Supporting Information

Transfer hydrogenation of cellulose to sugar alcohols over supported ruthenium catalysts

Hirokazu Kobayashi, Hisateru Matsuhashi, Tasuku Komanoya, Kenji Hara and Atsushi Fukuoka*

Catalysis Research Centre, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo 001-0021, Japan Division of Chemical Sciences and Engineering, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan

* E-mail: fukuoka@cat.hokudai.ac.jp, Fax: +81 11 706 9139

Reaction Procedure

Cellulose (Merck, Avicel) was milled using ZrO_2 balls at 60 rpm for 4 days as the pre-treatment. Transfer hydrogenation of cellulose was carried out in a stainless steel (SUS316) high-pressure reactor (OM Lab-Tech MMJ-100, 100 mL). The milled cellulose (324 mg, 1.90 mmol glucose units, containing 4.8 wt% physisorbed water), supported Ru catalyst (50 mg), water (30 mL) and 2-propanol (10 mL) were charged in the reactor (glucose unit/Ru = 190), and then purged with 1 atm of N₂ or He. The mixture was heated to 463 K and maintained at this temperature for 18 h with stirring at 600 rpm.

Analysis methods of products

The products were separated by centrifugation and decantation, and the water-soluble products were analysed by high-performance liquid chromatography (HPLC; Shimadzu LC10-AT*VP*, refractive index detector). The columns used in this work were a Phenomenex Rezex RPM-Monosaccharide Pb++ column (ϕ 7.8 × 300 mm, mobile phase: water 0.6 mL min⁻¹, 353 K) and a Shodex Sugar SH-1011 column (ϕ 8 × 300 mm, mobile phase: water 0.5 mL min⁻¹, 323 K). A typical example is shown in Fig. S1.

Characterisation of Ru catalysts

X-ray diffraction (XRD; Rigaku Miniflex) measurements were conducted using Cu K α radiation and energy dispersive X-ray spectroscopy (EDX; Shimadzu EDX-720) was carried out using Rh target. The electron binding energy of Ru 3p_{3/2} was determined by X-ray photoelectron spectroscopy (XPS; JEOL JPC-9010MC). H₂-temperature programmed reduction (H₂-TPR) was performed by using Quantachrome CHEMBET-3000 (detector: TCD).

Fig. S1 HPLC analysis for the reaction by Ru/AC(N) catalyst shown in Table 1 entry 3 with (a) a Sugar SH-1011 column and (b) a Rezex RPM-monosaccharide Pb++ column. The asterisks indicate unidentified products. Cellobitol: $4-O-\beta$ -glucopyranosyl-D-glucitol.

Fig. S2 XRD patterns of (a) AC(N), (b) 10 wt% Ru/AC(N) and (c) the differential pattern of (b)–(a).

Fig. S3 H₂-TPR of Ru/AC(N).

Fig. S4 Ru $3p_{3/2}$ XPS of Ru/AC(N) and standard compounds.

Fig. S5 Curve fitting of Ru $3p_{3/2}$ XPS for Ru/AC(N) using the data of reference compounds. Black line: Ru/AC(N), red line: the fitting curve (sum of 99.7% RuO₂ and 0.3% Ru metal), blue line: the difference between Ru/AC(N) and the fitting curve.

Entry	Concentration Yield based on carbon /%										Yield of
	of 2-propanol	Sorbitol	Mannitol	Sum of	Sorbitan	C ₂ -C ₄	Glucose	5-HMF ^{c}	Others ^d	conv. ^e /%	acetone
	/vol%			sorbitol		polyols ^b					/%
				and							
				mannitol							
21	0	0	0	0	0	0	1.6	8.8	64	74	_
22	5	3.1	1.0	4.1	0	0	1.5	2.9	71	79	12 (40) ^f
23	13	31	6.5	38	1.2	5.7	0.7	0	30	76	22 (20) ^f
24	20	33	9.6	43	1.5	4.3	0.8	0	27	77	16 (20) ^f
3	25	34	9.0	43	0.6	6.1	0.9	0	23	74	15 (24) ^f
25	38	24	10	34	0.5	4.3	0.6	0	32	71	10 (30) ^f
26	50	21	10	31	0.5	0	1.1	0	31	64	8.0 (35) ^f
27	75	12	8.5	21	0.3	0	0	0	38	59	8.3 (81) ^f
28	100	0	0	0	0	0.4	0	0	22	22	5.6

Table S1 Effect of the concentration of 2-propanol on the transfer hydrogenation of cellulose by Ru/AC(N) catalyst.^{*a*}

^{*a*} Cellulose 324 mg (1.90 mmol), catalyst 50 mg (metal 2 wt%), water + 2-propanol 40 mL, 463 K, 18 h. ^{*b*} Sum of erythritol, glycerine, propylene glycol and ethylene glycol. ^{*c*} 5-Hydroxymethyl furfural. ^{*d*} Others include soluble sugar compounds and unidentified ones. ^{*e*} Based on the carbon balance calculated from the weight difference after the reaction. ^{*f*} Ratio of acetone yield against the sugar alcohols yield (mol/mol).

Table S2 Screening tests of alcohols on the transfer hydrogenation of cellulose by Ru/AC(N) catalyst.^{*a*}

Entry	Alcohol	Yield based on carbon /%								Cellulose	Yield of
		Sorbitol	Mannitol	Sum of	Sorbitan	C ₂ -C ₄	Glucose	5-HMF ^c	Others ^d	conv. ^e /%	aldehyde
				sorbitol		$polyols^b$					or ketone
				and							/%
				mannitol							
29	Ethanol	0	0	0	0	0	0.2	0	70	70	N.d.
3	2-Propanol	34	9.0	43	0.6	6.1	0.9	0	23	74	15 (24) ^f
30	Glycerine	0.7	0	0.7	0	0	1.0	3.2	69	74	N.d.
31	2-Butanol	3.0	1.5	4.5	0	5.6	1.6	0	58	70	24 (300) ^f

^{*a*} Cellulose 324 mg (1.90 mmol), catalyst 50 mg (metal 2 wt%), water 30 mL, alcohol 10 mL, 463 K, 18 h. N.d.: Not determined. ^{*b*} Sum of erythritol, glycerine, propylene glycol and ethylene glycol. ^{*c*} 5-Hydroxymethyl furfural. ^{*d*} Others include soluble sugar compounds and unidentified ones. ^{*e*} Based on the carbon balance calculated from the weight difference after the reaction. ^{*f*} Ratio of the ketone yield against the sugar alcohols yield (mol/mol).