Electronic supplementary information (ESI)

Temperature dependent selective gas sorption of unprecedented stable microporous metal-imidazolate framework

Shui-Sheng Chen,^{*a,c*} Min Chen,^{*a*} Satoshi Takamizawa,^{*b*} Man-Sheng Chen,^{*a*} Zhi Su^{*a*} and Wei-Yin Sun^{**a*}

^a Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, China E-mail: <u>sunwy@nju.edu.cn</u>; Fax: +86 25 83314502

^b Graduate School of Nanobioscience, Yokohama City University, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan

^c School of Chemistry and Chemical Engineering, Fuyang Teachers College, Fuyang 236041, China

Experimental

Materials and methods

All commercially available chemicals are of reagent grade and were used as received without further purification. The ligand H₂L was prepared according to the literature.^{S1} Elemental analyses of C, H, and N were taken on a Perkin-Elmer 240C elemental analyzer at the analysis center of Nanjing University. Infrared spectra (IR) were recorded on a Bruker Vector22 FT-IR spectrophotometer by using KBr pellets. Thermogravimetric analyses (TGA) were performed on a simultaneous SDT 2960 thermal analyzer under nitrogen with a heating rate of 10 °C min⁻¹. Powder X-ray diffraction (PXRD) patterns were measured on a Shimadzu XRD-6000 X-ray diffractometer with Cu K α ($\lambda = 1.5418$ Å) radiation at room temperature. Carbon dioxide (CO₂) and nitrogen (N₂) sorption experiments were carried out on a Belsorp-max volumetric gas sorption instrument and methane (CH₄) and hydrogen (H₂)

on Autosorb-1MP, Quantachrome. The sample was activated by using the "outgas" function of the surface area analyzer for 10 hours at 160 °C.

X-ray crystallography

The crystallographic data collections for **1** was carried out on a Bruker Smart Apex CCD area-detector diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) at 293(2) K using ω -scan technique. The diffraction data were integrated by using the *SAINT* program,^{S2} which was also used for the intensity corrections for the Lorentz and polarization effects. Semi-empirical absorption correction was applied using the *SADABS* program.^{S3} The structures were solved by direct methods and all the non-hydrogen atoms were refined anisotropically on F^2 by the full-matrix least-squares technique using the SHELXL-97 crystallographic software package.^{S4}

Figure S1. The coordination environments of Cu1 atoms in 1. Atoms with 'A', 'B', 'C' or 'D' in labels are symmetry-generated. Symmetry code: A 1+x-y, 2-y, 2.5-z; B 1-y, 1-x, 0.5+z; C 1+x-y, 1+x, 2-z; D 1-x, 2-y, 2-z.

(C)

Figure S2. (a) View of the 4-connected L^{2-} ligand. (b) 4-connected node of Cu(II). (c) Schematic representations of the (4, 4)-connected framework of **1** with (6⁵·10) topology.

Figure S3. CO_2 adsorption enthalpy for **1** calculated from the CO_2 adsorption isotherms at 273 and 298 K.

Figure S4. H_2 adsorption enthalpy for 1 calculated from the H_2 adsorption isotherms at 77 and 87 K.

Analysis of Gas Sorption Isotherms:

The methods are applied to deal with the sorption data according to the literature 14 (*J. Am. Chem. Soc.* 2005, **127**, 9367). The Langmuir-Freundlich equation is used to fit CO_2 and H_2 adsorption isotherms and predict the adsorption capacity of the framework at saturation, and Clausius-Clapeyron equation is employed to calculation the enthalpies of CO_2 and H_2

adsorption.

$$In\left(\frac{P_1}{P_2}\right) = \Delta H_{ads} \times \frac{T_2 - T_1}{RT_1T_2} \tag{}$$

Where P_i = pressure for isotherm *i* T_i = temperature for isotherm *i* R = 8.315 J / (K·mol)

The equation (I) can be applied to calculate the enthalpy of adsorption of a gas as a function of the quantity of gas adsorbed. Pressure as a function of the amount of gas adsorbed was determined using the Langmuir-Freundlich fit for the isotherms.

$$\frac{Q}{Qm} = \frac{BP^{(1/t)}}{1 + BP^{(1/t)}}$$
(II)

where Q = moles adsorbed $Q_{\rm m}$ = moles adsorbed at saturation P = pressure B and t are constants

Rearrange (II) to get:

$$P = \left(\frac{Q / Q_m}{B - BQ / Q_m}\right)^t \tag{III}$$

Replace P in equation (I) to obtain:

$$\Delta H_{ads} = \frac{RT_{1}T_{2}}{T_{2} - T_{1}} \times In \frac{\left(\frac{Q/Q_{m1}}{B_{1} - B_{1}Q/Q_{m1}}\right)^{t}}{\left(\frac{Q/Q_{m2}}{B_{2} - B_{2}Q/Q_{m2}}\right)^{t}}$$
(IV)

1. Dealing with the carbon dioxide adsorption data in details:

(1) Fitting CO₂ adsorption isotherms using the Langmuir-Freundlich equation.

(2) Building the relationship between $\ln P$ and the quantity of CO₂ adsorbed for the two isotherms by calculating.

(3) Calculating the H_{ads} using the equation IV.

2. Calculation of CO₂/N₂ selectivity

The methods are applied to estimate the CO_2/N_2 selectivity according to the literature 18a (*J. Am. Chem. Soc.*, 2010, **132**, 38). The ratios of these initial slopes of the CO_2 and N_2 adsorption isotherms were applied to estimate the adsorption selectivity for CO_2 over N_2 .

Figure S6. The fitting initial slope for CO_2 and N_2 isotherms collected at 273K (CO_2 : red squares; N_2 : green triangles).

Figure S7. The fitting initial slope for CO_2 and N_2 isotherms collected at 298K (CO_2 : red squares; N_2 : green triangles).

3. Dealing with the hydrogen adsorption data in details:

(1) Fitting H₂ adsorption isotherms using the Langmuir-Freundlich equation.

(2) Building the relationship between lnP and the quantity of hydrogen adsorbed for the two isotherms by calculating.

(3) Calculating the H_{ads} using the equation IV.

Reference:

- S1 (a) R. ten Have, M. Huisman, A. Meetsma and A. M. van Leusen, *Tetrahedron*, 1997, 53, 11355. (b) S. S. Chen, J. Fan, T.-a. Okamura, M. S. Chen, Z. Su, W. Y. Sun and N. Ueyama, *Cryst. Growth Des.* 2010, 10, 812.
- S2 SAINT, version 6.2; Bruker AXS, Inc., Madison, WI, 2001.
- S3 Sheldrick, G. M. SADABS, University of Göttingen, Göttingen, Germany.
- S4 Sheldrick, G. M. SHELXTL, version 6.10; Bruker Analytical X-ray Systems, Madison, WI, 2001.