Electronic Supplementary Information

Electrochemical *meso*-Functionalization of Magnesium(II) Porphine[†]

Charles H. Devillers,* Abdou K. D. Dime, Hélène Cattey and Dominique Lucas* Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 5260, Université de Bourgogne, BP 47870, 21078 DIJON Cedex, France. E-mail: <u>charles.devillers@u-bourgogne.fr</u>; <u>dominique.lucas@u-bourgogne.fr</u>

Contents

Experimental details	p.2
Electrolysis of 1 in pyridine:	
- Maldi-Tof mass spectrum of the crude solution after electrolysis (Fig. 1)	p.4
- RDE voltammetry before and after electrolysis (Fig. 2)	p.4
Characterization of 2^+ , PF_6^- in CD ₃ COCD ₃ :	
- ¹ H NMR (Fig. 3)	p.5
- ¹³ C NMR (Fig. 4 and Fig. 5)	p.6-7
- COSY NMR (Fig. 6)	p.8
- NOESY NMR (Fig. 7)	p.9
- HSQC NMR (Fig. 8)	p.10
- Experimental and simulated isotopic patterns of 2⁺, PF₆⁻ from	
MALDI-TOF MS (Fig. 9)	p.11
Characterization of 3^+ , PF_6^- in CD ₃ OD:	
$- {}^{1}$ H NMR (Fig. 10)	p.12
$-\frac{^{13}\text{C}}{^{13}\text{C}}$ NMR (Fig. 11 and Fig. 12)	p.13-14
- ³¹ P NMR (Fig. 13)	p.15
- COSY NMR (Fig. 14)	p.16
- NOESY NMR (Fig. 15)	p.17
- HSQC NMR (Fig. 16)	p.18
- MALDI-TOF MS of 3^+ , PF_6^-	p.19
- Experimental and simulated isotopic patterns of 3^+ , $\mathbf{PF_6}^-$ from MALDL TOF MS (Fig. 18)	p.19
MALDI-TOF MS (Fig. 18)	
-UV-Visible spectra of 1 (in pyridine), 2^+ , $\mathbf{PF_6}^-$ (in pyridine)	p.20
and $3^{+}, \mathbf{PF_6}^{-}$ (in CH ₂ Cl ₂) (Fig. 19)	
-References	p.20

Experimental Details

Synthesis

Magnesium porphine **1** was synthesized according to known procedures.¹ Data (¹H NMR, ¹³C NMR, UV-Visible absorption, and MALDI-TOF mass spectrum) were consistent with those obtained in reference ¹.

Materials

Pyridine (VWR-BDH-Prolabo, 99.90% on anhydrous product), PPh₃ (Fluka, puriss., >99%), tetraethylammonium hexafluorophosphate (TEAPF₆, Fluka puriss., electrochemical grade, \geq 99.0%), 2,6-lutidine (Aldrich, purified by redistillation, \geq 99%) and MeOH (Sigma-Aldrich, Chromasolv for HPLC, min. 99.9%) were used as received. Tetra-*n*-butylammonium hexafluorophosphate (TBAPF₆) was synthesized by mixing stoichiometric amounts of tetra-*n*-butylammonium hydroxide (Alfa-Aesar, 40% w/w aq. sol.) and hexafluorophosphate acid (Alfa-Aesar, ca 60% w/w aq. sol.). After filtration, the salt was recrystallized three times in ethanol and dried at 80 °C during at least two days. CH₂Cl₂ (Carlo Erba 99.5%) and CH₃CN (SDS, Carlo Erba, HPLC gradient 99.9%) were distilled from P₂O₅ and CaH₂ respectively.

Electrochemistry

All manipulations were performed using Schlenk techniques in an atmosphere of dry oxygenfree argon at room temperature (T = 20°C ± 3°C). The supporting electrolyte was degassed under vacuum before use and then dissolved to a concentration of 0.1 mol L⁻¹. Voltammetric analyses were carried out in a standard three-electrode cell, with an EG & G Princeton Applied Research (PAR) Model 273 potentiostat, connected to an interfaced computer that employed Electrochemistry Power Suite software. The reference electrode was a saturated calomel electrode (SCE) separated from the analysed solution by a sintered glass disk filled with the background solution. The auxiliary electrode was a platinum wire separated from the analysed solution by a sintered glass disk filled with the background solution. For all voltammetric measurements, the working electrode was a platinum electrode ($\emptyset = 2$ mm). In these conditions, when operating in pyridine (0.1 M TBAPF₆), the formal potential for the ferrocene (+/0) couple was found to be +0.55 V vs. SCE. When operating in a mixture of CH₂Cl₂/CH₃CN 4/1 (0.1 M TEAPF₆) the formal potential for the ferrocene (+/0) couple was found to be +0.40 V vs. SCE.

Bulk electrolyses were performed in a cell with three compartments separated with glass frits of medium porosity with an Amel 552 potentiostat coupled with an Amel 721 electronic integrator. A platinum wire spiral (l = 53 cm, $\emptyset = 1 \text{ mm}$) was used as the working electrode, a platinum plate as the counter electrode and a saturated calomel electrode as the reference electrode. The electrolysis was followed by TLC and UV-visible absorption measurements and was stopped when the pink spot corresponding to **1** disappeared on TLC and when UV-visible absorption spectra and current did not evolve anymore. For pyridinium substitution, 2.0 ± 0.1 faraday per mol of **1** were necessary to exhaust totally the starting product. For the triphenylphosphonium substitution, 3.4 ± 0.2 faraday per mol of **1** were used.

Work-up procedures

2⁺,PF₆⁻:

After electrolysis in pyridine, work-up involved evaporating the red solution mixture to dryness under reduce pressure. The resulting crude solid was dissolved in a minimum of cold (*ca.* –90 °C) MeOH and the precipitated supporting electrolyte was removed by filtration and washed with cooled MeOH. The red filtrate was evaporated to dryness and this precipitation/filtration procedure was repeated one more time. The crude product was then purified by column chromatography (SiO₂, 0 to 2% MeOH, 1% pyridine in CH₂Cl₂). The first light pink fraction was unreacted **1** (< 1 mg). The second red fraction corresponded to 2^+ , PF₆⁻.

3⁺,PF₆⁻:

The work-up involved evaporating the blue/green solution mixture to dryness under reduce pressure. The resulting crude solid was dissolved in a minimum of CH_2Cl_2 and this solution was washed four times with 250 mL of distilled water to remove the supporting electrolyte. The blue/green organic phase was evaporated to dryness. The crude product was then purified by column chromatography (Alumina, 0 to 1% MeOH in CH_2Cl_2). The first colourless fraction was unreacted PPh₃, the second blue/purple fraction was **3**⁺,**PF**₆⁻.

Instruments

UV-visible absorption spectra were obtained with a Varian UV-vis spectrophotometer Cary 50 scan using quartz cells (Hellma).

Mass spectra were obtained on a Bruker ProFLEX III spectrometer (MALDI-TOF) using dithranol as matrix.

NMR spectra were measured on a BRUKER 600 MHz Avance II spectrometer. The reference was the residual non-deuterated solvent (CH₃COCH₃ or CH₃OH).

Fig. 1 MALDI-TOF mass spectrum of the crude solution resulting from the electrolysis of **1** in pyridine 0.1 M TBAPF₆; $E_{app} = 0.72$ V vs. SCE, -2 e, working electrode: Pt spiral.

Fig. 2 RDE voltammogram before (black/solid line) and after (red/dashed line) electrolysis of **1** in pyridine containing 0.1 M TBAPF₆ (WE: Pt, $\emptyset = 2 \text{ mm}$, 10 mV s⁻¹, $\omega = 500 \text{ rpm}$, [**1**] = 5.0×10^{-4} M).

Fig. 3 ¹H NMR spectrum of 2^+ , PF_6^- in CD_3COCD_3 , 600 MHz, 298 K.

Fig. 4 ¹³C NMR spectrum of 2^+ , PF_6^- in CD₃COCD₃, 150 MHz, 298 K.

Fig. 5 Partial ¹³C NMR spectrum of 2^+ , PF_6^- in CD₃COCD₃, 150 MHz, 298 K.

Fig. 6 1 H- 1 H COSY NMR spectrum of 2⁺, PF₆ - in CD₃COCD₃, 600 MHz, 298 K.

Fig. 7 1 H- 1 H NOESY NMR spectrum of **2** $^{+}$,**PF** $_{6}$ -**·Py** in CD₃COCD₃, 600 MHz, 298 K.

Fig. 8 1 H- 13 C HSQC NMR spectrum of 2⁺,PF₆⁻ in CD₃COCD₃, 600 MHz, 298 K.

Fig. 9 Partial MALDI-TOF mass spectrum of 2^+ , PF_6^- centered on its isotopic pattern (red/solid curve) and simulated isotopic pattern for a formula corresponding to 2^+ (black/dotted curve).

²⁰¹⁰cde 243 1 1 C:\Users\cdevillers\Documents\Chimie\MCF...

Fig. 11 ¹³C NMR spectrum of 3^+ , **PF**₆⁻ in CD₃OD, 150 MHz, 298 K.

Fig. 12 Partial ¹³C NMR spectrum of 3^+ , **PF**₆⁻ in CD₃OD, 150 MHz, 298 K. (*): non attributed signals. These signals could be: m, l, k, j, n or o (these 6 C are uncoupled with proton signals in ¹H-¹³C HSQC experiment). The "o" signal is attributed thanks to its coupling constant in comparison with phosphonium compounds reported in the literature, see for example ref².

Fig. 14 1 H- 1 H COSY NMR spectrum of **3**⁺,**PF**₆⁻ in CD₃OD, 600 MHz, 298 K.

Fig. 15 1 H- 1 H NOESY NMR spectrum of **3**⁺,**PF**₆⁻ in CD₃OD, 600 MHz, 298 K.

Fig. 16 1 H- 13 C HSQC NMR spectrum of **3**⁺,**PF**₆⁻ in CD₃OD, 600 MHz, 298 K.

Fig. 17 MALDI-TOF mass spectrum of 3⁺, PF₆⁻.

Fig. 18 Partial MALDI-TOF mass spectrum of 3^+ , PF_6^- centered on its isotopic pattern (red/solid curve) and simulated isotopic pattern for a formula corresponding to 3^+ (black/dotted curve).

Fig. 19 UV-Visible spectra of **1** in pyridine (black/solid line), 2^+ , \mathbf{PF}_6^- in pyridine (red/dashed line) and 3^+ , \mathbf{PF}_6^- in CH₂Cl₂ (blue/dotted line).

References

- 1. D. K. Dogutan, M. Ptaszek and J. S. Lindsey, J. Org. Chem., 2007, 72, 5008.
- 2. E. Rémond, A. Tessier, F. R. Leroux, J. Bayardon and S. Jugé, Org. Lett., 2010, 12, 1568.