Supplementary Material (ESI) for Chemical Communications

Quininium mandelates – Systematic study of chiral discrimination in

crystals of diastereomeric salts

Nikoletta B. Báthori,*^a Luigi R. Nassimbeni^a and Clive L. Oliver^b

^a Centre for Crystal Engineering, Department of Chemistry, Cape Peninsula University of Technology, P.O. Box 652, Cape Town, 8000, South Africa. Fax: +27 21 460 3854, Tel: +27 21 460 8354; E-mail: <u>bathorin@cput.ac.za</u> ^b Centre for Supramolecular Chemistry Research, Department of Chemistry, University of Cape Town.

Supporting Information

Experimental details, crystallographic information (Table 1S),

hydrogen bond metrics (Table 2S) and torsion angles (Table 3S) of compounds 1-5.

Experimental details of data collection and refinement:

Intensity data were collected on a Bruker DUO APEX II diffractometer¹ with graphite-monochromated Mo-K α_1 radiation ($\lambda = 0.71073$ Å) at 173 K using an Oxford Cryostream 700. Data reduction and cell refinement were performed using *DENZO*² or *SAINT-Plus*.³ The space groups were determined from systematic absences by *XPREP*⁴ and further justified by the refinement results. The structures were solved using *SHELXS-97*⁵ and refined using full-matrix least squares methods in *SHELXL-97*⁵ with the aid of the program *X-Seed*.⁶ The hydrogen atoms bound to carbon atoms were placed at idealized positions and refined as riding atoms with U_{iso} (H) = 1.2 U_{eq} (Ar-H, CH₂) or 1.5 U_{eq} (CH₃). The refinement of the hydroxyl hydrogen and hydrogens of the nitrogen atoms was carried out by first locating them on a difference electron density map and subsequently imposing an appropriate bond length constraint. Diagrams and publication material were generated using *PLATON*⁷ and *X-Seed*.

Several crystallisation yielded crystals which judging from their diffraction (Figure 1S a) were inter-grown. Attempts were made with the twin indexing program CELL_NOW⁸ to index individual domains. This program assigned 50% of the reflections (maximum deviation from integer values set to 0.1) to the main domain and 28% to the second domain (rotated less than 179.6° around the *b*-axis). Twin integration was not successful and instead the data were treated in a default manner, i.e. indexing and data reduction as if the data were from a single crystal. However R-factors for several data collections treated in this manner could not be optimized to below 14 %. Diffraction from a smaller crystal afforded by a subsequent crystallisation yielded a 'cleaner' diffraction pattern (Figure 1S b). Even though there seems evidence of a second domain (CELL_NOW indicated the first domain to consist of 80% of the reflections to a maximum integer deviation of 0.1) rotated 141° about the real axis (0 -0.33 1), treating the data as a twin yielded higher R-factors than treating it as a single crystal.

Figure 1S Reciprocal lattice view down the b* axis in structure 5. The green reflections indicate the main domain.

¹ Bruker 2005. APEX2. Version 1.0-27. Bruker AXS Inc., Madison, Wisconsin, USA

² Otwinowski, Z. and Minor W. in International Tables for Crystallography, Vol. F, ed. Rossman M. G. and Arnold, E. Kluwer, Dordrecht, 2000.

³ Bruker 2004. SAINT-Plus (including XPREP). Version 7.12. Bruker AXS Inc., Madison, Wisconsin, USA.

⁴ Bruker 2003, XPREP2. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA

⁵ Sheldrick, G. M. SHELXS-97 and SHELXL-97 Programs for crystal structure determination and refinement. University of Göttingen, 1997.

⁶ Barbour, L. J. J. Supramol. Chem., 2001, 1, 189-191.

⁷ Spek, A. L. PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 2008.

⁸ Sheldrick, G. M. CELL_NOW Version 2008-2, Index Twins and Other Problem Crystals, University of Göttingen, 2008.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Table 1S Crystallographic data for structures 1-5.

	1	2	3	4	5
CCDC No.					
Chemical formula	$C_{28}H_{32}N_2O_5$	$C_{28}H_{32}N_2O_5$	$C_{28}H_{32}N_2O_5$	$C_{28}H_{32}N_2O_5$	$C_{28}H_{32}N_2O_5$
Formula weight	476.56	476.56	476.56	476.56	476.56
Temperature (K)	173(2)	173(2)	173(2)	173(2)	173(2)
Crystal system	orthorhombic	monoclinic	monoclinic	monoclinic	monoclinic
Space group (No.)	P2 ₁ 2 ₁ 2 ₁ (No.19)	<i>P</i> 2 ₁ (No.4)			
a/Å	6.5538(19)	10.4121(14)	10.381(3)	10.4377(14)	10.415(2)
b/\AA	12.554(3)	18.574(3)	18.456(5)	18.501(2)	18.416(4)
c/Å	31.974(9)	19.070(3)	19.036(5)	19.116(2)	18.845(4)
$\alpha / ^{\circ}$	90.00	90.00	90.00	90.00	90.00
<i>β</i> /°	90.00	102.635(3)	102.557(5)	102.318(2)	101.431(7)
<i>γ</i> /°	90.00	90.00	90.00	90.00	90.00
V/\AA^3	2630.7(13)	3598.6(8)	3559.7(18)	3606.5(8)	3542.8(14)
Z'/Z	1/4	3/6	3/6	3/6	3/6
$D_{calc}/{ m Mg}~{ m m}^{-3}$	1.203	1.319	1.334	1.317	1.340
Radiation type	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα	ΜοΚα
Crystal size /mm	0.45 x 0.45 x 0.40	0.10 x 0.10 x 0.10	0.35 x 0.21 x 0.17	0.10 x 0.10 x 0.10	0.38 x 0.26 x 0.13
Colour, crystal form	colourless, chunk	colourless, chunk	colourless, chunk	colourless, chunk	colourless, plate
No. of total reflections	9097	19770	42152	47197	28583
No. of unique reflections	2853	7610	12252	6629	9161
$\Theta_{\min-\max}/^{\circ}$	2.06 / 25.70	2.00 / 26.43	2.01 / 26.58	2.00 / 25.10	1.56 / 28.51
$R[F^2>2\sigma(F^2)], wR(F^2)$	0.0493/ 0.1261 1.124	0.0468/ 0.1304 1.027	0.0519/ 0.1240 1.035	0.0329/ 0.0815 1.118	0.0528/ 0.1394 1.040
no. of parameters	324	988	1049	1038	970
max. and av. shift /esd	0.000 / 0.000	1.466 / 0.002	1.118 / 0.001	0.000 /0.000	0.000 /0.000
res. peak max./min. (e/Å3)	0.871 / -0.213	0.909 / -0.383	0.512 / -0.291	0.282 / -0.173	0.364 / -0.270

Table 2S Hydrogen bond parameters in structures 1-5.

D-HA	D-H/Å	HA/Å	DA/Å	<i>D-HA</i> /°	configuration of the anion
1					
N11-H11O33	1.04	1.64	2.632(4)	157.6	S
2					
N11A-H11AO31A	0.91(5)	1.76(5)	2.634(4)	158(4)	R
N11B-H11BO31B	0.83(4)	1.81(4)	2.626(4)	170(4)	R
N11C-H11CO31C	0.81(5)	1.86(5)	2.610(4)	155(4)	S
3					
N11A-H11AO31A	0.87(3)	1.83(3)	2.617(3)	151(3)	R
N11B-H11BO31B	0.75(3)	1.89(3)	2.626(3)	168(3)	R
N11C-H11CO31C	0.86(4)	1.82(4)	2.609(6)	152(3)	S
N11D-H11DO31D	0.86(4)	1.82(5)	2.56(3)	142(3)	R
4		~ /			
N11A-H11AO31A	0.85(3)	1.84(3)	2.631(3)	154(2)	R
N11B-H11BO31B	0.84(3)	1.81(3)	2.632(3)	166(3)	R
N11C-H11CO31C	0.87(4)	1.83(3)	2.616(5)	150(3)	S
N11D-H11DO31D	0.87(4)	1.84(4)	2.60(2)	145(3)	R
5		~ /			
N11A-H11AO31A	0.83(4)	1.92(4)	2.712(3)	160(4)	R
N11B-H11BO31B	0.81(3)	1.83(3)	2.576(3)	153(3)	R
N11C-H11CO31C	0.92(4)	2.00(4)	2.791(3)	143(3)	R

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2011

Table 3S Torsion angles in structures 1-5.

		1	2	3	4	5
$ au_I$	pair A	-4.1(5)	-8.4(5)	-7.4(4)	-7.1(4)	-6.5(4)
	pair B	-	-5.9(5)	-6.2(4)	-7.0(4)	-9.4(4)
	pair C	-	-2.2(5)	-2.1(4)	-3.3(4)	-7.6(4)
$ au_2$	pair A	-23.6(4)	-17.1(4)	-16.8(3)	-16.5(3)	-21.1(3)
	pair B	-	-22.7(4)	-22.7(3)	-22.6(3)	-17.3(3)
	pair C	-	-13.4(4)	-13.0(3)	-12.9(3)	-11.4(4)
$ au_3$	pair A	-84.0(3)	-77.3(3)	-77.4(3)	-76.8(3)	-79.8(2)
	pair B	-	-80.5(3)	-79.8(3)	-80.7(2)	-78.7(2)
	pair C	-	-75.2(3)	-75.3(3)	-74.5(3)	-70.5(3)
$ au_4$	pair A	-124.2(5)	111.1(6)	115.7(5)	117.0(4)	120.8(4)
	pair B	-	-103.2(4)	-104.6(4)	-105.9(3)	-111.4(4)
	pair C	-	-117.6(4)	-117.8(3)	-117.3(3)	-111.1(4)
$ au_5$	pair A	-108.5(4)	101.8(4)	102.3(3)	103.7(3)	120.2(3)
	pair B	-	91.2(4)	91.3(3)	91.0(3)	123.4(3)
	pair C	-	-106.4(4)	-107.8(4)	-113.8(7)	126.0(3)
	anion D	-	-	111(3)	109.9(17)	-
$ au_6$	pair A	-5.5(4)	28.6(4)	28.2(3)	27.6(3)	13.5(3)
	pair B	-	34.2(4)	34.0(3)	33.3(3)	19.4(3)
	pair C	-	6.4(4)	7.9(7)	4.0(13)	29.6(3)
	anion D	-	-	23(7)	26.1(18)	-
$ au_7$	pair A	-122.2(2)	-162.2	-165.2	-167.9	-165.0
	pair B	-	+82.2	+83.6	+78.5	-55.2
	pair C	-	-124.9	-129.1	-131.9	-53.5
	anion D	-	-	-163.8	-173.6	-