Electronic Supplementary Information (ESI)

A Powerful Synergistic Effect for Highly Efficient Diastereo- and Enantioselective Phase-Transfer Catalyzed Conjugate Additions

Ming-Qing Hua, Lian Wang, Han-Feng Cui, Jing Nie, Xiao-Ling Zhang, Jun-An Ma*

Department of Chemistry, Tianjin University, Tianjin 30072, China majun_an68@tju.edu.cn

Contents

1. General Information	S2
2. Preparation of Catalysts	S 3
3. Optimizing of the Michael Addition Conditions	S10
4. General Procedure for Catalyzed Michael Addition	S12
5. Large-scale Synthesis and Recovery of Catalyst 6f	S26
6. Synthetic Transformations of the Adducts	S27
7. References	S37
8. NMR Spectra and HPLC Charts for the Addition Adducts	S38
9. X-ray Analysis for the Amino Acid 14	S97

1. General information:

NMR spectra were recorded on Varian Mercury Plus 500 instruments at 500 MHz (¹H NMR), 125 MHz (¹³C NMR) or Bruker AvanCE^{III} 400 MHz (¹H NMR), 100 MHz (¹³C NMR). Chemical shifts were reported in ppm down field from internal Me₄Si. MS were recorded on a VG ZAB–HS spectrometer with the ESI resource. Optical rotations were determined using an Autopol IV–T. IR spectra were recorded on a Hewlett Packard Model HP 1200 instrument.

Materials:

Tetrahydrofuran (THF), diethyl ether, benzene and toluene were distilled from sodium/benzophenone prior to use; CH_2Cl_2 were distilled from CaH_2 . All purchased reagents were used without further purification. 4,4'-Bipiperidine dihydrochloride and 4,4'-Ethylenedipiperidine dihydrochloride were purchased from Aldrich chemicals, Inc. 1,3-Bis(4-piperidinyl)propane was purchased from Alfa Aesar chemicals, Inc. 3,3-disubstituted (*S*)-binol-derived were synthesized according to the literatures.¹

2. Preparation of catalysts:

A mixture of 3,3-disubstituted (S)-binol-derived dibromide¹ (1.1 mmol), Bipiperidine (0.5 mmol) and K₂CO₃ (207 mg, 1.5 mmol) in acetonitrile (10 mL) was heated to reflux, and stirring was maintained for 48 h. The resulting mixture was poured into water and extracted with CH₂Cl₂. The organic extracts were dried over Na₂SO₄ and concentrated. The residue was purified by column chromatographyon silica gel (MeOH/CH₂Cl₂ = 1/50 as eluant) to furnish (S,S)-6.

(*S*,*S*)-6a: 624.9 mg, 56% yield; $[\alpha]^{20}_{D}$ -9.4 (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 0.76–0.78 (m, 2H), 1.06–1.07 (m, 2H), 1.13–1.16 (m, 2H), 1.24–1.26 (m, 4H), 2.77 (d, *J* = 10.5 Hz, 4H), 3.20–3.21 (m, 2H), 3.60–3.74 (m, 4H), 3.86 (d, *J* = 12.5 Hz, 2H), 4.45–4.48 (m, 2H), 5.36–5.39 (m, 2H), 7.29–7.32 (m, 8H), 7.42–7.49 (m, 20H), 7.68–7.73 (m, 8H), 7.90 (s, 4H), 8.08–8.12 (m, 8H); ¹³C NMR (125 MHz, CDCl₃) δ 152.5–152.6 (m), 152.3–152.4 (m), 150.1–150.1 (m), 149.8–149.9 (m), 140.9–141.1 (m), 140.4–140.6 (m), 139.9–140.1 (m), 139.5–139.6 (m), 138.9, 138.4, 138.3, 138.1, 138.0, 137.8, 136.3–136.8 (m), 135.2–135.3 (m), 134.5, 133.9, 133.6, 131.5, 130.9, 130.7, 130.5, 129.7, 129.0, 128.7, 128.5, 128.2, 127.9, 127.9, 127.6,

126.4, 126.3, 124.1, 123.5, 67.1, 62.8, 60.4, 58.1, 53.4, 52.5, 40.8, 34.4, 31.9, 29.7, 29.6, 29.3, 22.7, 21.0, 20.6, 18.3, 14.1; IR (KBr) v 3398, 3053, 2934, 2858, 1616, 1585, 1526, 1456, 1400, 1345, 1242, 1044, 881, 852, 751, 663 cm⁻¹; MS (ESI) m/z 1035.63 ($[M - 2Br]^{2+}/2$, $C_{126}H_{74}F_{24}N_2^{2+}$ requires 1035.95).

(*S*,*S*)-6b: 564.9 mg, 50% yield; $[α]^{20}_{D}$ +5.5 (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 0.70–0.72 (m, 2H), 0.84–0.92 (m, 4H), 1.12–1.26 (m, 8H), 2.59–2.65 (m, 2H), 2.93–3.09 (m, 4H), 3.49–3.59 (m, 2H), 3.77–3.90 (m, 4H), 4.90–5.01 (m, 4H), 7.14–7.17 (m, 2H), 7.22–7.24 (m, 2H), 7.33 (t, *J* = 6.5 Hz, 6H), 7.41–7.52 (m, 20H), 7.69–7.77 (m, 10H), 8.03 (d, *J* = 7.5 Hz, 2H), 8.09 (d, *J* = 8.0 Hz, 2H), 8.18 (d, *J* = 9.5 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃ & CD₃OD) δ 152.6–152.7 (m), 152.4–152.5 (m), 150.6–150.7 (m), 150.4–150.5 (m), 141.3–141.4 (m), 140.7–140.8 (m), 140.6–140.7 (m), 140.4–140.5 (m), 139.9, 139.5, 138.8, 138.6, 138.1, 137.8, 136.5–136.7 (m), 135.9–136.1 (m), 134.2, 131.7, 131.2, 131.1, 131.0, 129.1, 129.0, 128.9, 128.7, 128.6, 128.5, 128.2, 128.1, 128.0, 128.0, 127.8, 127.6, 127.6, 126.0, 125.3, 123.9, 123.5, 63.0, 60.3, 57.4, 56.5, 53.6, 52.4, 32.0, 31.8, 30.1, 29.7, 29.7, 29.4, 26.5, 25.7, 22.7, 21.0, 17.6, 13.8; IR (KBr) v 3324, 3049, 2929, 2863, 1616, 1527, 1457, 1400, 1345, 1243, 1044, 852, 748, 664 cm⁻¹; MS (ESI) m/z 1049.73 ([M – 2Br]^{2+/2}, C₁₂₈H₇₈F₂₄N₂²⁺ requires 1049.98).

(*S*,*S*)-6c: 670.7 mg, 59% yield; $[\alpha]^{20}{}_{D}$ +3.4 (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 0.52–0.55 (m, 2H), 0.67–0.69 (m, 2H), 0.84–0.89 (m, 4H), 1.25 (s, 4H), 1.41 (d, *J* = 11.0 Hz, 4H), 2.79 (d, *J* = 11.0 Hz, 2H), 3.17 (s, 4H), 3.49 (d, *J* = 13.0 Hz, 2H), 3.84–3.89 (m, 4H), 4.96 (t, *J* = 14.5 Hz, 4H), 7.25–7.28 (m, 2H), 7.31–7.49 (m, 24H), 7.54 (s, 2H), 7.62–7.70 (m, 8H), 7.77 (s, 2H), 7.83 (s, 2H), 8.06–8.10 (m, 4H), 8.15 (s, 2H), 8.20 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 152.4–152.6 (m), 152.2–152.3 (m), 150.4–150.6 (m), 150.2–150.3 (m), 141.3–141.4 (m), 140.7–140.9 (m), 140.4–140.6 (m), 139.9–140.1 (m), 139.6, 138.9, 138.6, 138.5, 138.0, 136.4–136.5 (m), 135.7–135.8 (m), 134.1, 133.2, 131.9, 131.8, 131.8, 131.3, 131.2, 131.0, 129.4, 129.3, 129.2, 129.2, 128.9, 128.8, 128.6, 128.4, 128.2, 128.0, 127.9, 127.8, 127.7, 125.9, 125.3, 124.0, 123.7, 63.0, 60.3, 57.9, 57.1, 53.8, 52.8, 35.5, 33.9, 33.5, 32.1, 30.7, 29.9, 29.8, 29.5, 26.5, 26.0, 25.6, 25.0, 22.9, 18.4, 14.3; IR (KBr) v 3395, 3052, 2930, 2858, 1616, 1585, 1532, 1456, 1400, 1345, 1243, 1041, 852, 789, 664 cm⁻¹; MS (ESI) m/z 1056.99 ([M – 2Br]²⁺/2, C₁₂₉H₈₀F₂₄N₂²⁺ requires 1056.99).

S5

(*S*,*S*)-6d: 837.5 mg, 58% yield; $[α]^{20}_{D}$ –18.0 (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 0.95–0.97 (m, 2H), 1.28 (s, 8H), 2.30–2.36 (m, 2H), 2.87 (s, 4H), 3.24 (d, *J* = 10.5 Hz, 2H), 3.90–4.13 (m, 4H), 4.55–4.57 (m, 2H), 5.49–5.49 (m, 2H), 7.42 (s, 2H), 7.49–7.53 (m, 10H), 7.57–7.59 (m, 3H), 7.70–7.73 (m, 7H), 7.77–7.79 (m, 6H), 7.88–7.93 (m, 6H), 8.10–8.17 (m, 10H), 8.20–8.25 (m, 8H), 8.43 (s, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 143.6, 142.6, 142.5, 141.4, 141.4, 141.2, 141.0, 140.3, 140.1, 139.8, 139.2, 138.7, 138.1, 134.1, 133.9, 132.5, 132.3, 132.2, 132.1, 132.0, 131.9, 131.8, 131.7, 131.7, 131.6, 131.5, 131.3, 131.1, 131.0, 130.8, 130.7, 130.0, 129.5–125.7 (m), 129.2, 129.1–129.2 (m), 129.0, 128.9, 128.8, 128.7, 128.5, 128.4, 128.2, 128.1, 127.9, 127.8, 127.7, 127.5, 127.0, 126.7, 125.5, 124.8, 124.6, 124.5, 124.3, 123.9, 122.6, 122.4, 122.4, 121.6, 121.5, 121.1, 120.5, 120.2, 60.6, 58.2, 55.3, 53.6, 33.6, 32.2, 30.5, 29.9, 29.9, 29.6, 24.7, 23.0, 22.9, 21.6, 18.4, 14.3; IR (KBr) v 3349, 3067, 2926, 2863, 1618, 1588, 1464, 1368, 1279, 1178, 1136, 899, 844, 707, 683 cm⁻¹; MS (ESI) m/z 1363.66 ([M – 2Br]²⁺/2, C₁₄₂H₈₂F₄₈N₂²⁺ requires 1364.05).

S6

(S,S)-6e: 903.9 mg, 62% yield; $[\alpha]_{D}^{20}$ -2.1 (c 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 0.62 (s, 4H), 0.97–0.99 (m, 2H), 1.25 (d, *J* = 11.5 Hz, 8H), 2.73 (d, *J* = 11.5 Hz, 2H), 3.14 (s, 4H), 3.30–3.36 (m, 2H), 3.60 (d, J = 13.0 Hz, 2H), 3.83 (d, J = 13.0 Hz, 2H), 4.67 (d, J = 8.5 Hz, 2H), 5.01 (d, J = 12.5 Hz, 2H), 7.50–7.54 (m, 10H), 7.74–7.79 (m, 10H), 7.85 (d, J = 14.5 Hz, 4H), 7.91–7.94 (m, 8H), 8.02 (s, 4H), 8.08 (d, J = 5.5 Hz, 8H), 8.14 (s, 6H), 8.20–8.23 (m, 4H), 8.36 (s, 2H); ¹³C NMR (125) MHz, CDCl₃ & CD₃OD) δ 146.5, 146.4, 145.9, 145.7, 144.7, 144.7, 144.6, 143.1, 143.0, 142.0, 142.0, 138.2, 138.1, 137.2, 137.1, 136.9, 136.8, 136.7, 136.6, 136.5, 136.4, 136.3, 136.2, 136.1, 135.9, 135.9, 135.6–135.8 (m), 135.3–135.4 (m), 135.2, 135.1, 133.5–133.7 (m), 133.0–133.1 (m), 132.9, 132.4, 132.2, 131.9, 131.7, 131.6, 131.4, 131.1, 130.6, 130.5, 130.4, 130.0, 128.5, 128.4, 128.3, 128.2, 127.4, 127.3, 126.3-126.4 (m), 126.3, 126.2, 126.1, 126.0, 125.5-125.6 (m), 124.1, 124.0. 123.9. 123.9. 72.2, 71.7, 66.9, 64.1, 63.8, 59.8, 56.3, 36.0, 34.6, 33.7, 33.4, 31.4, 30.2, 30.2, 29.7, 26.7, 22.6, 18.8, 18.0; IR (KBr) v 3349, 3047, 2929, 2858, 1618, 1588, 1464, 1368, 1279, 1170, 1136, 882, 844, 707, 683 cm⁻¹; MS (ESI) m/z 1378.07 ([M $(-2Br]^{2+}/2$, $C_{144}H_{86}F_{48}N_2^{2+}$ requires 1378.08).

(S,S)-6f: 937.6 mg, 64% yield; $[\alpha]^{20}_{D}$ +4.8 (c 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 0.47-0.49 (m, 2H), 0.66-0.68 (m, 2H), 0.78-0.80 (m, 2H), 0.84-0.94 (m, 2H), 1.14 (s, 2H), 1.26 (s, 2H), 1.36 (s, 2H), 1.48 (d, J = 13.0 Hz, 2H), 2.96–3.02 (m, 4H), 3.23 (d, J = 11.0 Hz, 2H), 3.45 (t, J = 11.5 Hz, 2H), 3.60-3.64 (m, 2H), 4.03 (d, J = 13.5 Hz, 2H), 4.79 (d, J = 13.0 Hz, 2H), 5.07 (d, J = 13.0 Hz, 2H), 7.49–7.57 (m, 8H), 7.61 (s, 2H), 7.72–7.76 (m, 4H), 7.86 (t, J = 10.0 Hz, 8H), 7.95 (d, J = 12.0 Hz, 6H), 7.99 (s, 2H), 8.05 (s, 6H), 8.17 (d, J = 7.5 Hz, 8H), 8.21 (d, J = 13.0 Hz, 8H), 8.27 (s, 2H), 8.31 (s, 2H); ¹³C NMR (125 MHz, CDCl₃ & CD₃OD) δ 142.4 ,142.0, 141.9, 141.9, 141.8, 141.2, 141.0, 140.6, 140.5, 139.3, 139.0, 138.2, 138.2, 134.3, 134.2, 133.2, 130.0, 132.9, 132.7, 132.6, 132.5, 132.4–132.5 (m), 132.2–132.3 (m), 132.1, 131.9–132.0 (m), 131.7, 131.3, 131.1, 130.6, 130.2, 130.0–130.1 (m), 129.9, 129.2, 129.1, 129.0, 129.0, 128.9, 128.9, 128.6, 128.3, 128.2, 128.2, 128.0, 127.8 127.7, 127.6, 126.9, 126.7, 126.6, 126.5, 126.2, 125.4, 124.6, 124.5, 124.3, 123.7, 123.4, 122.4, 122.3, 122.2–122.3 (m), 122.2, 121.7–121.8 (m), 120.2, 120.1, 120.0, 63.1, 60.3, 57.7, 56.8, 53.7, 52.6, 35.5, 32.0, 30.9, 29.8, 29.8, 29.5, 26.9, 25.5, 22.8, 22.6, 20.8, 17.9, 14.1; IR (KBr) v 3339, 3057, 2934, 2893, 1623, 1598, 1460, 1368, 1279, 1176, 1132, 883, 844, 702, 684 cm⁻¹; MS (ESI) m/z 1385.07 ($[M - 2Br]^{2+/2}$, $C_{145}H_{88}F_{48}N_2^{2+}$ requires 1385.09).

A mixture of 3,3-disubstituted (*S*)-binol-derived dibromide¹ (792.5 mg, 0.55 mmol), piperidine (42.6 mg, 0.5 mmol) and K₂CO₃ (103.7 mg, 0.75 mmol) in acetonitrile (5 mL) was heated to reflux, and stirring was maintained for 12 h. The resulting mixture was poured into water and extracted with CH₂Cl₂. The organic extracts were dried over Na₂SO₄ and concentrated. The residue was purified by column chromatographyon silica gel (MeOH/CH₂Cl₂ = 1/30 as eluant) to furnish (*S*)-**8**. (*S*)-**8**: 540.5 mg, 75% yield. $[\alpha]^{20}_{D}$ –0.6 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 0.87–0.95 (m, 2H), 1.36–1.45 (m, 2H), 1.57 (s, 2H), 3.35 (s, 2H), 3.75 (d, *J* = 13.2 Hz, 2H), 3.95 (s, 2H), 5.37 (d, *J* = 13.2 Hz, 2H), 7.49–7.57 (m, 4H), 7.67 (s, 2H), 7.74 (t, *J* = 7.2 Hz, 2H), 7.88 (d, *J* = 7.2 Hz, 4H), 7.94 (d, *J* = 8.8 Hz, 4H), 8.14–8.23 (m, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 141.9, 141.8, 141.2, 141.0, 140.8, 138.9, 138.4, 133.9, 133.1, 132.7, 132.4, 132.1, 131.7, 131.6, 131.4–131.5 (m), 130.9, 129.6, 128.8, 128.5, 128.1, 127.5, 127.3, 126.7, 124.6, 123.7, 121.9–122.0 (m), 121.8, 119.1, 60.3, 58.1, 58.0, 57.8, 29.7, 20.3, 19.7; IR (KBr) v 3666, 3349, 3062, 2939, 1618, 1587,

1500, 1469, 1368, 1280, 1175, 1129, 1024, 885, 844, 742, 706 cm⁻¹; MS (ESI) m/z

 $1364.52 ([M - Br]^+, C_{71}H_{42}F_{24}N^+ requires 1365.06).$

3. Optimizing of the Michael Addition Conditions:^a

entry	Catalyst	temp	solvent	base	time	yield	er ^g	dr ^h
	(mol %)	(°C)			(h)	(%) ^f		
1	Cat-1 (2)	10	toluene	$Cs_2CO_3(2eq)$	36	85	56.5:43.5	97:3
2	Cat-2 (2)	10	toluene	$Cs_2CO_3(2eq)$	36	87	56.5:43.5	97:3
3	Cat-3 (2)	10	toluene	$Cs_2CO_3(2eq)$	36	84	54.5:45.5	97:3
4	Cat-4 (1)	10	toluene	$Cs_2CO_3(2eq)$	48	95	66.5:33.5	97:3
5	Cat-5 (1)	10	toluene	$Cs_2CO_3(2eq)$	48	98	72:28	95:5
6	Cat-6 (1)	10	toluene	$Cs_2CO_3(2eq)$	48	92	61.5:38.5	97:3
7	Cat-7 (1)	10	toluene	$Cs_2CO_3(2eq)$	48	86	65:35	95:5
8	Cat-8 (1)	10	toluene	$Cs_2CO_3(2eq)$	48	92	72.5:27.5	96:4
9	Cat-9 (1)	10	toluene	$Cs_2CO_3(2eq)$	48	92	75:25	96:4
10	7a (1)	10	toluene	$Cs_2CO_3(2eq)$	48	98	74.5:25.5	98:2
11	Cat-10 (1)	10	toluene	$Cs_2CO_3(2eq)$	48	90	74:26	98:2
12	7b (1)	10	toluene	$Cs_2CO_3(2eq)$	48	85	72.5:27.5	97:3
13	6a (1)	10	toluene	$Cs_2CO_3(0.5eq)$	48	88	69:31	97:3
14	6b (1)	10	toluene	$Cs_2CO_3(0.5eq)$	48	98	90:10	97:3
15	6c (1)	10	toluene	$Cs_2CO_3(0.5eq)$	48	98	85:15	97:3
16	6d (1)	10	toluene	$Cs_2CO_3(0.5eq)$	48	95	86.5:13.5	97:3
17	6e (1)	10	toluene	$Cs_2CO_3(0.5eq)$	48	96	83.5:16.5	97:3
18	6f (1)	10	toluene	$Cs_2CO_3(0.5eq)$	48	98	94:6	96:4
19	6f (1)	10	xylene	$Cs_2CO_3(0.5eq)$	48	98	95:5	98:2
20	6f (1)	10	CH ₂ Cl ₂	Cs ₂ CO ₃ (0.5eq)	48	96	70:30	96:4

21	6f (1)	10	THF	$Cs_2CO_3(0.5eq)$	48	90	79.5:20.5	96:4
22	6f (1)	10	Et ₂ O	$Cs_2CO_3(0.5eq)$	48	93	91:9	98:2
23	6f (1)	10	benzene	$Cs_2CO_3(0.5eq)$	48	98	86:14	97:3
24	6f (1)	10	chlorobenzene	$Cs_2CO_3(0.5eq)$	48	98	83:17	97:3
25	6f (1)	10	fluorobenzene	$Cs_2CO_3(0.5eq)$	48	98	93:7	97:3
26 ^b	6f (1)	10	toluene	$Cs_2CO_3(0.5eq)$	48	92	92:8	97:3
27	6f (1)	10	anisole	$Cs_2CO_3(0.5eq)$	48	96	85:15	97:3
28	6f (1)	10	mesitylene	$Cs_2CO_3(0.5eq)$	48	94	85:15	97:3
29	6f (1)	10	<i>p</i> -xylene	$Cs_2CO_3(0.5eq)$	48	93	85:15	97:3
30	6f (1)	10	<i>m</i> -xylene	$Cs_2CO_3(0.5eq)$	48	97	81.5:18.5	96:4
31	6f (1)	10	o-xylene	$Cs_2CO_3(0.5eq)$	48	95	81:19	97:3
32 ^c	6f (1)	10	xylene	$Cs_2CO_3(0.5eq)$	48	98	92:8	97:3
33 ^d	6f (1)	10	xylene	$Cs_2CO_3(0.5eq)$	48	98	89.5:10.5	97:3
34	6f (0.5)	10	xylene	$Cs_2CO_3(0.5eq)$	60	98	85:15	97:3
35 ^e	6f (1)	10	xylene	$Cs_2CO_3(0.5eq)$	72	82	94:6	98:2
36	6f (1)	10	xylene	$K_2CO_3(2eq)$	72	72	96.5:3.5	96:4
37	6f (1)	10	xylene	CsOH(1eq)	40	63	50:50	86:14
38	6f (1)	10	xylene	NaOH(1eq)	36	96	50:50	82:18
39	6f (1)	10	xylene	Na ₂ CO ₃ (2eq)	48	<5	\	\
40	6f (2)	10	xylene	$Cs_2CO_3(0.5eq)$	36	96	95:5	97:3
41	6f (2)	10	xylene	$K_2CO_3(2eq)$	72	83	96:4	95:5
42	6f (1)	10	xylene	$Cs_2CO_3(0.2eq)$	48	89	95:5	97:3
43	6f (1)	10	xylene	$Cs_2CO_3(0.1eq)$	48	69	95:5	96:4
44	6f (1)	10	xylene	$Cs_2CO_3(0.05eq)$	48	85	95:5	97:3
45	6f (1)	0	xylene	$Cs_2CO_3(0.5eq)$	96	72	91:9	98:2
46	6f (1)	25	xylene	$Cs_2CO_3(0.5eq)$	24	98	95.5:4.5	97:3
47	6f (1)	30	xylene	$Cs_2CO_3(0.5eq)$	12	98	96.5:3.5	97:3
48	6f (1)	35	xylene	$Cs_2CO_3(0.5eq)$	12	98	95:5	95:5
49	6f (1)	40	xylene	$Cs_2CO_3(0.5eq)$	12	98	92.5:7.5	93:7
50	6f (1)	30	xylene	$K_2CO_3(2eq)$	12	78	96:4	97:3

^{*a*} *N*-(diphenylmethylene)glycine *tert*-butyl ester **3** (29.5 mg, 0.1 mmol), chalcone **4a** (21.8 mg, 0.105 mmol), **PTC**, base, 0.5mL solvent. ^{*b*} Toluene was used without further purification. ^{*c*} Xylene was distilled from CaH₂. ^{*d*} 0.25 mL xylene and 0.25 ml hexane. ^{*e*} 1 mL xylene. ^{*f*} Yield of isolated product after purification. ^{*g*} Determined by HPLC analysis. ^{*h*} Determined by NMR or HPLC.

4. General Procedure for Catalyzed Michael Addition:

N-(diphenylmethylene)glycine *tert*-butyl ester **3** (29.5 mg, 0.1 mmol) was added to a mixture of substituted enones **4** (0.105 mmol), (*S*,*S*)-**6f** (2.9 mg, 0.001 mmol) and Cs_2CO_3 (16.3 mg, 0.05 mmol) in xylene (0.5 mL) under argon atmosphere, the resulting solution was stirred at 30 °C for 12 h. The resulting mixture was purified by column chromatographyon silica gel (AcOEt/petroleum ether = 1/10 as eluant) to furnish the conjugate adducts **5**.

(2*R*,3*S*)-*tert*-Butyl 2-(diphenylmethyleneamino)-5-oxo-3,5-diphenylpentanoate (5a): 49.4 mg, 98% yield; $[\alpha]^{20}{}_{D}$ +81.7 (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 1.36 (s, 9H), 3.64–3.67 (m, 1H), 3.77–3.83 (m, 1H), 4.22–4.26 (m, 2H), 6.75 (d, *J* = 6.5 Hz, 1H), 7.14–7.19 (m, 5H), 7.32–7.39 (m, 5H), 7.42–7.47 (m, 3H), 7.55 (t, *J* = 7.5 Hz, 1H), 7.72 (d, *J* = 8.0 Hz, 2H), 8.01 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 198.9, 171.4, 170.2, 141.6, 139.6, 137.4, 136.5, 133.1, 130.6, 129.1, 128.8, 128.7, 128.6, 128.5, 128.4, 128.4, 128.3, 127.7, 126.8, 84.5, 71.2, 45.0, 40.3, 28.1; MS (ESI) m/z 504.14 [M + 1]⁺; IR (KBr) v 3060, 3021, 2976, 2930, 1728, 1687, 1622, 1597, 1493, 1447, 1367, 1286, 1148, 1002, 846, 698 cm⁻¹; *dr* = 97/3, *er* = 96.5/3.5, determined by HPLC analysis (Chiralpak AD-H, *n*-hexane/2-propanol = 95/5, 0.5 ml/min, 254 nm UV detector), *t*_R = 21.8 min (major) and *t*_R = 30.3 min (minor).

(2*R*,3*S*)-*tert*-Butyl 3-(4-bromophenyl)-2-(diphenylmethyleneamino)-5-oxo-5phenylpentanoate (5b): 57.1 mg, 98% yield; $[\alpha]^{20}{}_{D}$ +52.6 (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 1.36 (s, 9H), 3.60–3.63 (m, 1H), 3.75–3.81 (m, 1H), 4.15–4.18 (m, 2H), 6.75 (d, *J* = 6.0 Hz, 2H), 7.05 (d, *J* = 8.5 Hz, 2H), 7.29–7.39 (m, 7H), 7.41–7.48 (m, 3H), 7.54–7.57 (m, 1H), 7.67–7.69 (m, 2H), 7.97–7.99 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 198.6, 171.7, 170.0, 140.8, 139.4, 137.2, 136.3, 133.2, 131.4, 130.7, 130.5, 129.0. 128.8, 128.7, 128.5, 128.4, 128.3, 127.6, 120.6, 81.8, 70.8, 44.3, 39.9, 29.1; MS (ESI) m/z 584.11 [M + 1]⁺, 582.13 [M + 1]⁺; IR (KBr) v 3058, 2974, 2931, 1730, 1686, 1621, 1596, 1488, 1447, 1368, 1285, 1149, 1074, 1010, 834, 698 cm⁻¹; *dr* = 95/5, *er* = 94/6, determined by HPLC analysis (Chiralpak AD-H, *n*-hexane/2-propanol = 95/5, 0.6 ml/min, 254 nm UV detector), *t*_R = 24.0 min (major) and *t*_R = 37.5 min (minor).

(2*R*,3*S*)-*tert*-Butyl 2-(diphenylmethyleneamino)-3-(4-fluorophenyl)-5-oxo-5phenylpentanoate (5c): 51.2 mg, 98% yield; $[\alpha]^{20}_{D}$ +74.6 (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 1.34 (s, 9H), 3.59–3.63 (m, 1H), 3.70–3.75 (m, 1H), 4.16–4.22 (m, 2H), 6.78 (d, *J* = 6.5 Hz, 2H), 6.85–6.89(m, 2H), 7.12–7.15 (m, 2H), 7.34–7.39 (m, 5H), 7.41–7.47 (m, 3H), 7.53–7.56 (m, 1H), 7.69–7.71 (m, 2H), 7.96–7.98 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 198.8, 171.6, 170.1, 162.8, 160.8, 139.4, 137.3, 137.3, 137.2, 136.4, 133.2, 130.7, 130.3, 130.2, 129.1, 128.8, 128.7, 128.5, 128.4, 128.3, 127.7, 115.7, 115.2, 81.7, 71.1, 44.2, 40.3, 28.1; MS (ESI) m/z 520.17 [M – H]⁻; IR (KBr) v 3062, 3010, 2975, 2928, 1733, 1674, 1621, 1596, 1510, 1446, 1365, 1288, 1220, 1157, 1011, 840, 692 cm⁻¹; dr = 96/4, er = 95/5, determined by HPLC analysis (Chiralpak OD-H, *n*-hexane/2-propanol = 95/5, 0.8 ml/min, 254 nm UV detector), $t_{\rm R} = 6.5$ min (major) and $t_{\rm R} = 14.2$ min (minor).

(2*R*,3*S*)-*tert*-Butyl 2-(diphenylmethyleneamino)-5-oxo-5-phenyl-3-p-tolylpentanoate (5d): 50.8 mg, 98% yield; $[\alpha]^{20}{}_{\rm D}$ +73.4 (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 1.36 (s, 9H), 2.27 (s, 3H), 3.63–3.66 (m, 1H), 3.75–3.80 (m, 1H), 4.17–4.21 (m, 2H), 6.77 (d, *J* = 7.0 Hz, 2H), 6.78 (d, *J* = 7.5 Hz, 2H), 7.07 (d, *J* = 8.0 Hz, 2H), 7.33–7.39 (m, 5H), 7.42–7.47 (m, 3H), 7.53–7.56 (m, 1H), 7.73 (d, *J* = 8.0 Hz, 2H), 8.01 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 199.0, 171.3, 170.3, 139.7, 138.5, 137.4, 136.6, 136.2, 133.0, 130.6, 129.1, 129.0, 128.7, 128.6, 128.6, 128.4, 128.3, 127.8, 81.4, 71.3, 44.7, 40.3, 28.1, 21.3; MS (ESI) m/z 518.23 [M + 1]⁺; IR (KBr) v 3062, 3027, 2970, 2924, 1728, 1687, 1629, 1598, 1511, 1447, 1367, 1289, 1149, 1003, 850, 695 cm⁻¹; *dr* = 95/5, *er* = 94/6, determined by HPLC analysis (Chiralpak OD-H, *n*-hexane/2-propanol = 98/2, 0.8 ml/min, 254 nm UV detector), *t*_R = 8.5 min (major) and *t*_R = 24.8 min (minor).

(2*R*,3*S*)-*tert*-Butyl 2-(diphenylmethyleneamino)-3-(4-methoxyphenyl)-5-oxo-5phenylpentanoate (5e): 49.1 mg, 92% yield; $[\alpha]^{20}{}_{D}$ +80.4 (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 1.34 (s, 9H), 3.57–3.60 (m, 1H), 3.66–3.70 (m, 1H), 3.73 (s, 3H), 4.14–4.16 (m, 2H), 6.72 (d, *J* = 8.5 Hz, 2H), 6.78 (d, *J* = 7.0 Hz, 2H), 7.07 (d, *J* = 8.5 Hz, 2H), 7.33–7.38 (m, 5H), 7.40–7.46 (m, 3H), 7.52–7.55 (m, 1H), 7.70 (d, *J* = 7.5

Hz, 2H), 7.97 (d, J = 8.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 199.1, 171.3, 170.3, 158.4, 139.6, 137.4, 136.5, 133.6, 133.0, 130.6, 129.7, 129.1, 128.7, 128.6, 128.5, 128.4, 128.2, 127.8, 113.7, 81.5, 71.3, 55.4, 44.3, 40.6, 28.1; MS (ESI) m/z 534.19 [M + 1]⁺; IR (KBr) v 3058, 3027, 2974, 2931, 1726, 1687, 1612, 1597, 1513, 1447, 1367, 1246, 1149, 1031, 830, 694 cm⁻¹; dr = 97/3, er = 96/4, determined by HPLC analysis (Chiralpak OD-H, *n*-hexane/2-propanol = 95/5, 0.8 ml/min, 254 nm UV detector), $t_{\rm R} = 8.7$ min (major) and $t_{\rm R} = 24.4$ min (minor).

(2*R*,3*S*)-*tert*-Butyl 2-(diphenylmethyleneamino)-5-oxo-3-(3-phenoxyphenyl)-5phenylpentanoate (5f): 58.4 mg, 98% yield; $[\alpha]^{20}{}_{\rm D}$ +70.9 (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 1.36 (s, 9H), 3.55–3.59 (m, 1H), 3.72–3.78 (m, 1H), 4.13–4.18 (m, 2H), 6.79 (d, *J* = 7.5 Hz, 3H), 6.83 (d, *J* = 8.5 Hz, 3H), 6.93 (d, *J* = 8.0 Hz, 1H), 7.02 (t, *J* = 7.0 Hz, 1H), 7.13–7.21 (m, 3H), 7.33–7.41 (m, 6H), 7.44–7.47 (m, 2H), 7.54–7.57 (m, 1H), 7.66 (d, *J* = 8.0 Hz, 2H), 7.97 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 198.8, 171.5, 170.1, 157.3, 157.1, 143.7, 139.5, 137.4, 136.5, 133.1, 130.6, 129.8, 129.6, 129.1, 127.7, 128.6, 128.5, 128.4, 128.2, 127.7, 123.8, 123.1, 119.2, 118.8, 117.3, 81.6, 70.9, 44.8, 40.0, 28.1; MS (ESI) m/z 596.25 [M + 1]⁺; IR (KBr) v 3052, 3027, 2976, 2929, 1730, 1686, 1595, 1581, 1487, 1446, 1367, 1247, 1148, 1073, 1002, 908, 846, 755, 692 cm⁻¹; *dr* = 95/5, *er* = 92.5/7.5, determined by HPLC analysis (Chiralpak OD-H, *n*-hexane/2-propanol = 95/5, 1.0 ml/min, 254 nm UV detector), *t*_R = 6.5 min (major) and *t*_R = 12.0 min (minor).

(2*R*,3*S*)-*tert*-Butyl 3-(4-chlorophenyl)-2-(diphenylmethyleneamino)-5-oxo-5phenylpentanoate (5g): 50.6 mg, 94% yield; $[\alpha]^{20}_{D}$ +58.8 (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 1.36 (s, 9H), 3.61–3.65 (m, 1H), 3.75–3.80 (m, 1H), 4.16–4.20 (m, 2H), 6.77 (d, *J* = 7.0 Hz, 2H), 7.11 (d, *J* = 8.5 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 7.34–7.39 (m, 5H), 7.41–7.48 (m, 3H), 7.54–7.57 (m, 1H), 7.69–7.70 (m, 2H), 7.97–7.99 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 198.6, 171.7, 170.0, 140.2, 139.4, 137.2, 136.4, 133.2, 132.5, 130.7, 130.1, 129.0, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 127.7, 81.8, 70.9, 44.3, 40.0, 28.1; MS (ESI) m/z 538.18 [M]⁺; IR (KBr) v 3050, 3001, 2974, 2928, 1733, 1674, 1621, 1596, 1494, 1446, 1282, 1144, 1089, 1010, 836, 692 cm⁻¹; *dr* = 95/5, *er* = 92/8, determined by HPLC analysis (Chiralpak OD-H, *n*-hexane/2-propanol = 95/5, 0.8 ml/min, 254 nm UV detector), *t*_R = 6.6 min (major) and *t*_R = 12.3 min (minor).

(2*R*,3*S*)-*tert*-Butyl 2-(diphenylmethyleneamino)-3-(naphthalen-2-yl)-5-oxo-5phenylpentanoate (5h): 54.3 mg, 98% yield; $[\alpha]^{20}_{D}$ +62.1 (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 1.36 (s, 9H), 3.76–3.80 (m, 1H), 3.94–4.00 (m, 1H), 4.35–4.46 (m, 2H), 6.68 (s, 2H), 7.24–7.26 (m, 2H), 7.33–7.41 (m, 6H), 7.43–7.48 (m, 3H), 7.54–7.57 (m, 1H), 7.66–7.71 (m, 3H), 7.75–7.76 (m, 3H), 8.03–8.04 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 198.8, 171.6, 170.3, 139.6, 139.2, 137.4, 136.5, 133.6, 133.1, 132.6, 130.6, 129.1, 128.8, 128.6, 128.5, 128.4, 128.3, 128.0, 127.9, 127.7, 127.5, 127.1, 126.0, 125.6, 81.6, 71.1, 45.1, 40.3, 28.1; MS (ESI) m/z 554.21 [M + 1]⁺; IR (KBr) v 3059, 3028, 2971, 2928, 1734, 1673, 1619, 1596, 1511, 1447, 1365, 1291, 1147, 1013, 826, 701 cm⁻¹; dr = 93/7, er = 93/7, determined by HPLC analysis (Chiralpak OD-H, *n*-hexane/2-propanol = 95/5, 0.8 ml/min, 254 nm UV detector), t_R = 8.3 min (major) and $t_R = 17.1$ min (minor).

(2*R*,3*S*)-*tert*-Butyl 3-(2-chlorophenyl)-2-(diphenylmethyleneamino)-5-oxo-5phenylpentanoate (5i): 49.6 mg, 92% yield; $[\alpha]^{20}{}_{\rm D}$ +88.9 (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 1.41 (s, 9H), 3.70–3.74 (m, 1H), 4.00–4.06 (m, 1H), 4.33 (d, *J* = 4.0 Hz, 1H), 4.74–4.76 (m, 1H), 6.58 (d, *J* = 5.5 Hz, 2H), 7.14–7.10 (m, 2H), 7.19 (d, *J* = 7.5 Hz, 1H), 7.27–7.31 (m, 3H), 7.34–7.43 (m, 4H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.56 (t, *J* = 7.5 Hz, 1H), 7.68 (d, *J* = 8.0 Hz, 2H), 8.04 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 198.5, 171.8, 170.2, 139.5, 138.8, 137.2, 136.3, 134.7, 133.1, 130.6, 129.8, 129.3, 129.0, 128.7, 128.6, 128.4, 128.4, 128.2, 127.8, 127.5, 126.5, 81.7, 68.1, 40.9, 38.9, 28.2; MS (ESI) m/z 538.17 [M]⁺; IR (KBr) v 3059, 3025, 2977, 2930, 1728, 1687, 1625, 1596, 1475, 1446, 1368, 1291, 1149, 1073, 1036, 1002, 846, 752, 693 cm⁻¹; *dr* = 99/1, *er* = 95.5/4.5,determined by HPLC analysis (Chiralpak OD-H, *n*-hexane/2-propanol = 95/5, 0.8 ml/min, 254 nm UV detector), *t*_R = 7.1 min (major) and *t*_R = 9.5 min (minor).

(2R,3S)-tert-Butyl3-(2-bromophenyl)-2-(diphenylmethyleneamino)-5-oxo-5-phenylpentanoate (5j):56.0 mg, 96% yield; $[\alpha]^{20}{}_D$ +93.4 (c 1.0, CH₂Cl₂); ¹H NMR(500 MHz, CDCl₃) δ 1.42 (s, 9H), 3.69–3.73 (m, 1H), 4.04–4.09 (m, 1H), 4.31 (d, J =2.5 Hz, 1H), 4.70–4.73 (m, 1H), 6.52 (d, J = 4.0 Hz, 2H), 6.98–7.02 (m, 1H),

7.08–7.11 (m, 1H), 7.16 (d, J = 7.5 Hz, 1H), 7.26–7.29 (m, 2H), 7.33–7.42 (m, 4H), 7.47 (t, J = 8.0 Hz, 3H), 7.56 (t, J = 7.5 Hz, 1H), 7.67 (d, J = 8.0 Hz, 2H), 8.04 (d, J = 7.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 198.5, 171.9, 170.1, 140.3, 139.4, 137.2, 136.3, 133.2, 133.1, 130.6, 129.4, 129.0, 128.7, 128.6, 128.5, 128.4, 128.2, 128.1, 127.4, 127.1, 125.7, 81.7, 68.0, 43.3, 38.9, 28.2; MS (ESI) m/z 582.04 [M + 1]⁺, 584.06 [M + 1]⁺; IR (KBr) v 3060, 3021, 2976, 2928, 1728, 1687, 1624, 1597, 1470, 1446, 1368, 1291, 1151, 1022, 1003, 846, 752, 696 cm⁻¹; dr = 98/2, er = 95/5, determined by HPLC analysis (Chiralpak OD-H, *n*-hexane/2-propanol = 95/5, 0.8 ml/min, 254 nm UV detector), $t_{\rm R} = 7.3$ min (major) and $t_{\rm R} = 8.8$ min (minor).

(2*R*,3*S*)-*tert*-Butyl 3-(benzo[*d*][1,3]dioxol-5-yl)-2-(diphenylmethyleneamino)-5oxo-5-phenylpentanoate (5k): 51.5 mg, 94% yield; $[\alpha]^{20}_{D}$ +74.3 (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 1.36 (s, 9H), 3.55–3.59 (m, 1H), 3.64–3.69 (m, 1H), 4.13–4.18 (m, 2H), 5.85 (s, 2H), 6.64–6.67 (m, 3H), 6.87 (d, *J* = 6.5 Hz, 2H), 7.35–7.41 (m, 5H), 7.42–7.47 (m, 3H), 7.55 (t, *J* = 7.5 Hz, 1H), 7.70–7.72 (m, 2H), 7.98–8.00 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 198.9, 171.4, 170.2, 147.5, 146.3, 139.6, 137.3, 136.5, 135.4, 133.1, 130.6, 129.1, 128.8, 128.7, 128.5, 128.4, 128.3, 127.8, 121.9, 109.2, 108.2, 100.9, 81.5, 71.3, 44.8, 40.6, 28.1; MS (ESI) m/z 548.16 [M + 1]⁺; IR (KBr) v 3067, 3023, 2977, 2927, 1728, 1687, 1621, 1597, 1488, 1446, 1368, 1248, 1149, 1039, 935, 695 cm⁻¹; *dr* = 95/5, *er* = 96/4, determined by HPLC analysis (Chiralpak OD-H, *n*-hexane/2-propanol = 95/5, 0.8 ml/min, 254 nm UV detector), *t*_R = 9.8 min (major) and *t*_R = 20.5 min (minor).

(2*R*,3*S*)-*tert*-Butyl 3-(2,4-dichlorophenyl)-2-(diphenylmethyleneamino)-5-oxo-5phenylpentanoate (5l): 56.1 mg, 98% yield; $[\alpha]^{20}{}_{D}$ +68.9 (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 1.42 (s, 9H), 3.70–3.74 (m, 1H), 3.99–4.04 (m, 1H), 4.29 (d, *J* = 2.5 Hz, 1H), 4.66–4.69 (m, 1H), 6.64 (d, *J* = 4.5 Hz, 2H), 7.04–7.14 (m, 2H), 7.30–7.39 (m, 6H), 7.40–7.44 (m, 1H), 7.48 (t, *J* = 7.5 Hz, 2H), 7.57 (t, *J* = 7.5 Hz, 1H), 7.67 (d, *J* = 7.5 Hz, 2H), 8.03 (d, *J* = 7.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 198.3, 172.1, 170.0, 139.3, 137.6, 137.0, 136.1, 135.3, 133.3, 132.8, 130.7, 130.1, 129.5, 129.0, 128.8, 128.7, 128.5, 128.4, 128.3, 127.4, 126.7, 81.9, 67.8, 40.4, 38.7, 28.2; MS (ESI) m/z 572.07 [M]⁺; IR (KBr) v 3073, 3006, 2974, 2924, 1732, 1673, 1621, 1595, 1476, 1445, 1366, 1285, 1144, 1009, 831, 691 cm⁻¹; *dr* = 98/2, *er* = 95/5, determined by HPLC analysis (Chiralpak OD-H, *n*-hexane/2-propanol = 95/5, 0.8 ml/min, 254 nm UV detector), *t*_R = 6.0 min (major) and *t*_R = 7.5 min (minor).

(2*R*,3*R*)-*tert*-Butyl 2-(diphenylmethyleneamino)-3-(furan-2-yl)-5-oxo-5-phenylpentanoate (5m): 48.4 mg, 98% yield; $[\alpha]^{20}{}_{D}$ +53.4 (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 1.42 (s, 9H), 3.58–3.62 (m, 1H), 3.80–3.85 (m, 1H), 4.35–4.38 (m, 2H), 6.02 (d, *J* = 3.0 Hz, 1H), 6.20–6.21 (m, 1H), 6.94 (d, *J* = 6.0 Hz, 2H), 7.21–7.22 (m, 1H), 7.35 (t, *J* = 7.5 Hz, 2H), 7.39–7.43 (m, 4H), 7.48 (t, *J* = 7.5 Hz, 2H), 7.57 (t, *J* = 7.5 Hz, 1H), 7.68 (d, *J* = 8.0 Hz, 2H), 8.05 (d, *J* = 7.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 198.5, 171.7, 170.0, 155.1, 141.2, 139.8, 137.2, 136.5, 133.2, 130.6, 129.1, 128.8, 128.8, 128.5, 128.4, 128.2, 127.9, 110.4, 106.7, 81.7, 68.9, 38.6, 38.5, 28.2; MS (ESI) m/z 494.18 [M + 1]⁺; IR (KBr) v 3060, 3019, 2977, 2931, 1730, 1689,

1625, 1597, 1504, 1447, 1368, 1258, 1158, 1013, 847, 701 cm⁻¹; dr = 97/3, er = 95/5, determined by HPLC analysis (Chiralpak OD-H, *n*-hexane/2-propanol = 95/5, 0.8 ml/min, 254 nm UV detector), $t_{\rm R} = 7.2$ min (major) and $t_{\rm R} = 25.8$ min (minor).

(2*R*,3*S*)-*tert*-Butyl 2-(diphenylmethyleneamino)-5-oxo-3-phenyl-5-(pyridin-2-yl) pentanoate (5n): 46.4 mg, 92% yield; $[\alpha]^{20}{}_{D}$ +40.5 (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 1.29 (s, 9H), 3.76–3.80 (m, 1H), 3.94–3.99 (m, 1H), 4.21 (d, *J* = 6.0 Hz, 1H), 4.29–4.33 (m, 1H), 6.85 (d, *J* = 6.0 Hz, 2H), 7.10–7.13 (m, 1H), 7.17 (t, *J* = 7.0 Hz, 2H), 7.22 (d, *J* = 7.0 Hz, 2H), 7.30 (t, *J* = 7.5 Hz, 2H), 7.34–7.39 (m, 5H), 7.64–7.70 (m, 3H) 7.87 (d, *J* = 8.0 Hz, 1H), 8.67 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 200.5, 171.0, 170.2, 153.7, 148.9, 142.0, 139.6, 136.8, 136.6, 130.4, 129.1, 129.0, 128.5, 128.4, 128.2, 128.1, 127.9, 127.0, 126.6, 122.0, 81.2, 71.4, 45.1, 39.7, 28.0; MS (ESI) m/z 505.15 [M + 1]⁺; IR (KBr) v 3062, 3027, 2975, 2919, 1728, 1698, 1619, 1582, 1490, 1445, 1367, 1284, 1147, 994, 850, 697 cm⁻¹; *dr* = 94/6, *er* = 94/6, determined by HPLC analysis (Chiralpak OD-H, *n*-hexane/2-propanol = 90/10, 0.8 ml/min, 254 nm UV detector), *t*_R = 7.3 min (major) and *t*_R = 22.1 min (minor).

(2R,3R)-tert-Butyl2-(diphenylmethyleneamino)-3,5-di(furan-2-yl)-5-oxopentanoate (50): 44.0 mg, 91% yield; $[\alpha]^{20}{}_D$ +64.1 (c 1.0, CH₂Cl₂); ¹H NMR (500MHz, CDCl₃) δ 1.40 (s, 9H), 3.37–3.41 (m, 1H), 3.60–3.65 (m, 1H), 4.30–4.34 (m,2H), 6.03 (d, J = 3.0 Hz, 1H), 6.18–6.19 (m, 1H), 6.50–6.51 (m, 1H), 6.93 (d, J = 6.0Hz, 2H), 7.19–7.20 (m, 1H), 7.25 (d, J = 3.5 Hz, 1H), 7.33 (t, J = 7.5 Hz, 2H),

7.38–7.40 (m, 4H), 7.56 (s, 1H), 7.44–7.46 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 187.5, 171.7, 169.9, 154.8, 152.9, 146.5, 141.3, 139.7, 136.5, 130.6, 129.1, 129.1, 128.8, 128.5, 128.2, 128.1, 127.9, 127.9, 117.5, 112.4, 110.4, 106.9, 81.7, 68.8, 38.6, 38.5, 28.1; MS (ESI) m/z 484.09 [M + 1]⁺; IR (KBr) v 3119, 3052, 2977, 2931, 1728, 1679, 1624, 1569, 1504, 1468, 1368, 1290, 1149, 1078, 1011, 908, 845, 734, 696, 597 cm⁻¹; dr = 98/2, er = 94.5/5.5, determined by HPLC analysis (Chiralpak OD-H, *n*-hexane/2-propanol = 90/10, 0.8 ml/min, 254 nm UV detector), $t_{\rm R} = 8.7$ min (major) and $t_{\rm R} = 25.6$ min (minor).

(2*R*,3*S*)-*tert*-Butyl 2-(diphenylmethyleneamino)-5-oxo-3-phenyl-5-(thiophen-2-yl) pentanoate (5p): 50.1 mg, 98% yield; $[\alpha]^{20}{}_{D}$ +88.0 (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 1.35 (s, 9H), 3.54–3.58 (m, 1H), 3.68–3.73 (m, 1H), 4.20–4.24 (m, 2H), 6.74 (d, *J* = 6.0 Hz, 2H), 7.10–7.19 (m, 6H), 7.32–7.38 (m, 5H), 7.42 (t, *J* = 7.0 Hz, 1H), 7.57 (d, *J* = 4.5 Hz, 1H), 7.71 (d, *J* = 7.0 Hz, 2H), 7.84 (d, *J* = 3.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 191.7, 171.4, 170.2, 144.8, 141.3, 139.6, 136.5, 133.6, 132.1, 130.6, 129.1, 128.8, 128.6, 128.5, 128.4, 128.3, 128.2, 127.7, 126.9, 81.6, 71.1, 45.3, 41.0, 28.1; MS (ESI) m/z 510.12 [M + 1]⁺; IR (KBr) v 3062, 3026, 2977, 2931, 1729, 1664, 1623, 1587, 1515, 1413, 1368, 1289, 1147, 1024, 839, 696 cm⁻¹; *dr* = 96/4, *er* = 95/5, determined by HPLC analysis (Chiralpak OD-H, *n*-hexane/ 2-propanol = 95/5, 0.8 ml/min, 254 nm UV detector), *t*_R = 8.8 min (major) and *t*_R = 23.3 min (minor).

(2*R*,3*S*)-*tert*-Butyl 2-(diphenylmethyleneamino)-5-(furan-2-yl)-5-oxo-3-phenylpentanoate (5q): 47.0 mg, 95% yield; $[\alpha]^{20}{}_{D}$ +94.2 (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 1.33 (s, 9H), 3.42–3.46 (m, 1H), 3.58–3.63 (m, 1H), 4.18–4.24 (m, 2H), 6.46–6.47 (m, 1H), 6.76 (d, *J* = 6.5 Hz, 2H), 7.12–7.18 (m, 6H), 7.32–7.42 (m, 6H), 7.53 (s, 1H), 7.70 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 188.0, 171.4, 170.1, 153.1, 146.3, 141.3, 139.6, 136.5, 130.6, 129.1, 128.8, 128.6, 128.4, 128.3, 128.2, 127.8, 126.8, 117.2, 112.3, 81.5, 71.1, 44.9, 40.3, 28.1; MS (ESI) m/z 494.19 [M + 1]⁺; IR (KBr) v 3062, 3023, 2976, 2931, 1730, 1678, 1622, 1568, 1468, 1392, 1368, 1286, 1149, 1028, 846, 766, 698 cm⁻¹; *dr* = 98/2, *er* = 93.5/6.5, determined by HPLC analysis (Chiralpak OD-H, *n*-hexane/2-propanol = 95/5, 1.0 ml/min, 254 nm UV detector), *t*_R = 8.3 min (major) and *t*_R = 21.6 min (minor).

(2*R*,3*S*)-*tert*-Butyl 2-(diphenylmethyleneamino)-5-oxo-3-phenyl-5-p-tolylpentanoate (5*r*): 50.9 mg, 98% yield; $[\alpha]^{20}_{D}$ +66.2 (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 1.34 (s, 9H), 2.41 (s, 3H), 3.57–3.61 (m, 1H), 3.73–3.78 (m, 1H), 4.18–4.22 (m, 2H), 6.73 (d, *J* = 7.0 Hz, 2H), 7.13–7.17 (m, 5H), 7.25 (d, *J* = 8.5 Hz, 2H), 7.31–7.39 (m, 5H), 7.42 (t, *J* = 7.0 Hz, 1H), 7.70 (d, *J* = 7.5 Hz, 2H), 7.90 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 198.5, 171.3, 170.3, 143.7, 141.6, 139.6, 136.5, 134.9, 130.5, 129.4, 129.1, 128.8, 128.6, 128.5, 128.4, 128.3, 128.2, 127.7, 126.7, 81.5, 71.2, 45.1, 40.1, 28.1, 21.9; MS (ESI) m/z 518.16 [M + 1]⁺; IR (KBr) v 3058, 3023, 2976, 2929, 1730, 1682, 1607, 1574, 1493, 1446, 1367, 1288, 1148, 1007, 847, 697 cm⁻¹; *dr* = 94/6, *er* = 94/6, determined by HPLC analysis (Chiralpak OD-H, *n*-hexane/2-propanol = 95/5, 1.0 ml/min, 254 nm UV detector), *t*_R = 4.9 min (major) and *t*_R = 13.1 min (minor).

(2*R*,3*S*)-*tert*-Butyl 2-(diphenylmethyleneamino)-5-(4-methoxyphenyl)-5-oxo-3phenylpentanoate (5s): 52.1 mg, 98% yield; $[\alpha]^{20}{}_{\rm D}$ +56.5 (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 1.34 (s, 9H), 3.55–3.58 (m, 1H), 3.70–3.76 (m, 1H), 3.86 (s, 3H), 4.19–4.23 (m, 2H), 6.73 (d, *J* = 6.5 Hz, 2H), 6.93 (d, *J* = 8.5 Hz, 2H), 7.13–7.17 (m, 5H), 7.31–7.38 (m, 5H), 7.42 (d, *J* = 6.5 Hz, 1H), 7.71 (d, *J* = 7.5 Hz, 2H), 7.99 (d, *J* = 8.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 197.4, 171.3, 170.3, 163.5, 141.6, 139.6, 136.5, 130.7, 130.6, 130.5, 129.1, 128.8, 128.6, 128.4, 128.3, 128.2, 127.7, 126.7, 113.8, 81.5, 71.2, 55.6, 45.2, 39.9, 28.1; MS (ESI) m/z 534.22 [M + 1]⁺; IR (KBr) v 3067, 3032, 2976, 2929, 1727, 1678, 1599, 1574, 1511, 1446, 1368, 1255, 1149, 1029, 841, 696 cm⁻¹; *dr* = 97/3, *er* = 93.5/6.5, determined by HPLC analysis (Chiralpak OD-H, *n*-hexane/2-propanol = 95/5, 0.8 ml/min, 254 nm UV detector), *t*_R = 12.2 min (major) and *t*_R = 47.1 min (minor).

(2*R*,3*S*)-*tert*-Butyl 5-(benzo[*d*][1,3]dioxol-5-yl)-2-(diphenylmethyleneamino)-5oxo-3-phenylpentanoate (5t): 53.2 mg, 97% yield; $[\alpha]^{20}{}_{D}$ +65.0 (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 1.34 (s, 9H), 3.54–3.57 (m, 1H), 3.66–3.71 (m, 1H), 4.20–4.22 (m, 2H), 5.99(s, 2H), 6.73 (d, *J* = 6.5 Hz, 2H), 6.85 (d, *J* = 8.0 Hz, 1H), 7.13–7.18 (m, 5H), 7.31–7.37 (m, 5H), 7.40–7.44 (m, 2H), 7.64–7.66 (m, 1H), 7.71 (d, *J* = 7.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 196.9, 171.4, 170.2, 151.7, 148.3, 141.6, 139.6, 136.5, 132.3, 130.6, 129.1, 128.8, 128.6, 128.5, 128.4, 128.3, 127.7, 126.8, 124.6, 108.3, 108.0, 102.0, 81.5, 71.2, 45.3, 40.0, 28.1; MS (ESI) m/z 548.14 [M + 1]⁺; IR (KBr) v 3060, 3023, 2976, 2928, 1728, 1678, 1614, 1594, 1487, 1443, 1367, 1254, 1148, 1037, 846, 697 cm⁻¹; dr = 98/2, er = 96.5/3.5, determined by HPLC analysis (Chiralpak OD-H, *n*-hexane/2-propanol = 95/5, 0.8 ml/min, 254 nm UV detector), $t_{\rm R} = 13.2$ min (major) and $t_{\rm R} = 33.1$ min (minor).

(2*R*,3*S*)-*tert*-Butyl 2-(diphenylmethyleneamino)-5-oxo-3,7-diphenylhept-6-enoate (5u): 52.2 mg, 98% yield; $[\alpha]^{20}_{D}$ +44.8 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 1.37 (s, 9H), 3.31–3.36 (m, 1H), 3.43–3.49 (m, 1H), 4.26–4.22 (m, 2H), 6.77–6.81 (m, 2H), 7.17–7.24 (m, 5H), 7.33–7.45 (m, 10H), 7.54–7.61 (m, 3H), 7.74 (d, *J* = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 198.7, 171.2, 170.0, 142.5, 141.1, 139.4, 136.3, 134.7, 130.4, 130.3, 128.9, 128.8, 128.7, 128.6, 128.4, 128.3, 128.2, 128.2, 128.1, 127.6, 126.7, 126.2, 81.3, 71.0, 45.0, 42.7, 27.9; MS (ESI) m/z 530.64 [M + 1]⁺; IR (KBr) v 3059, 3029, 2976, 2929, 1728, 1685, 1611, 1489, 1449, 1362, 1327, 1285, 1153, 1079, 977, 786, 697 cm⁻¹; *dr* = 97/3, *er* = 91/9, determined by HPLC analysis (Chiralpak AD-H, *n*-hexane/2-propanol = 90/10, 1.0 ml/min, 254 nm UV detector), *t*_R = 11.8 min (major) and *t*_R = 21.8 min (minor).

(2*R*,3*S*)-*tert*-Butyl 2-(diphenylmethyleneamino)-5-oxo-3-phenylhexanoate (5v): 37.1 mg, 84% yield; $[\alpha]^{20}{}_{\rm D}$ +96.2 (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 1.33 (s, 9H), 2.09 (s, 3H), 3.05–3.09 (m, 1H), 3.13–3.18 (m, 1H), 4.00–4.04 (m, 1H), 4.09 (d, *J* = 5.5 Hz, 1H), 6.73 (d, *J* = 7.0 Hz, 2H), 7.13–7.21 (m, 5H), 7.30–7.38 (m, 5H), 7.39–7.42 (m, 1H), 7.67–7.69 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 207.6, 171.3, 170.2, 141.4, 139.5, 136.4, 130.6, 129.0, 128.7, 128.6, 128.5, 128.4, 128.3, 127.7, 126.9, 81.5, 71.1, 45.5, 44.8, 30.6, 28.1; MS (ESI) m/z 442.10 $[M + 1]^+$; IR (KBr) v 3060, 3028, 2977, 2931, 1724, 1659, 1623, 1597, 1575, 1492, 1446, 1392, 1367, 1250, 1149, 1083, 1028, 846, 765, 699 cm⁻¹; dr = 93/7, er = 90.5/9.5, determined by HPLC analysis (Chiralpak AD-H, *n*-hexane/2-propanol = 95/5, 1.0 ml/min, 254 nm UV detector), $t_R = 6.7$ min (major) and $t_R = 8.3$ min (minor).

(2*R*,3*S*)-*tert*-Butyl 2-(diphenylmethyleneamino)-6,6-dimethyl-5-oxo-3-phenylheptanoate (5w): 28.0 mg, 57% yield; $[\alpha]^{20}_{D}$ +108.7 (*c* 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 1.05 (s, 9H), 1.33 (s, 9H), 3.00–3.05 (m, 1H), 3.32–3.38 (m, 1H), 4.02–4.05 (m, 1H), 4.11 (d, *J* = 5.5 Hz, 1H), 6.71 (d, *J* = 6.5 Hz, 2H), 7.11–7.19 (m, 5H), 7.29–7.37 (m, 5H), 7.40–7.42 (m, 1H), 7.67–7.69 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 213.9, 171.1, 170.3, 142.0, 139.6, 136.6, 130.5, 129.0, 128.8, 128.5, 128.4, 128.3, 128.2, 127.7, 126.6, 81.3, 70.9, 44.3, 44.3, 38.2, 28.1, 26.5; MS (ESI) m/z 484.17 [M + 1]⁺; IR (KBr) v 3057, 3032, 2970, 2924, 1727, 1708, 1613, 1480, 1444, 1367, 1285, 1148, 1070, 850, 779, 699 cm⁻¹, *dr* = 99/1, *er* = 91/9, determined by HPLC analysis (Chiralpak AD-H, *n*-hexane/2-propanol = 95/5, 0.5 ml/min, 254 nm UV detector), *t*_R = 12.4 min (major) and *t*_R = 14.8 min (minor).

5. Large-scale Synthesis and Recovery of Catalyst 6f:

N-(diphenylmethylene)glycine *tert*-butyl ester **3** (11.8 g, 40 mmol) was added to a mixture of 3-(2-bromophenyl)-1-phenylprop-2-en-1-one **4j** (12.1 g, 42 mmol), (*S*,*S*)-**6f** (1.17 g, 0.4 mmol) and Cs₂CO₃ (6.5 g, 20 mmol) in xylene (200 mL) under argon atmosphere, the resulting solution was stirred at 30 °C for 12 h. The resulting mixture was purified by column chromatographyon silica gel (AcOEt/petroleum ether = 1/10 as eluant) to furnish the conjugate adducts **5j** (21.4 g, 92% yield, *dr* = 98/2, *er* = 95/5, determined by HPLC analysis). The catalyst **6f** was recovered (MeOH/ CH₂Cl₂ = 1/8 as eluant) in almost quantitative yield.

Anion exchange of recovered catalyst **6f** using Amberlyst-26A (OH⁻ form) gave (S,S)-**6f** (OH⁻). The methanol solution of (S,S)-**6f** (OH⁻) was treated with 40% HBr aqueous solution (excess) at room temperature. The resulting mixture was poured into water and extracted with CH₂Cl₂. The organic extracts were washed with 5% K₂CO₃ aqueous solution and dried over MgSO₄. Evaporation of solvents gave reactivated catalyst (S,S)-**6f** (Br⁻) of 1.12 g in 96% yield.

N-(diphenylmethylene)glycine *tert*-butyl ester **3** (29.5 mg, 0.1 mmol) was added to a mixture of 3-(2-bromophenyl)-1-phenylprop-2-en-1-one **4j** (30.1 mg, 0.105 mmol), recovered (*S*,*S*)-**6f** (2.9 mg, 0.001 mmol) and Cs₂CO₃ (16.3 mg, 0.05 mmol) in xylene (0.5 mL) under argon atmosphere, the resulting solution was stirred at 30 °C for 12 h. The resulting mixture was purified by column chromatographyon silica gel (AcOEt/ petroleum ether = 1/10 as eluant) to furnish the conjugate adducts **5j** (54.9 mg, 94% yield, dr = 98/2, er = 95/5 determined by HPLC analysis).

6. Synthetic Transformations of the Adducts 5:

(2*R*,3*S*)-*tert*-Butyl 3-(2-bromophenyl)-5-phenyl-3,4-dihydro-2H-pyrrole-2carboxylate:¹ 1 N hydrochloric acid (3.0 mL) was added to a solution of 5j (174.8mg, 0.3 mmol) in THF (3.0 mL) at 0 °C, and stirring was maintained for 2 h. The resulting mixture was neutralized by addition of solid NaHCO3 and extracted with CH2Cl2. The organic extracts were dried over MgSO4 and concentrated. The residue was purified by column chromatographyon silica gel (AcOEt/petroleum ether = 1/10 as eluant) to (2*R*,3*S*)-*tert*-Butyl 3-(2-bromophenyl)-5-phenyl-3,4-dihydro-2H-pyrrole-2afford carboxylate (120.1 mg, 0.3 mmol) in quantitative yield. $\left[\alpha\right]_{D}^{20}$ -59.0 (c 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 1.48 (s, 9H), 3.07–3.11 (m, 1H), 3.66-3.72 (m, 1H), 4.25-4.29 (m, 1H), 4.93-4.95 (m, 1H), 7.08-7.11 (m, 1H), 7.14-7.16 (m, 1H), 7.24–7.28 (m, 1H), 7.42–7.49 (m, 3H), 7.58–7.60 (m, 1H), 7.91–7.93 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 175.0, 171.2, 143.1, 133.8, 133.3, 131.3, 128.7, 128.5, 128.4, 128.3, 127.9, 124.3, 82.5, 81.8, 45.8, 44.4, 28.2; MS (ESI) m/z 400.07 [M + 1]⁺, 402.06 [M + 1]⁺; IR (KBr) v 3047, 3011, 2980, 2929, 1726, 1615, 1576, 1472, 1446, 1367, 1244, 1147, 1024, 795, 760, 695 cm⁻¹; er = 95/5, determined by HPLC analysis (Chiralpak AD-H, n-hexane/2-propanol = 95/5, 1.0 ml/min, 254 nm UV detector), $t_{\rm R} = 15.4$ min (major) and $t_{\rm R} = 16.7$ min (minor).

(2R,3S,5R)-tert-Butyl 3-(2-bromophenyl)-5-phenylpyrrolidine-2-carboxylate (12): To a solution of (2R,3S)-tert-butyl 3-(2-bromophenyl)-5-phenyl-3,4-dihydro-2Hpyrrole-2-carboxylate (80.1 mg, 0.2 mmol) in 2 mL of MeOH was added NaBH₄ (37.8 mg, 1.0 mmol) in portions at 0 °C. The resultant mixture was stirred for 4 h at room temperature (monitored by TLC). The mixture was evaporated in vacuo, added water (5 mL), and extracted with dichloromethane (5 mL \times 3), washed with brine and dried with MgSO₄. Concentration and flash chromatography (AcOEt/petroleum ether = 1/20 as eluant) afforded (2R,3S,5R)-tert-butyl 3-(2-bromophenyl)-5-phenylpyrrolidine-2-carboxylate 12 (50.6 mg, 0.126 mmol, 63% yield) as a colorless oil. $[\alpha]_{D}^{20}$ -7.6 (c 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 1.43 (s, 9H), 1.78–1.82 (m, 1H), 2.65–2.72 (m, 2H), 3.99–4.07 (m, 2H), 4.56–4.60 (m, 1H), 7.10 (t, J = 7.6 Hz, 1H), 7.25–7.38 (m, 4H), 7.49–7.58 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 173.8, 143.9, 142.5, 132.6, 128.4, 128.3, 128.0, 127.9, 127.1, 126.5, 124.5, 81.4, 67.4, 62.4, 48.9, 45.1, 27.9; MS (ESI) m/z 402.15 [M + 1]⁺, 404.10 [M + 1]⁺; IR (KBr) v 3343, 3061, 3027, 2976, 2931, 1727, 1603, 1474, 1440, 1368, 1230, 1155, 1024, 846, 752, 700 cm⁻¹; er = 95/5, determined by HPLC analysis (Chiralpak AD-H, *n*-hexane/ 2-propanol = 95/5, 0.8 ml/min, 254 nm UV detector), t_R = 9.4 min (major) and t_R = 11.7 min (minor).

tert-Butyl 3-(2-bromophenyl)-5-phenylpyrrolidine-2-carboxylate: To a solution of (2R,3S)-*tert*-butyl 3-(2-bromophenyl)-5-phenyl-3,4-dihydro-2H-pyrrole-2-carboxylate (80.1 mg, 0.2 mmol) in 2 mL of AcOH was added Zinc powder (30 equiv) in portions at room temperature. The resultant mixture was stirred for 1 h at 45 °C (monitored by TLC). After Zinc powder was filtered off, the filtrate was cooled to 0 °C. The filtrate was diluted with ethyl acetate and neutralized by the addition of sodium hydrogen carbonate (70% saturated *aq*). The mixture was extracted with dichloromethane (10 mL × 4), washed with brine and dried with MgSO₄. Concentration and flash chromatography (AcOEt/petroleum ether = 1/20-1/4 as eluant) afforded both (2R,3S,5S)-*tert*-butyl 3-(2-bromophenyl)-5-phenylpyrrolidine-2-carboxylate **10** (39.2 mg, 0.097 mmol, 48% yield) as a colorless oil and (2R,3S,5R)-*tert*-butyl 3-(2-bromophenyl)-5-phenylpyrrolidine-2-carboxylate **12** (12.2 mg, 0.030 mmol, 15% yield).

(2R,3S,5S)-*tert*-butyl 3-(2-bromophenyl)-5-phenylpyrrolidine-2-carboxylate (**10**): $[\alpha]^{20}_{D} -26.2 \ (c \ 1.0, CH_2Cl_2); {}^{1}H \ NMR \ (500 \ MHz, CDCl_3) \ \delta \ 1.41 \ (s, 9H), 2.19-2.24 \ (m, 1H), 2.28-2.34 \ (m, 1H), 2.62 \ (s, 1H), 3.96 \ (d, J = 6.5 \ Hz, 1H), 4.01-4.05 \ (m, 1H), 4.46 \ (t, J = 6.5 \ Hz, 1H), 7.10-7.13 \ (m, 1H), 7.26-7.29 \ (m, 1H), 7.34-7.38 \ (m, 3H), 7.47-7.50 \ (m, 3H), 7.57-7.59 \ (m, 1H); {}^{13}C \ NMR \ (125 \ MHz, CDCl_3) \ \delta \ 173.2, 143.7, 142.2, 133.1, 128.8, 128.3, 128.2, 128.2, 128.0, 127.5, 126.9, 124.9, 81.7, 67.7, 62.4, 49.3, 42.9, 28.1; \ MS \ (ESI) \ m/z \ 402.03 \ [M + 1]^+, 404.05 \ [M + 1]^+; \ IR \ (KBr) \ v \ 3359, 3060, 2976, 2930, 1727, 1472, 1392, 1367, 1246, 1155, 1023, 846, 753, 700 \ cm^{-1}; \ er = 95/5, \ determined \ by \ HPLC \ analysis \ (Chiralpak \ AD-H, n-hexane/2-propanol = 95/5, 0.8 \ ml/min, 254 \ nm \ UV \ detector), t_R = 9.4 \ min \ (minor) \ and \ t_R = 17.2 \ min \ (major).$

(2R,3S,5S)-tert-Butyl 3-(2-bromophenyl)-1-(4-nitrobenzoyl)-5-phenylpyrrolidine-(2*R*,3*S*,5*S*)-*tert*-Butyl 3-(2-bromophenyl)-5-phenylpyrrolidine-2-2-carboxylate: carboxylate 10 (40.2 mg, 0.1 mmol) was dropped to a mixture of 4-nitrobenzoyl chloride (37.1 mg, 0.2 mmol) and Et₃N (41.8 μ l, 0.3 mmol) in dry CH₂Cl₂ (1.5 mL) at 0 °C under argon atmosphere, then stirring was maintained for 16 h at room temperature. The resulting mixture was quenched with aqueous NaHCO3 and extracted with CH₂Cl₂. The organic extracts were dried over MgSO₄ and concentrated. The residue was purified by column chromatographyon silica gel (AcOEt/petroleum ether = 1/4 as eluant) to afford the product (48.0 mg, 0.087 mmol, 87% yield) as a white solid. Mp 70–72 °C; $[\alpha]^{20}_{D}$ –34.8 (c 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 1.47 (s, 9H), 2.37–2.48 (m, 2H), 4.19–4.23 (m, 1H), 4.81–4.83 (m, 1H), 4.87 (d, J =8.0 Hz, 1H), 7.18 (t, J = 7.5 Hz, 1H), 7.30 (t, J = 7.5 Hz, 2H), 7.35 (d, J = 8.5 Hz, 2H), 7.39 (t, J = 7.5 Hz, 1H), 7.45 (d, J = 7.5 Hz, 1H), 7.49 (d, J = 7.5 Hz, 2H), 7.60 (d, J =8.0 Hz, 1H), 7.98 (d, J = 8.5 Hz, 2H), 8.24–8.30 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) & 169.5, 169.2, 148.3, 142.1, 142.7, 138.3, 133.3, 128.9, 128.8, 127.9, 127.7, 127.3, 126.7, 124.9, 123.5, 123.1, 82.2, 66.5, 58.4, 44.4, 43.1, 28.0; MS (ESI) m/z 573.05 [M + Na]⁺, 575.05 [M + Na]⁺; IR (KBr) v 3062, 2975, 2929, 2868, 1739, 1646, 1601, 1524, 1417, 1346, 1224, 1148, 1024, 850, 758, 702 cm⁻¹; er = 95/5, determined by HPLC analysis (Chiralpak AD-H, n-hexane/2-propanol = 70/30, 1.0 ml/min, 254 nm UV detector), $t_R = 24.8 \text{ min} \text{ (minor)}$ and $t_R = 35.6 \text{ min} \text{ (major)}$.

(2*R*,3*S*,5*S*)-Methyl 3-(2-bromophenyl)-1-(4-nitrobenzoyl)-5-phenylpyrrolidine-2-carboxylate (16): *tert*-Butyl 3-(2-bromophenyl)-1-(4-nitrobenzoyl)-5-phenylpyrrolidine-2-carboxylate (48.0 mg, 0.087 mmol) was stirred in neat trifluoroacetic acid (4 mL) for 8 h at room temperature. The mixture was evaporated *in vacuo*, and

purified by flash column chromatographyon silica gel (AcOEt/petroleum ether = 1/1as eluant) to afford 3-(2-bromophenyl)-1-(4-nitrobenzoyl)-5-phenylpyrrolidine-2-carboxylic acid. SOCl₂ (12.7 μ L, 0.128 mmol) was dropped to a solution of 3-(2-bromophenyl)-1-(4-nitrobenzoyl)-5-phenylpyrrolidine-2-carboxylic acid (43.0 mg, 0.087 mmol) in dry methanol (2 mL) at 0 °C, then stirring was maintained for 16 h at room temperature. The mixture was evaporated in vacuo, and purified by column chromatographyon silica gel (AcOEt/petroleum ether = 1/4 as eluant) to afford the product 16 (40.7 mg, 0.080 mmol, 92% yield). Recrystallization of this product from AcOEt/hexane furnished suitable crystals for X-ray structure analysis. Mp 86–89 °C; $[\alpha]_{D}^{20}$ -63.2 (c 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 2.48–2.56 (m, 2H), 3.86 (s, 3H), 4.19–4.23 (m, 1H), 4.85–4.87 (m, 1H), 4.97 (d, J = 5.2 Hz, 1H), 7.20–7.27 (m, 4H), 7.35 (d, J = 8.4 Hz, 2H), 7.41–7.49 (m, 4H), 7.63 (d, J = 6.4 Hz, 1H), 7.98 (d, J = 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 169.1, 148.3, 141.7, 138.3, 133.6, 129.1, 128.8, 128.1, 127.8, 127.7, 126.7, 124.9, 123.1, 65.6, 63.6, 52.8, 44.3, 42.9; MS (ESI) m/z 509.02 $[M + 1]^+$, 511.04 $[M + 1]^+$; IR (KBr) v 2955, 2919, 2847, 1737, 1645, 1593, 1399, 1386, 1359, 1209, 1152, 1019, 827, 758, 707 cm⁻¹; dr > 10099.9/0.1, er = 95/5 (>99.9/0.1 after recrystallization), determined by HPLC analysis (Chiralpak AD-H, *n*-hexane/2-propanol = 50/50, 0.8 ml/min, 254 nm UV detector), t_R = 28.3 min (major) and $t_{\rm R}$ = 60.3 min (minor).

(2*R*,3*S*)-*tert*-Butyl 1-benzhydryl-3-(2-oxo-2-phenylethyl)indoline-2-carboxylate (17):² A benzene solution of the 5j (99.5 mg, 0.17 mmol) and ^{*n*}Bu₃SnH (110.6 mg, 0.38 mmol) was warmed to 85 °C under argon atmosphere. AIBN (34.5 mg, 0.21

mmol) was added as a benzene solution by syringe pump over a 4–5 hour period. The solution was refluxed an additional hour, cooled, and concentrated. The residue was treated with a 1/1 (v/v) ether-satd aq KF solution and stirred vigorously until a white precipitate formed. The organic layer was washed with water, dried with MgSO₄, filtered, and concentrated. The residue was purified by column chromatographyon silica gel (AcOEt/petroleum ether = 1/10 as eluant) to afford the product **17** (70.7 mg, 0.14 mmol, 82% yield) as a whiter solid. Mp 58–60 °C; $[\alpha]^{20}_{D}$ +112.0 (c 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 1.05 (s, 9H), 3.29–3.34 (m, 1H), 3.52–3.57 (m, 1H), 4.37-4.42 (m, 2H), 5.59 (s, 1H), 6.02 (d, J = 7.5 Hz, 1H), 6.66 (t, J = 7.5 Hz, 1H), 6.89 (t, J = 7.5 Hz, 1H), 6.98 (d, J = 7.0 Hz, 1H), 7.21 (t, J = 7.5 Hz, 2H), 7.28–7.32 (m, 4H), 7.41 (d, J = 7.0 Hz, 2H), 7.46–7.49 (m, 4H), 7.58 (t, J = 7.5 Hz, 1H), 7.99–8.01 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 197.7, 170.6, 151.4, 142.8, 140.5, 136.8, 133.5, 131.2, 129.8, 128.9, 128.8, 128.2, 127.9, 127.7, 127.2, 127.1, 122.1, 118.1, 109.7, 81.5, 69.9, 67.2, 39.6, 38.7, 28.0; MS (ESI) m/z 503.98 [M]⁺; IR (KBr) v 3052, 3027, 2958, 2924, 2858, 1728, 1689, 1604, 1480, 1451, 1367, 1217, 1146, 1028, 1001, 845, 746, 704 cm⁻¹; dr = 98/2, er = 95/5, determined by HPLC analysis (Chiralpak OD-H, *n*-hexane/2-propanol = 90/10, 0.8 ml/min, 254 nm UV detector), $t_{\rm R}$ = 11.4 min (minor) and $t_{\rm R}$ = 16.8 min (major).

(2*R*,3*S*,5*R*)-*tert*-Butyl 3,5-diphenylpyrrolidine-2-carboxylate (11): 1 N hydrochloric acid (2.0 mL) was added to a solution of 5a (100.7mg, 0.2 mmol) in THF (2.0 mL) at 0 °C, and stirring was maintained for 2 h. The resulting mixture was neutralized by addition of solid NaHCO₃ and extracted with CH₂Cl₂. The organic extracts were dried over MgSO₄ and concentrated. The residue was purified by column chromato- graphyon silica gel (AcOEt/petroleum ether = 1/20 as eluant) to afford (2*R*,3*S*)-*tert*- butyl 3,5-diphenyl-3,4-dihydro-2H-pyrrole-2-carboxylate in

quantitative vield. To solution of (2R,3S)-*tert*-butyl а 3,5-diphenyl-3,4-dihydro-2H-pyrrole-2-carboxylate (64.3 mg, 0.2 mmol) in 2 mL of MeOH was added NaBH₄ (37.8 mg 1.0 mmol) in portions at 0 °C. The resultant mixture was stirred for 4 h at room temperature (monitored by TLC). The mixture was evaporated in vacuo, added water (5 mL), and extracted with dichloromethane (5 mL \times 3), washed with brine and dried with MgSO₄. Concentration and flash chromatography (AcOEt/petroleum ether 1/20as eluant) afforded (2R,3S,5R)-tert-butyl 3,5-diphenylpyrrolidine-2-carboxylate 11 (37.6 mg, 0.116 mmol, 58% yield) as a colorless oil. $[\alpha]^{20}_{D}$ +18.6 (c 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) § 1.44 (s, 9H), 2.01–2.10 (m, 1H), 2.62–2.65 (m, 1H), 2.81 (s, 1H), 3.45 (d, J = 7.2 Hz, 1H), 3.95 (d, J = 3.6 Hz, 1H), 4.56 (d, J = 5.2 Hz, 1H), 7.29 (d, J = 4.8 Hz, 2H), 7.39 (s, 6H), 7.52 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 174.3, 144.1, 142.7, 128.5, 128.4, 127.6, 127.0, 126.6, 126.5, 81.2, 67.9, 62.4, 51.1, 45.1, 28.0; MS (ESI) m/z 324.19 [M + 1]⁺; IR (KBr) v 3344, 3061, 3028, 2977, 2932, 1725, 1603, 1492, 1457, 1367, 1228, 1157, 1028, 846, 753, 699 cm⁻¹; er = 96/4 determined by HPLC analysis (Chiralpak AD-H, n-hexane/2-propanol = 95/5, 1.0 ml/min, 254 nm UV detector), $t_{\rm R} = 7.4$ min (major) and $t_{\rm R} = 10.7$ min (minor).

tert-Butyl 3,5-diphenylpyrrolidine-2-carboxylate: To a solution of (2R,3S)-*tert*-butyl 3,5-diphenyl-3,4-dihydro-2H-pyrrole-2-carboxylate (64.3 mg, 0.2 mmol) in 2 mL of AcOH was added Zinc powder (30 equiv) in portions at room temperature. The resultant mixture was stirred for 1 h at 45 °C (monitored by TLC). After Zinc powder was filtered off, the filtrate was cooled to 0 °C. The filtrate was diluted with ethyl acetate and neutralized by the addition of sodium hydrogen carbonate (70% saturated *aq*). The mixture was extracted with dichloromethane (10

mL × 4), washed with brine and dried with MgSO₄. Concentration and flash chromatography (AcOEt/petroleum ether = 1/20-1/4 as eluant) afforded both (2*R*,3*S*,5*S*)-*tert*-butyl 3,5-diphenylpyrrolidine-2-carboxylate **9** (35.0 mg, 0.108 mmol, 54% yield) as a colorless oil and (2*R*,3*S*,5*R*)-*tert*-butyl 3,5-diphenylpyrrolidine-2-carboxylate **11** (11.1 mg, 0.034 mmol, 17% yield).

(2R,3S,5S)-*tert*-Butyl 3,5-diphenylpyrrolidine-2-carboxylate (**9**): $[\alpha]^{20}_{D}$ -34.5 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 1.42 (s, 9H), 2.25–2.32 (m, 1H), 2.39–2.46 (m, 1H), 2.50 (s, 1H), 3.46–3.52 (m, 1H), 3.90 (d, *J* = 7.6 Hz, 1H), 4.55 (t, *J* = 7.6 Hz, 1H), 7.28–7.31 (m, 2H), 7.34–7.41 (m, 6H), 7.51 (d, *J* = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 143.9, 142.8, 128.6, 128.5, 127.5, 127.2, 126.7, 126.6, 81.3, 68.8, 62.4, 49.9, 43.4, 28.0; MS (ESI) m/z 324.07 [M + 1]⁺; IR (KBr) v 3375, 3067, 2970, 2929, 1724, 1603, 1501, 1454, 1367, 1244, 1153, 1029, 845, 756, 700 cm⁻¹; *er* = 96/4, determined by HPLC analysis (Chiralpak AD-H, *n*-hexane/2-propanol = 95/5, 1.0 ml/min, 254 nm UV detector), *t*_R = 10.4 min (minor) and *t*_R = 16.8 min (major).

tert-Butyl 5-tert-butyl-3-phenylpyrrolidine-2-carboxylate: 1 N hydrochloric acid (2.0 mL) was added to a solution of 5w (96.6 mg, 0.2 mmol) in THF (2.0 mL) at 0 °C, and stirring was maintained for 2 h. The resulting mixture was neutralized by addition of solid NaHCO₃ and extracted with CH₂Cl₂. The organic extracts were dried over MgSO₄ and concentrated. The residue was purified by column chromatographyon silica gel (AcOEt/petroleum ether = 1/10 as eluant) to afford (2*R*,3*S*)-*tert*-butyl 5-*tert*-butyl-3-phenyl-3,4-dihydro-2H-pyrrole-2-carboxylate in quantitative yield. To a solution of (2*R*,3*S*)-*tert*-butyl 5-*tert*-butyl-3-phenyl-3,4-dihydro-2H-pyrrole-2-carboxylate in quantitative yield.

carboxylate (60.2 mg, 0.2 mmol) in 2 mL of MeOH was added NaBH₄ (37.8 mg 1.0 mmol) in portions at 0 °C. The resultant mixture was stirred for 3 h at room temperature (monitored by TLC). The mixture was evaporated *in vacuo*, added water (5 mL), and extracted with dichloromethane (5 mL × 3), washed with brine and dried with MgSO₄. Concentration and flash chromatography (AcOEt/petroleum ether = 1/10 as eluant) afforded both (2*R*,3*S*,5*R*)-*tert*-butyl 5-*tert*-butyl-3-phenylpyrrolidine-2-carboxylate **14** (36.3 mg, 0.120 mmol, 60% yield) as a colorless oil and (2*R*,3*S*,5*S*)-*tert*-butyl 5-*tert*-butyl-3-phenylpyrrolidine-2-carboxylate **15** (8.6 mg, 0.028 mmol, 14% yield) as a colorless oil.

(2R,3S,5R)-*tert*-butyl 5-*tert*-butyl-3-phenylpyrrolidine-2-carboxylate (14): $[\alpha]^{20}_{D}$ -37.1 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 0.95 (s, 9H), 1.31 (s, 9H), 1.76–1.84 (m, 1H), 2.14–2.20 (m, 1H), 2.50 (s, 1H), 3.13–3.21 (m, 2H), 3.66 (d, *J* = 8.8 Hz, 1H), 7.21–7.25 (m, 1H), 7.28–7.35 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 174.2, 142.5, 128.3, 127.5, 126.5, 80.9, 68.2, 67.9, 51.9, 37.3, 33.5, 27.9, 26.3; MS (ESI) m/z 304.17 [M + 1]⁺; IR (KBr) v 3351, 3029, 2955, 2867, 1726, 1478, 1455, 1367, 1227, 1158, 847, 760, 699 cm⁻¹; *er* = 91/9, determined by HPLC analysis (Chiralpak AD-H, *n*-hexane/2-propanol = 99/1, 0.8 ml/min, 254 nm UV detector), *t*_R = 13.7 min (major) and *t*_R = 28.0 min (minor).

(2R,3S,5S)-*tert*-butyl 5-*tert*-butyl-3-phenylpyrrolidine-2-carboxylate (**15**): $[\alpha]^{20}_{D}$ -43.0 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 1.00 (s, 9H), 1.35 (s, 9H), 1.87–1.94 (m, 1H), 2.04–2.11 (m, 1H), 2.19 (s, 1H), 3.13–3.21 (m, 2H), 3.66 (d, *J* = 8.0 Hz, 1H), 7.22–7.28 (m, 3H), 7.30–7.34 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 143.4, 128.4, 127.5, 126.4, 81.0, 69.1, 68.5, 51.1, 36.8, 33.1, 27.9, 26.5; MS (ESI) m/z 304.07 [M + 1]⁺; IR (KBr) v 3306, 3026, 2960, 2869, 1727, 1476, 1458, 1367, 1255, 1158, 848, 761, 699 cm⁻¹; *er* = 91/9, determined by HPLC analysis (Chiralpak AD-H, *n*-hexane/2-propanol = 99/1, 0.8 ml/min, 254 nm UV detector), *t*_R = 8.5 min (minor) and *t*_R = 9.9 min (major).

(2*R*,3*S*,5*S*)-*tert*-Butyl 5-methyl-3-phenylpyrrolidine-2-carboxylate (13): 1N hydrochloric acid (2.0 mL) was added to a solution of 5v (88.4 mg, 0.2 mmol) in THF (2.0 mL) at 0 °C, and stirring was maintained for 2 h. The resulting mixture was neutralized by addition of solid NaHCO₃ and extracted with CH₂Cl₂. The organic extracts were dried over MgSO₄ and concentrated. The residue was purified by column chromatographyon silica gel (AcOEt/petroleum ether = 1/1 as eluant) to afford (2R,3S)-tert-butyl 5-methyl-3-phenyl-3,4-dihydro-2H-pyrrole-2-carboxylate in quantitative yield. To a solution of (2R,3S)-tert-butyl 5-methyl-3-phenyl-3,4-dihydro-2H-pyrrole-2-carboxylate (51.9 mg, 0.2 mmol) in 2 mL of MeOH was added NaBH₄ (37.8 mg 1.0 mmol) in portions at 0 °C. The resultant mixture was stirred for 1.5 h at room temperature (monitored by TLC). The mixture was evaporated in vacuo, added water (5 mL), and extracted with dichloromethane (5 mL \times 3), washed with brine and dried with MgSO₄. Concentration and flash chromatography (AcOEt/petroleum ether = 1/1 as eluant) afforded the product 13 (30.8 mg, 0. 118 mmol, 59% yield) as a colorless oil. $[\alpha]^{20}_{D}$ -45.1 (c 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 1.23 (d, J = 6.0 Hz, 3H), 1.35 (s, 9H), 1.59–1.67 (m, 1H), 2.26–2.33 (m, 1H), 3.15 (s, 1H), 3.21-3.28 (m, 1H), 3.46-3.51 (m, 1H), 3.73 (d, J = 7.6 Hz, 1H), 7.18-7.22 (m, 1H), 7.30 (d, J = 4.4 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 174.2, 142.9, 128.4, 127.5, 126.5, 81.0, 67.6, 54.3, 51.4, 43.9, 27.9, 21.3; MS (ESI) m/z 262.16 [M + 1]⁺; IR (KBr) v 3342, 3063, 3029, 2967, 2929, 1725, 1603, 1494, 1456, 1368, 1229, 1160, 1137, 958, 848, 760, 700 cm⁻¹; er = 90/10, determined by HPLC analysis (Chiralpak AD-H, *n*-hexane/2-propanol = 95/5, 1.0 ml/min, 254 nm UV detector), $t_{\rm R}$ = 8.4 min (major) and $t_{\rm R} = 9.7$ min (minor).
7. References:

- a) M.-Q. Hua, H.-F. Cui, L. Wang, J. Nie, J.-A. Ma, Angew. Chem., Int. Ed. 2010, 49, 2772.
 - b) T. Ooi, M. Kameda, K. Maruoka, J. Am. Chem. Soc. 2003, 125, 5139.
 - c) T. Ooi, K. Maruoka, Angew. Chem. Int. Ed. 2007, 46, 4222.
 - d) T. Hashimoto, K. Maruoka, Chem. Rev. 2007, 107, 5656.
- a) R. Viswanathan, E. N. Prabhakaran, M. A. Plotkin, J. N. Johnston, J. Am. Chem. Soc. 2003, 125, 163.
 - b) R. Viswanathan, C. R. Smith, E. N. Prabhakaran, J. N. Johnston, J. Org. Chem. 2008, 73, 3040.

8. NMR Spectra and HPLC Charts for the Addition Adducts

aan dib

S53

Т

100

| 150

oos An da 50

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Height [mAU]	Area %
1	21.796	вv	0.5936	9.92737e4	2519.88696	93.7906
2	25.437	VB	0.6777	2973.49316	65.55968	2.8093
з	30.327	вv	0.7285	3598.88306	75.42698	3.4001
Total	< -			1 05846e5	2660 87363	

То	tal	s:			4.78908e4	900.22219	
	3	37.083	VBA	1.0398	2.30533e4	338.23761	48.1372
	2	34.321	BV	1.2760	1815.20227	19.69900	3.7903
	1	23.898	BB	0.6467	2.30223e4	542.28558	48.0725

Peak # 	RetTime [min]	Type	Width [min]	يم mAU ۱	:ea *s	Hei [mAU	ght] 	Area %
1	24.014	VB	0.6596	3.750)97e4	866.	06055	89.8518
2	34.663	vv	0.7449	648.	54541	13.	47726	1.5535
з	35.572	vv	1.0498	1263.	17358	17.	72588	3.0258
4	37.485	VB	1.0310	2324.	74316	34.	10902	5.5688
Total	s:			4.174	461e4	931.	37271	

Peak #	RetTime [min]	Type	Width [min]	A1 mAU	ea *s	Heiq [mAU	ght]	Area *
1	6.553	BBA	0.2384	5996.	61816	382.1	11124	46.5679
2	7.540	BV	0.3068	446.	20929	22.2	24915	3.4651
3	8.461	vv	0.3828	448.	91202	17.7	72485	3.4861
4	13.483	BB	1.1597	5985.	41504	75.1	11106	46.4809

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	\$
		·				
1	6.557	vv	0.2469	2.83201e4	1751.47644	91.3599
2	7.826	vv	0.1810	488.61374	39.03368	1.5763
3	8.488	vv	0.3674	782.26178	32.59212	2.5236
4	14.243	VBA	1.1068	1407.42529	18.78976	4.5403

2.19078e4

495.37565

Sional	1:	VWD1	Α.	Wavelength=254	nm
or grierr	_		,	waresangen eve	~ ~ ~ ~ ~

Peak	RetTime	Type	Width	A	rea	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU	1	\$
							I	
1	8.470	vv	0.3883	3.421	749e4	1341.	93127	88.8417
2	12.609	VB	0.6261	1952.	. 19739	46.	83176	5.0602
з	24.833	BB	2.0579	2352.	63818	15.	53568	6.0981
Total	.s :			3.851	797e4	1404.	29871	

Signal 1: VWD1 A, Wavelength=254 nm

Peak # 	RetTime [min]	Туре	Width [min]	Ar mAU	ea *s	Hei [mAU 	ght] 	Area *
1	8.769	VBA	0.3620	1.727	50e4	733.5	94446	48.7011
2	12.842	вv	0.4186	485.	11447	18.0	04025	1.3676
з	13.731	VB	0.4551	515.	12958	17.4	44913	1.4522
4	20.834	BB	2.1772	1.719	63e4	107.0	03320	48.4791
Total	.s :			3.547	16e4	876.	46704	

Peak #	RetTime [min]	Type	Width [min]	Ar mAU	rea *s	Hei [mAU	ght]	Area %
1	8.734	vv	0.3601	1.932	12e4	826.	34949	93.6836
2	12.808	BV	0.4236	532.	43567	19.	31321	2.5817
з	24.409	BB	1.7000	770.	23920	6.	24946	3.7347
Total	< •			2 062	38e4	851	91216	

Signal 1: VWD1 A, Wavelength=254 nm

Peak #	RetTime [min]	Type	Width [min]	Ar mAU	ea *s	Hei([mAU	ght]	Area %
 1 2 3	6.566 7.393 11.131	BV VV VB	0.3327 0.5013 1.1520	1.912 1743. 1.888	76e4 82324 96e4	868.1 48.1 227.1	 19684 13354 54025	48.1063 4.3858 47.5079
Total	ls :			3.976	10e4	1143.8	37063	

De els	DetTime	Trance	M ÷ d+ h	A	TT -
-				-	

Peak #	RetTime [min]	Туре	Width [min]	Àrea mAU *s	Height [mAU]	Area %
1	6.478	vv	0.3278	4.73691e4	2218.13989	88.0218
2	7.307	vv	0.3953	2630.88989	96.92289	4.8888
з	12.064	VBA	1.0022	3815.16650	56.99771	7.0894
Total	ls :			5.3815le4	2372.06049	

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	Type	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU	1	\$
1	6.494	VBA	0.2469	8719.	17187	539.	16956	49.1664
2	7.895	BV	0.1430	96.	75677	10.	73397	0.5456
з	8.824	vv	0.4089	164.	02328	6.	11796	0.9249
4	11.481	VBA	0.9691	8754.	05566	133.	96846	49.3631

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	\$
					-	I
1	6.626	VV	0.2647	3.60430e4	2095.97388	87.2983
2	8.066	vv	0.2118	254.9185	2 17.10040	0.6174
з	8.990	VV	0.4372	1708.3128	7 57.93135	4.1376
4	12.364	VBA	0.9541	3280.9226	1 52.02935	7.9466
Total	ls :			4.12872e4	2223.03498	

Peak #	RetTime [min]	Туре	Width [min]	A: mAU	rea *s	Hei [mAU	ght]	Area %	
1	8.305	вv	0.3954	1.63	647e4	625.	63080	48.5634	
2	10.847	vv	0.6613	613	.48279	13.	64758	1.8206	
3	15.342	BB	1.4905	1.60	691e4	151.	54115	47.6865	
4	19.593	BBA	1.2685	650	.20966	6.	22297	1.9295	

Peak #	RetTime [min]	Type	Width [min]	Àr mÀU	'ea *s	Hei [mAU	ght]	Area %
1	8.332	vv	0.3964	2.062	54e4	793.	71204	86.3170
2	10.223	VB	0.6420	1013.	81250	23.	14939	4.2428
3	17.171	vv	1.3751	1477.	55444	16.	20851	6.1836
4	20.048	VBA	1.4717	778.	17010	7.	34610	3.2566
Total	.s :			2.389	49e4	840.	41604	

Tot	als	5 3

4.50480e4 1822.00476

 	 	ouverangen	
 n m	 	774 44 1	

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Height [mAU]	Area %
1	7.140	BV	0.2822	2.5903le4	1404.33374	94.9596
2	8.027	vv	0.2111	162.79120	10.96045	0.5968
з	9.511	VBA	0.5279	1212.12842	34.86501	4.4436
Total	s:			2.72780e4	1450.15919	

Signal 1: VWD1 A, Wavelength=254 nm

Peak # !	RetTime [min]	Type	Width [min]	Ar mAU	:ea *s	Hei [mAU	ght]	Area *
1 2	7.332 7.986	vv vv	0.2930	1.059 143.	47e4 53465	554.	08124 30884	49.7068 0.6734
3	8.573	VBA	0.4642	1.057	61e4	346.	19043	49.6198
Total	s:			2.131	.44e4	912.	58050	

Signal 1: VWD1 A, Wavelength=254 nm

Peak #	RetTime [min]	Type	Width [min]	Area mAU *s	Heigh [mAU	t Area] %	
							۰I
1	7.356	vv	0.2980	2.93257e4	1500.04	626 92.7057	1
2	8.034	vv	0.1959	716.5537	71 52.88	936 2.2652	•
3	8.799	VBA	0.4326	1590.8549	98 56.62	:020 5.0291	-
Total	s:			3.1633le4	¥ 1609.55	583	

Peak #	RetTime [min]	Туре	Width [min]	A mAU	rea *s	Hei [mAU	ght]	Area %
1	9.805	VBA .	0.4382	2.08	821e4	724.	40387	49.0565
2	15.952	vv	0.7799	904	. 78900	18.	13997	2.1255
з	17.340	VB	1.7661	2.07	805e4	160.3	26247	48.8179
Total	ls :			4.25	674e4	902.3	80630	

Peak #	RetTime [min]	Type	Width [min]	Are mAU	a *s	Hei [mAU	ght 1	Area %
1	9.878	vv	0.4428	1.8636	5e4	643.	42371	91.0944
2	16.320	BB	0.8972	982.4	8517	15.	67514	4.8023
з	20.527	BBA	1.4990	839.4	6356	7.	84427	4.1033
Total	e ·			2 0458	404	666	94312	

3.80079e4 2136.89609

Peak #	RetTime [min]	Type	Width [min]	Area mAU *s		Height [mAU]		Area %
1	6.042	vv	0.2187	1.29	661e4	894.	17065	93.2055
2	7.501	vv	0.4007	694	.63715	27.	38734	4.9933
3	7.819	vv	0.1990	250	. 56900	17.	81872	1.8012
Total	s:			1.39	113e4	939.	37672	

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Height [mAU]	Area *
1	7.180	BV	0.2357	1.85352e4	1198.77820	46.9936
2	9.698	VV	0.4347	1053.33228	37.59023	2.6706
з	10.576	vv	0.5275	1182.66675	34.05288	2.9985
4	21.078	BBA	2.7340	1.86708e4	91.34817	47.3373
Total	.s :			3.94420e4	1361.76948	

Signal 1: VWD1 A, Wavelength=254 nm

Peak ff	RetTime [min]	Туре	Width [min]	A1 mAU	rea *s	Hei [mAU	.ght 1	Area *
1	7.182	BV	0.2398	2.134	17e4	1371.	27734	92.5832
2	9.754	BV	0.3847	51.	57313	2.	12762	0.2237
з	10.724	vv	0.5275	521.	52295	15.	12486	2.2624
4	25.798	BB	1.7632	1136.	58972	8.	59979	4.9307

2.50454e4 800.56490

Peak #	RetTime [min]	Type	Width [min]	Ar mAU	ea *s	Hei [mAU	ght l	Area %
1	7.306	vv	0.2610	1.508	60e4	893.	59448	88.6019
2	9.506	vv	0.5046	890.	00354	27.	37225	5.2271
з	10.399	vv	0.3064	84.	95107	з.	90174	0.4989
4	22.138	BBA	1.6860	965.	77838	8.	54176	5.6721
Total	s ·			1.702	68e4	933	41024	

4 19.900 BBA

1.08619e5 2747.22385

224.89774 45.5654

2.9111 4.94926e4

	[[1		*
		I I					
'		•		1			
1	8.682	BV	0.3264	2.46013e4	1158.1	.8677	92.8335
~	10 120	TTD	0 5000	100 00501		0140	0 4001
2	10.129	vв	0.5809	132.27531	3.2	8140	0.4991
3	14.136	BB	0.8257	333.77219	6.0	6288	1.2595
4	Z5.614	BBA	1.8900	1433.11682	11.2	57Z7	5.4079

```
Totals :
```

2.65004e4 1178.78832

Peak .	Retlime	Type	width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	÷
1						
1	8.824	vv	0.3610	4.89067e4	2063.07080	90.7641
2	10.192	VV	0.5525	1080.23364	28.15181	2.0048
з	14.476	VV	0.7327	1096.55347	23.29380	2.0351
4	23.326	BBA	1.8175	2799.79590	22.16162	5.1960
Total	s:			5.38832e4	2136.67803	

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	\$
1	8.337	VB	0.3581	5.16925e4	2203.83447	91.5991
2	16.636	BB	1.1188	1159.09021	15.62423	2.0539
з	21.679	BB	1.7447	3581.83105	29.76369	6.3470
Total	ls :			5.64335e4	2249.22239	

~						
		·				
1	4.910	vv	0.1811	2.12029e4	1763.24304	87.7563
2	8.765	BB	0.6028	1500.90002	37.34822	6.2121
з	13.183	BB	1.2217	1457.30127	18.15881	6.0316

Totals :

2.41611e4 1818.75007

4 40.853 BB

6.63327e4 863.49714

67.31870

48.6925

6.0140 3.22991e4

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Height [mAU]	Area %
1	12.183	BB	0.5951	3.16697e	4 816.69629	90.6911
2	21.331	BB	0.8220	330.893	16 6.04581	0.9476
3	29.047	BB	1.7289	713.809	33 5.01983	2.0441
4	47.179	BBA	3.3952	2205.996	58 7.67909	6.3172
Total	e -			3 492046	4 835 44102	

Peak	RetTime	Type	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	\$
1	13.174	BB	0.6499	1.962	294e4	462.	12119	94.3795
2	16.434	BB	0.8638	48.	75469	6.767	76e-1	0.2344
з	23.005	BB	1.1504	399.	68509	4.	52266	1.9217
4	33.112	BB	2.0397	720.	54321	4.	13916	3.4644
Total	ls :			2.079	984e4	471.	45978	

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	Type	Width	A	rea	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU	1	\$
1	11.666	VBA	0.4080	1.354	132e4	506.0	61539	48.5050
2	14.041	BB	0.5088	881.	58838	26.	40933	3.1574
3	21.517	VB	0.7762	1.349	964e4	265.0	65402	48.3376
Total	ls :			2.792	212e4	798.0	67874	

Peak #	RetTime [min]	Type	Width [min]	Area mAU *s	Hei [mAU	.ght]	Area %
1	11.788	vv	0.4160	2.09275e	4 763.	16248	88.6798
2	14.148	VB	0.3554	598.623	41 24.	46507	2.5367
з	21.800	BBA	0.7233	2072.824	46 44.	79878	8.7835
Total	s:			2.35990e	4 832.	42632	

Peak #	RetTime [min]	Туре	Width [min]	A1 mAU	rea *s	Hei [mAU	ght]	Area %
		-						
1	6.149	vv	0.1177	1440.	97473	183.	82474	4.0386
2	6.461	VBA	0.1547	1.730)88e4	1645.	54785	48.5112
3	7.905	BV	0.1929	1.693	302e4	1324.	11755	47.4502
Total	s:			3.568	300e4	3153.	49014	

Peak #	RetTime [min]	Type	Width [min]	Ar mAU	ea *s	Hei [mAU	ght l	Area *
1							1	
1	6.292	vv	0.1225	1013.	97980	122.	90707	6.5030
2	6.713	vv	0.1659	1.319	18e4	1202.	25427	84.6039
з	8.313	vv	0.2086	1386.	54221	99.	87807	8.8930
Total	s:			1.559	24e4	1425.	03941	

Peak #	RetTime [min]	Type	Width [min]	Area mAU *s	Height [mAU]	Area %
						I
l	12.315	BV	0.2606	2.32282e4	1338.97925	49.6715
2	13.459	vv	0.3058	735.27258	35.92561	1.5723
3	14.168	vv	0.2365	558.10199	35.93771	1.1935
4	14.657	VB	0.3189	2.22421e4	1042.24854	47.5628

Peak #	RetTime [min]	Type	Width [min]	Area mAU *s	Height [mAU]	Area *
1	12.438	vv	0.2782	3.99024e4	2144.39429	90.1626
2	13.590	vv	0.3146	234.40588	11.04586	0.5297
з	14.343	vv	0.2598	231.27678	13.38842	0.5226
4	14.823	VB	0.3238	3887.95166	178.61230	8.7851
Totals :			4.42560e4	2347.44087		

Totals : 7275.03906 127.84914

9. X-Ray Analysis for the Amino Acid 16

CCDC 742621 contains the supplementary crystallographic data for the product **16**. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

