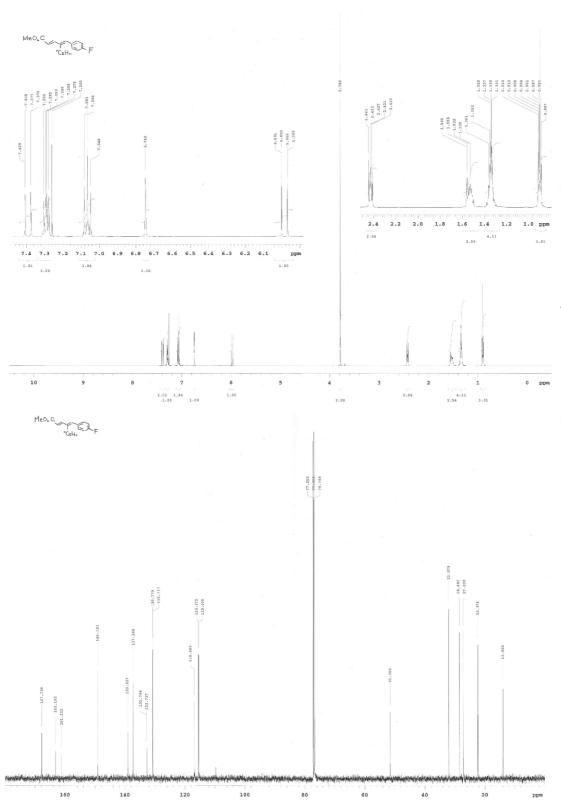





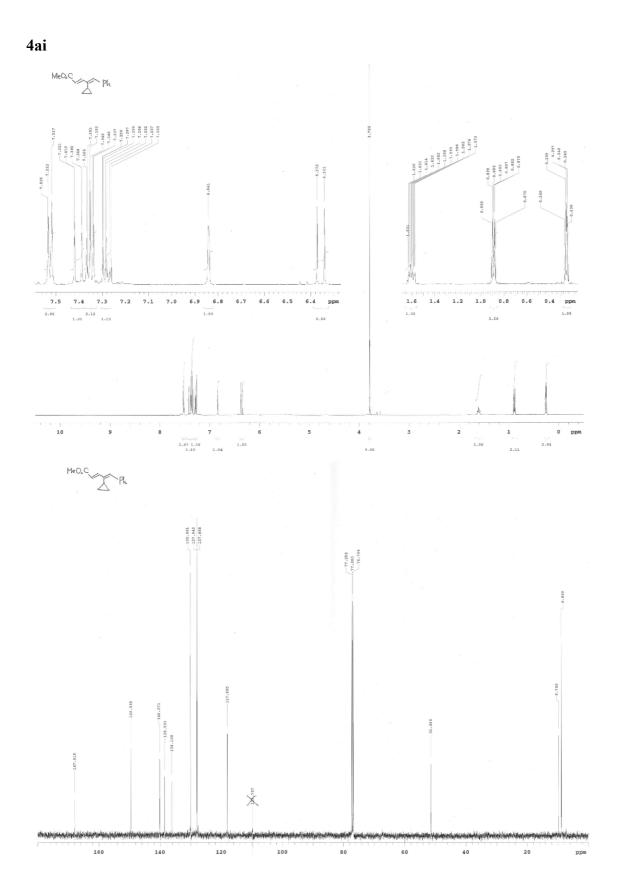

4ac

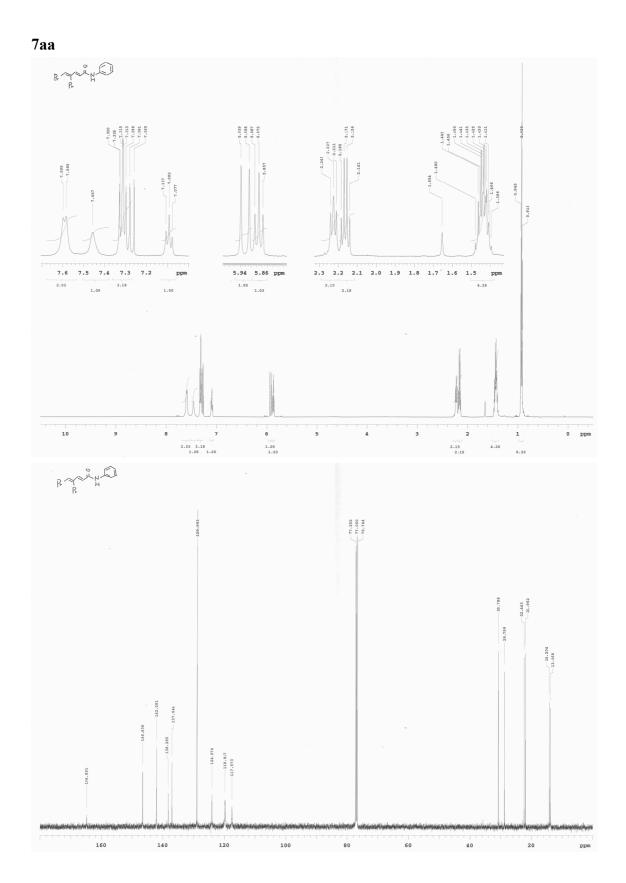


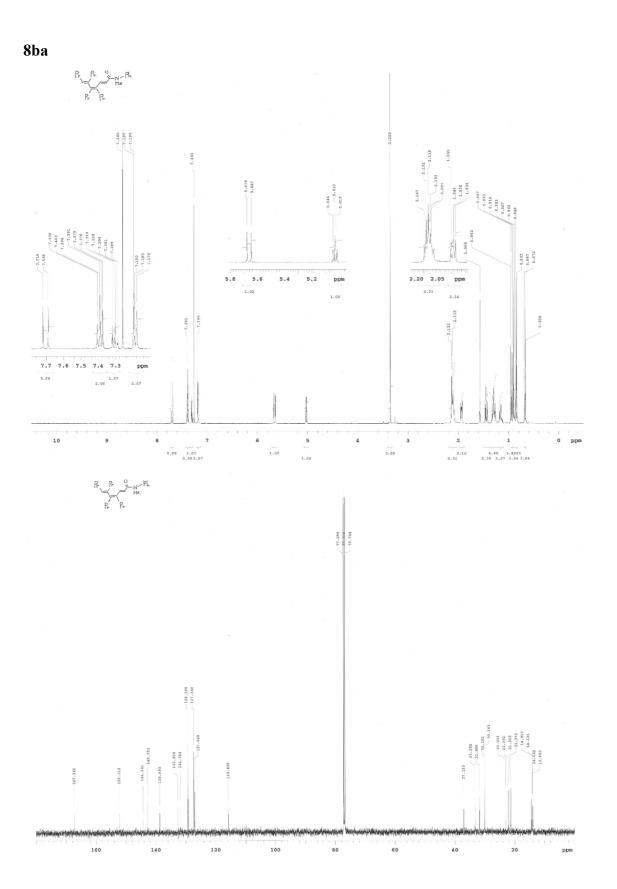

4ad




4ae

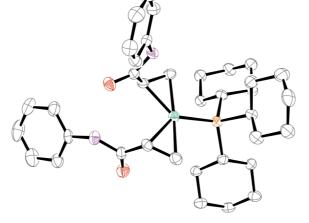





4ah








## **ORTEP Drawing of A'**





Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type Detector Position Pixel Size Lattice Parameters

Space Group Z value D<sub>calc</sub> F000 m(MoKa) Detector Goniometer Radiation C<sub>40</sub>N<sub>2</sub>NiPH<sub>59</sub>O<sub>4</sub> 721.59 colorless, prism 0.20 X 0.20 X 0.20 mm triclinic Primitive 49.95 mm 0.068 mm 9.847(3) Å a = b = 10.050(3) Åc = 19.516(6) Å $\alpha = 96.441(5)^{\circ}$  $\beta = 99.758(7)^{\circ}$  $\gamma = 94.550(3)^{\circ}$  $V = 1881.8(11) \text{ Å}^3$ P-1 (#2) 2  $1.273 \text{ g/cm}^{3}$ 776.00  $6.001 \text{ cm}^{-1}$ Rigaku Saturn Rigaku AFC10 MoKa (1 = 0.71070 Å)

Detector Aperture Data Images w oscillation Range (c=45.0, f=0.0) Exposure Rate Detector Swing Angle w oscillation Range (c=45.0, f=90.0) Exposure Rate Detector Swing Angle Detector Position Pixel Size 2qmax No. of Reflections Measured

## Corrections

Structure Solution Refinement Function Minimized Least Squares Weights 2qmax cutoff Anomalous Dispersion No. Observations (All reflections) No. Variables Reflection/Parameter Ratio Residuals: R1 (I>2.00s(I)) Residuals: R (All reflections) Residuals: wR2 (All reflections) Goodness of Fit Indicator Max Shift/Error in Final Cycle Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map

graphite monochromated 70 mm x 70 mm 720 exposures -110.0 - 70.0° 80.0 sec./° -19.93° -110.0 - 70.0° 80.0 sec./° -19.93° 49.95 mm 0.068 mm 54.9° Total: 14217 Unique:  $8099 (R_{int} = 0.063)$ Lorentz-polarization Absorption (trans. factors: 0.761 - 0.887) Direct Methods (SIR92) Full-matrix least-squares on  $F^2$ S w  $(Fo^2 - Fc^2)^2$  $1/[0.8500s(Fo^2)]/(4Fo^2)$ 54.9° All non-hydrogen atoms 8099 492 16.46 0.0644 0.1184 0.1037 1.024 0.000  $1.03 \text{ e/Å}^{3}$ 

 $-0.85 \text{ e/Å}^3$