Electronic Supplementary Information (ESI)

A Powerful Synergistic Effect for Highly Efficient

 Diastereo- and Enantioselective Phase-Transfer Catalyzed Conjugate AdditionsMing-Qing Hua, Lian Wang, Han-Feng Cui, Jing Nie, Xiao-Ling Zhang, Jun-An Ma* Department of Chemistry, Tianjin University, Tianjin 30072, China
majun_an68@tju.edu.cn

Contents

1. General Information S2
2. Preparation of Catalysts S3
3. Optimizing of the Michael Addition Conditions S10
4. General Procedure for Catalyzed Michael Addition S12
5. Large-scale Synthesis and Recovery of Catalyst 6f S26
6. Synthetic Transformations of the Adducts S27
7. References S37
8. NMR Spectra and HPLC Charts for the Addition Adducts S38
9. X-ray Analysis for the Amino Acid 14 S97

1. General information:

NMR spectra were recorded on Varian Mercury Plus 500 instruments at 500 MHz (${ }^{1} \mathrm{H}$ NMR), $125 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right.$ NMR) or Bruker AvanCE ${ }^{\text {III }} 400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right.$ NMR), 100 $\mathrm{MHz}\left({ }^{13} \mathrm{C}\right.$ NMR). Chemical shifts were reported in ppm down field from internal $\mathrm{Me}_{4} \mathrm{Si}$. MS were recorded on a VG ZAB-HS spectrometer with the ESI resource. Optical rotations were determined using an Autopol IV-T. IR spectra were recorded on an AVATAR 360 FT-IR spectromer. HPLC analyses were carried out on a Hewlett Packard Model HP 1200 instrument.

Materials:

Tetrahydrofuran (THF), diethyl ether, benzene and toluene were distilled from sodium/benzophenone prior to use; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were distilled from CaH_{2}. All purchased reagents were used without further purification. 4,4'-Bipiperidine dihydrochloride and 4,4'-Ethylenedipiperidine dihydrochloride were purchased from Aldrich chemicals, Inc. 1,3-Bis(4-piperidinyl)propane was purchased from Alfa Aesar chemicals, Inc. 3,3-disubstituted (S)-binol-derived were synthesized according to the literatures. ${ }^{1}$

2. Preparation of catalysts:

6a, $n=0, \mathrm{Ar}=3,5-\left(3,4,5-\mathrm{F}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} ; \mathbf{6 b}, n=2, \mathrm{Ar}=3,5-\left(3,4,5-\mathrm{F}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ $\mathbf{6 c}, n=3, \mathrm{Ar}=3,5-\left(3,4,5-\mathrm{F}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} ; \mathbf{6 d}, n=0, \mathrm{Ar}=3,5-\left[3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right]_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ $\mathbf{6 e}, n=2, \mathrm{Ar}=3,5-\left[3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right]_{2} \mathrm{C}_{6} \mathrm{H}_{3} ; \mathbf{6 f}, n=3, \mathrm{Ar}=3,5-\left[3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right]_{2} \mathrm{C}_{6} \mathrm{H}_{3}$

A mixture of 3,3-disubstituted (S)-binol-derived dibromide ${ }^{1}$ (1.1 mmol), Bipiperidine (0.5 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}(207 \mathrm{mg}, 1.5 \mathrm{mmol})$ in acetonitrile $(10 \mathrm{~mL})$ was heated to reflux, and stirring was maintained for 48 h . The resulting mixture was poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatographyon silica gel $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1 / 50\right.$ as eluant $)$ to furnish $(S, S)-6$.

(S,S)-6a: $624.9 \mathrm{mg}, 56 \%$ yield; $[\alpha]^{20}{ }_{\mathrm{D}}-9.4$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.76-0.78(\mathrm{~m}, 2 \mathrm{H}), 1.06-1.07(\mathrm{~m}, 2 \mathrm{H}), 1.13-1.16(\mathrm{~m}, 2 \mathrm{H}), 1.24-1.26(\mathrm{~m}$, $4 \mathrm{H}), 2.77(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.20-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.74(\mathrm{~m}, 4 \mathrm{H}), 3.86(\mathrm{~d}, \mathrm{~J}=$ $12.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.45-4.48(\mathrm{~m}, 2 \mathrm{H}), 5.36-5.39(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.32(\mathrm{~m}, 8 \mathrm{H}), 7.42-7.49$ (m, 20H), 7.68-7.73 (m, 8H), $7.90(\mathrm{~s}, 4 \mathrm{H}), 8.08-8.12(\mathrm{~m}, 8 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 152.5-152.6(\mathrm{~m}), 152.3-152.4(\mathrm{~m}), 150.1-150.1(\mathrm{~m}), 149.8-149.9(\mathrm{~m})$, 140.9-141.1 (m), 140.4-140.6 (m), 139.9-140.1 (m), 139.5-139.6 (m), 138.9, 138.4, $138.3,138.1,138.0,137.8,136.3-136.8$ (m), 135.2-135.3 (m), 134.5, 133.9, 133.6, $131.5,130.9,130.7,130.5,129.7,129.0,128.7,128.5,128.2,127.9,127.9,127.6$,
$126.4,126.3,124.1,123.5,67.1,62.8,60.4,58.1,53.4,52.5,40.8,34.4,31.9,29.7$, 29.6, 29.3, 22.7, 21.0, 20.6, 18.3, 14.1; IR (KBr) v 3398, 3053, 2934, 2858, 1616, 1585, 1526, 1456, 1400, 1345, 1242, 1044, 881, 852, 751, $663 \mathrm{~cm}^{-1}$; MS (ESI) m/z $1035.63\left([\mathrm{M}-2 \mathrm{Br}]^{2+} / 2, \mathrm{C}_{126} \mathrm{H}_{74} \mathrm{~F}_{24} \mathrm{~N}_{2}{ }^{2+}\right.$ requires 1035.95).

(S,S)-6b: $564.9 \mathrm{mg}, 50 \%$ yield; $[\alpha]^{20}{ }_{\mathrm{D}}+5.5\left(c \quad 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.70-0.72(\mathrm{~m}, 2 \mathrm{H}), 0.84-0.92(\mathrm{~m}, 4 \mathrm{H}), 1.12-1.26(\mathrm{~m}, 8 \mathrm{H}), 2.59-2.65(\mathrm{~m}$, 2H), 2.93-3.09 (m, 4H), 3.49-3.59 (m, 2H), 3.77-3.90 (m, 4H), 4.90-5.01 (m, 4H), 7.14-7.17 (m, 2H), 7.22-7.24 (m, 2H), 7.33 (t, $J=6.5 \mathrm{~Hz}, 6 \mathrm{H}), 7.41-7.52(\mathrm{~m}, 20 \mathrm{H})$, $7.69-7.77(\mathrm{~m}, 10 \mathrm{H}), 8.03(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.18(\mathrm{~d}, J=$ $9.5 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3} \& \mathrm{CD}_{3} \mathrm{OD}$) $\delta 152.6-152.7(\mathrm{~m})$, 152.4-152.5 (m), 150.6-150.7 (m), 150.4-150.5 (m), 141.3-141.4 (m), 140.7-140.8 (m), 140.6-140.7 (m), 140.4-140.5 (m), 139.9, 139.5, 138.8, 138.6, 138.1, 137.8, $136.5-136.7$ (m), 135.9-136.1 (m), 134.2, 131.7, 131.2, 131.1, 131.0, 129.1, 129.0, 128.9, 128.7, 128.6, 128.5, 128.2, 128.1, 128.0, 128.0, 127.8, 127.6, 127.6, 126.0, $125.3,123.9,123.5,63.0,60.3,57.4,56.5,53.6,52.4,32.0,31.8,30.1,29.7,29.7$, 29.4, 26.5, 25.7, 22.7, 21.0, 17.6, 13.8; IR (KBr) v 3324, 3049, 2929, 2863, 1616, 1527, 1457, 1400, 1345, 1243, 1044, 852, 748, $664 \mathrm{~cm}^{-1}$; MS (ESI) m/z 1049.73 ([M $-2 \mathrm{Br}]^{2+} / 2, \mathrm{C}_{128} \mathrm{H}_{78} \mathrm{~F}_{24} \mathrm{~N}_{2}{ }^{2+}$ requires 1049.98).

(S,S)-6c: $670.7 \mathrm{mg}, 59 \%$ yield; $[\alpha]^{20}{ }_{\mathrm{D}}+3.4\left(c \quad 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.52-0.55(\mathrm{~m}, 2 \mathrm{H}), 0.67-0.69(\mathrm{~m}, 2 \mathrm{H}), 0.84-0.89(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{~s}, 4 \mathrm{H})$, $1.41(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.79(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.17(\mathrm{~s}, 4 \mathrm{H}), 3.49(\mathrm{~d}, J=13.0 \mathrm{~Hz}$, 2H), 3.84-3.89 (m, 4H), $4.96(\mathrm{t}, \mathrm{J}=14.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.25-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.49(\mathrm{~m}$, 24H), 7.54 (s, 2H), 7.62-7.70 (m, 8H), 7.77 (s, 2H), 7.83 (s, 2H), 8.06-8.10 (m, 4H), $8.15(\mathrm{~s}, 2 \mathrm{H}), 8.20(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.4-152.6(\mathrm{~m})$, 152.2-152.3 (m), 150.4-150.6 (m), 150.2-150.3 (m), 141.3-141.4 (m), 140.7-140.9 (m), 140.4-140.6 (m), 139.9-140.1 (m), 139.6, 138.9, 138.6, 138.5, 138.0, 136.4-136.5 (m), 135.7-135.8 (m), 134.1, 133.2, 131.9, 131.8, 131.8, 131.3, 131.2, $131.0,129.4,129.3,129.2,129.2,128.9,128.8,128.6,128.4,128.2,128.0,127.9$, $127.8,127.7,125.9,125.3,124.0,123.7,63.0,60.3,57.9,57.1,53.8,52.8,35.5,33.9$, $33.5,32.1,30.7,29.9,29.8,29.5,26.5,26.0,25.6,25.0,22.9,18.4,14.3$; IR (KBr) v 3395, 3052, 2930, 2858, 1616, 1585, 1532, 1456, 1400, 1345, 1243, 1041, 852, 789, $664 \mathrm{~cm}^{-1}$; MS (ESI) m/z $1056.99\left([\mathrm{M}-2 \mathrm{Br}]^{2+} / 2, \mathrm{C}_{129} \mathrm{H}_{80} \mathrm{~F}_{24} \mathrm{~N}_{2}{ }^{2+}\right.$ requires 1056.99).

(S,S)-6d: $837.5 \mathrm{mg}, 58 \%$ yield; $[\alpha]^{20}{ }_{\mathrm{D}}-18.0\left(c \quad 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}) $\delta 0.95-0.97(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~s}, 8 \mathrm{H}), 2.30-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 4 \mathrm{H}), 3.24(\mathrm{~d}, \mathrm{~J}$ $=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.90-4.13(\mathrm{~m}, 4 \mathrm{H}), 4.55-4.57(\mathrm{~m}, 2 \mathrm{H}), 5.49-5.49(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~s}$, 2H), 7.49-7.53 (m, 10H), 7.57-7.59 (m, 3H), 7.70-7.73 (m, 7H), 7.77-7.79 (m, 6H), $7.88-7.93(\mathrm{~m}, 6 \mathrm{H}), 8.10-8.17(\mathrm{~m}, 10 \mathrm{H}), 8.20-8.25(\mathrm{~m}, 8 \mathrm{H}), 8.43(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.6,142.6,142.5,141.4,141.4,141.2,141.0,140.3,140.1$, $139.8,139.2,138.7$, 138.1, 134.1, 133.9, 132.5, 132.3, 132.2, 132.1, 132.0, 131.9, $131.8,131.7,131.7,131.6,131.5,131.3,131.1,131.0,130.8,130.7,130.0$, 129.5-125.7 (m), 129.2, 129.1-129.2 (m), 129.0, 128.9, 128.8, 128.7, 128.5, 128.4, 128.2, 128.1, 127.9, 127.8, 127.7, 127.5, 127.0, 126.7, 125.5, 124.8, 124.6, 124.5, $124.3,123.9,122.6,122.4,122.4,121.6,121.5,121.1,120.5,120.2,60.6,58.2,55.3$, $53.6,33.6,32.2,30.5,29.9,29.9,29.6,24.7,23.0,22.9,21.6,18.4,14.3$; IR (KBr) v 3349, 3067, 2926, 2863, 1618, 1588, 1464, 1368, 1279, 1178, 1136, 899, 844, 707, $683 \mathrm{~cm}^{-1}$; MS (ESI) m/z $1363.66\left([\mathrm{M}-2 \mathrm{Br}]^{2+} / 2, \mathrm{C}_{142} \mathrm{H}_{82} \mathrm{~F}_{48} \mathrm{~N}_{2}{ }^{2+}\right.$ requires 1364.05).

$(S, S)-6 e: 903.9 \mathrm{mg}, 62 \%$ yield; $[\alpha]^{20}{ }_{\mathrm{D}}-2.1\left(c \quad 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.62(\mathrm{~s}, 4 \mathrm{H}), 0.97-0.99(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 8 \mathrm{H}), 2.73(\mathrm{~d}, J=11.5$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.14 ($\mathrm{s}, 4 \mathrm{H}$), 3.30-3.36 (m, 2H), $3.60(\mathrm{~d}, ~ J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~d}, J=13.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.67(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.01(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.54(\mathrm{~m}, 10 \mathrm{H})$, $7.74-7.79$ (m, 10H), 7.85 (d, $J=14.5 \mathrm{~Hz}, 4 \mathrm{H}$), 7.91-7.94 (m, 8H), 8.02 (s, 4H), 8.08 $(\mathrm{d}, J=5.5 \mathrm{~Hz}, 8 \mathrm{H}), 8.14(\mathrm{~s}, 6 \mathrm{H}), 8.20-8.23(\mathrm{~m}, 4 \mathrm{H}), 8.36(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3} \& \mathrm{CD}_{3} \mathrm{OD}\right) \delta 146.5,146.4,145.9,145.7,144.7,144.7,144.6,143.1$, $143.0,142.0,142.0,138.2,138.1,137.2,137.1,136.9,136.8,136.7,136.6,136.5$, $136.4,136.3,136.2,136.1,135.9,135.9,135.6-135.8$ (m), 135.3-135.4 (m), 135.2, 135.1, 133.5-133.7 (m), 133.0-133.1 (m), 132.9, 132.4, 132.2, 131.9, 131.7, 131.6, $131.4,131.1,130.6,130.5,130.4,130.0,128.5,128.4,128.3 ., 128.2,127.4,127.3$, 126.3-126.4 (m), 126.3, 126.2, 126.1, 126.0, 125.5-125.6 (m), 124.1, 124.0. 123.9. 123.9. 72.2, 71.7, 66.9, 64.1, 63.8, 59.8, 56.3, 36.0, 34.6, 33.7, 33.4, 31.4, 30.2, 30.2, 29.7, 26.7, 22.6, 18.8, 18.0; IR (KBr) v 3349, 3047, 2929, 2858, 1618, 1588, 1464, 1368, 1279, 1170, 1136, 882, 844, 707, $683 \mathrm{~cm}^{-1}$; MS (ESI) m/z 1378.07 ([M $-2 \mathrm{Br}]^{2+} / 2, \mathrm{C}_{144} \mathrm{H}_{86} \mathrm{~F}_{48} \mathrm{~N}_{2}{ }^{2+}$ requires 1378.08).

(S,S)-6f: $937.6 \mathrm{mg}, 64 \%$ yield; $[\alpha]^{20}{ }_{\mathrm{D}}+4.8\left(c \quad 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.47-0.49(\mathrm{~m}, 2 \mathrm{H}), 0.66-0.68(\mathrm{~m}, 2 \mathrm{H}), 0.78-0.80(\mathrm{~m}, 2 \mathrm{H}), 0.84-0.94(\mathrm{~m}$, 2H), 1.14 (s, 2H), 1.26 ($\mathrm{s}, 2 \mathrm{H}$), 1.36 (s, 2H), 1.48 (d, J = $13.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.96-3.02 (m, $4 \mathrm{H}), 3.23(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{t}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.60-3.64(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{~d}$, $J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.79(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.57(\mathrm{~m}$, $8 \mathrm{H}), 7.61(\mathrm{~s}, 2 \mathrm{H}), 7.72-7.76(\mathrm{~m}, 4 \mathrm{H}), 7.86(\mathrm{t}, J=10.0 \mathrm{~Hz}, 8 \mathrm{H}), 7.95(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $6 \mathrm{H}), 7.99(\mathrm{~s}, 2 \mathrm{H}), 8.05(\mathrm{~s}, 6 \mathrm{H}), 8.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 8 \mathrm{H}), 8.21(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 8 \mathrm{H})$, $8.27(\mathrm{~s}, 2 \mathrm{H}), 8.31(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3} \& \mathrm{CD}_{3} \mathrm{OD}\right) \delta 142.4,142.0$, $141.9,141.9,141.8,141.2,141.0,140.6,140.5,139.3,139.0,138.2,138.2,134.3$, 134.2, 133.2, 130.0, 132.9, 132.7, 132.6, 132.5, 132.4-132.5 (m), 132.2-132.3 (m), 132.1, 131.9-132.0 (m), 131.7, 131.3, 131.1, 130.6, 130.2, 130.0-130.1 (m), 129.9, $129.2,129.1,129.0,129.0,128.9,128.9,128.6,128.3,128.2,128.2,128.0,127.8$ 127.7, 127.6, 126.9, 126.7, 126.6, 126.5, 126.2, 125.4, 124.6, 124.5, 124.3, 123.7, 123.4, 122.4, 122.3, 122.2-122.3 (m), 122.2, 121.7-121.8 (m), 120.2, 120.1, 120.0, $63.1,60.3,57.7,56.8,53.7,52.6,35.5,32.0,30.9,29.8,29.8,29.5,26.9,25.5,22.8$, 22.6, 20.8, 17.9, 14.1; IR (KBr) v 3339, 3057, 2934, 2893, 1623, 1598, 1460, 1368, 1279, 1176, 1132, 883, 844, 702, $684 \mathrm{~cm}^{-1}$; MS (ESI) m/z $1385.07\left([\mathrm{M}-2 \mathrm{Br}]^{2+} / 2\right.$, $\mathrm{C}_{145} \mathrm{H}_{88} \mathrm{~F}_{48} \mathrm{~N}_{2}{ }^{2+}$ requires 1385.09).

A mixture of 3,3-disubstituted (S)-binol-derived dibromide ${ }^{1}$ ($792.5 \mathrm{mg}, 0.55 \mathrm{mmol}$), piperidine ($42.6 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(103.7 \mathrm{mg}, 0.75 \mathrm{mmol})$ in acetonitrile (5 mL) was heated to reflux, and stirring was maintained for 12 h . The resulting mixture was poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatographyon silica gel $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1 / 30\right.$ as eluant $)$ to furnish (S)-8.
(S)-8: $540.5 \mathrm{mg}, 75 \%$ yield. $[\alpha]^{20}{ }_{\mathrm{D}}-0.6\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 0.87-0.95(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~d}, \mathrm{~J}=13.2$ $\mathrm{Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 2 \mathrm{H}), 5.37(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.67(\mathrm{~s}, 2 \mathrm{H}), 7.74$ ($\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 8.14-8.23(\mathrm{~m}$, 12 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.9,141.8,141.2,141.0,140.8,138.9,138.4$, 133.9, 133.1, 132.7, 132.4, 132.1, 131.7, 131.6, 131.4-131.5 (m), 130.9, 129.6, 128.8, $128.5,128.1,127.5,127.3,126.7,124.6,123.7,121.9-122.0$ (m), 121.8, 119.1, 60.3 , 58.1, 58.0, 57.8, 29.7, 20.3, 19.7; IR (KBr) v 3666, 3349, 3062, 2939, 1618, 1587, $1500,1469,1368,1280,1175,1129,1024,885,844,742,706 \mathrm{~cm}^{-1} ;$ MS (ESI) m/z $1364.52\left([\mathrm{M}-\mathrm{Br}]^{+}, \mathrm{C}_{71} \mathrm{H}_{42} \mathrm{~F}_{24} \mathrm{~N}^{+}\right.$requires 1365.06).

3. Optimizing of the Michael Addition Conditions: ${ }^{\text {a }}$

Cat-1, n = 0, R = H; Cat-2, n = 2, R = H; Cat-3, n = 3, R = H;
Cat-4, $n=0, R=C_{6} H_{5} ;$ Cat-5, $n=2, R=C_{6} H_{5} ;$ Cat-6, $n=3, R=C_{6} H_{5}$;
Cat-7, $\mathrm{n}=0, \mathrm{R}=3,4,5-\mathrm{F}_{3} \mathrm{C}_{6} \mathrm{H}_{2} ;$ Cat-8, $\mathrm{n}=2, \mathrm{R}=3,4,5-\mathrm{F}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$;
Cat-9, $\mathrm{n}=3, \mathrm{R}=3,4,5-\mathrm{F}_{3} \mathrm{C}_{6} \mathrm{H}_{2} ; 7 \mathrm{aa}, \mathrm{n}=0, \mathrm{R}=3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$;
Cat-10, $n=2, R=3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} ; 7 \mathbf{b}, \mathrm{n}=3, \mathrm{R}=3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$
$\mathbf{6 a}, n=0, \mathrm{Ar}=3,5-\left(3,4,5-\mathrm{F}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} ; \mathbf{6 b}, n=2, \mathrm{Ar}=3,5-\left(3,4,5-\mathrm{F}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$
$\mathbf{6 c}, n=3, \mathrm{Ar}=3,5-\left(3,4,5-\mathrm{F}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} ; \mathbf{6 d}, n=0, \mathrm{Ar}=3,5-\left[3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right]_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ $\mathbf{6 e}, n=2, \mathrm{Ar}=3,5-\left[3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right]_{2} \mathrm{C}_{6} \mathrm{H}_{3} ; \mathbf{6 f}, n=3, \mathrm{Ar}=3,5-\left[3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right]_{2} \mathrm{C}_{6} \mathrm{H}_{3}$

entry	Catalyst (mol \%)	temp $\left({ }^{\circ} \mathrm{C}\right)$	solvent	base	time (h)	yield (\%) ${ }^{f}$	er ${ }^{g}$	dr^{h}
1	Cat-1 (2)	10	toluene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(2 \mathrm{eq})$	36	85	56.5:43.5	97:3
2	Cat-2 (2)	10	toluene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(2 \mathrm{eq})$	36	87	56.5:43.5	97:3
3	Cat-3 (2)	10	toluene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(2 \mathrm{eq})$	36	84	54.5:45.5	97:3
4	Cat-4 (1)	10	toluene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(2 \mathrm{eq})$	48	95	66.5:33.5	97:3
5	Cat-5 (1)	10	toluene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(2 \mathrm{eq})$	48	98	72:28	95:5
6	Cat-6 (1)	10	toluene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(2 \mathrm{eq})$	48	92	61.5:38.5	97:3
7	Cat-7 (1)	10	toluene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(2 \mathrm{eq})$	48	86	65:35	95:5
8	Cat-8 (1)	10	toluene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(2 \mathrm{eq})$	48	92	72.5:27.5	96:4
9	Cat-9 (1)	10	toluene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(2 \mathrm{eq})$	48	92	75:25	96:4
10	7a (1)	10	toluene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(2 \mathrm{eq})$	48	98	74.5:25.5	98:2
11	Cat-10 (1)	10	toluene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(2 \mathrm{eq})$	48	90	74:26	98:2
12	7b (1)	10	toluene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(2 \mathrm{eq})$	48	85	72.5:27.5	97:3
13	6a (1)	10	toluene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	48	88	69:31	97:3
14	6 b (1)	10	toluene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	48	98	90:10	97:3
15	6c (1)	10	toluene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	48	98	85:15	97:3
16	6d (1)	10	toluene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	48	95	86.5:13.5	97:3
17	$6 \mathbf{e}$ (1)	10	toluene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	48	96	83.5:16.5	97:3
18	6 f (1)	10	toluene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	48	98	94:6	96:4
19	6 f (1)	10	xylene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	48	98	95:5	98:2
20	6 f (1)	10	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	48	96	70:30	96:4

21	6 f (1)	10	THF	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	48	90	79.5:20.5	96:4
22	6 f (1)	10	$\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	48	93	91:9	98:2
23	6 f (1)	10	benzene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	48	98	86:14	97:3
24	6 f (1)	10	chlorobenzene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	48	98	83:17	97:3
25	6 f (1)	10	fluorobenzene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	48	98	93:7	97:3
$26^{\text {b }}$	6 f (1)	10	toluene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	48	92	92:8	97:3
27	6 f (1)	10	anisole	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	48	96	85:15	97:3
28	6 f (1)	10	mesitylene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	48	94	85:15	97:3
29	6 f (1)	10	p-xylene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	48	93	85:15	97:3
30	6 f (1)	10	m-xylene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	48	97	81.5:18.5	96:4
31	6 f (1)	10	o-xylene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	48	95	81:19	97:3
$32^{\text {c }}$	6 f (1)	10	xylene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	48	98	92:8	97:3
$33{ }^{\text {d }}$	6 f (1)	10	xylene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	48	98	89.5:10.5	97:3
34	6 f (0.5)	10	xylene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	60	98	85:15	97:3
35^{e}	6 f (1)	10	xylene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	72	82	94:6	98:2
36	6 f (1)	10	xylene	$\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{eq})$	72	72	96.5:3.5	96:4
37	6 f (1)	10	xylene	$\mathrm{CsOH}(1 \mathrm{eq})$	40	63	50:50	86:14
38	6 f (1)	10	xylene	$\mathrm{NaOH}(1 \mathrm{eq})$	36	96	50:50	82:18
39	6 f (1)	10	xylene	$\mathrm{Na}_{2} \mathrm{CO}_{3}$ (2eq)	48	<5	1	1
40	6 f (2)	10	xylene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	36	96	95:5	97:3
41	6 f (2)	10	xylene	$\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{eq})$	72	83	96:4	95:5
42	6 f (1)	10	xylene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.2 \mathrm{eq})$	48	89	95:5	97:3
43	6 f (1)	10	xylene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.1 \mathrm{eq})$	48	69	95:5	96:4
44	6 f (1)	10	xylene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.05 \mathrm{eq})$	48	85	95:5	97:3
45	6 f (1)	0	xylene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	96	72	91:9	98:2
46	6 f (1)	25	xylene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	24	98	95.5:4.5	97:3
47	6 f (1)	30	xylene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	12	98	96.5:3.5	97:3
48	6 f (1)	35	xylene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	12	98	95:5	95:5
49	6 f (1)	40	xylene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.5 \mathrm{eq})$	12	98	92.5:7.5	93:7
50	6 f (1)	30	xylene	$\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{eq})$	12	78	96:4	97:3

${ }^{a} N$-(diphenylmethylene)glycine tert-butyl ester $\mathbf{3}(29.5 \mathrm{mg}, 0.1 \mathrm{mmol})$, chalcone $\mathbf{4 a}(21.8 \mathrm{mg}, 0.105 \mathrm{mmol})$, PTC, base, 0.5 mL solvent. ${ }^{b}$ Toluene was used without further purification. ${ }^{c}$ Xylene was distilled from $\mathrm{CaH}_{2} .{ }^{d} 0.25 \mathrm{~mL}$ xylene and 0.25 ml hexane. ${ }^{e} 1 \mathrm{~mL}$ xylene. ${ }^{f}$ Yield of isolated product after purification. ${ }^{g}$ Determined by HPLC analysis. ${ }^{h}$ Determined by NMR or HPLC.

4. General Procedure for Catalyzed Michael Addition:

N-(diphenylmethylene)glycine tert-butyl ester $3(29.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added to a mixture of substituted enones $4(0.105 \mathrm{mmol}),(S, S)-\mathbf{6 f}(2.9 \mathrm{mg}, 0.001 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(16.3 \mathrm{mg}, 0.05 \mathrm{mmol})$ in xylene $(0.5 \mathrm{~mL})$ under argon atmosphere, the resulting solution was stirred at $30^{\circ} \mathrm{C}$ for 12 h . The resulting mixture was purified by column chromatographyon silica gel $(\mathrm{AcOEt} /$ petroleum ether $=1 / 10$ as eluant) to furnish the conjugate adducts 5 .

(2R,3S)-tert-Butyl 2-(diphenylmethyleneamino)-5-oxo-3,5-diphenylpentanoate (5a): $49.4 \mathrm{mg}, 98 \%$ yield; $[\alpha]^{20}{ }_{\mathrm{D}}+81.7\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.36(\mathrm{~s}, 9 \mathrm{H}), 3.64-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.83(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.26(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.42-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.55(\mathrm{t}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 198.9,171.4,170.2,141.6,139.6,137.4,136.5,133.1,130.6,129.1,128.8$, 128.7, 128.6, 128.5, 128.4, 128.4, 128.3, 127.7, 126.8, 84.5, 71.2, 45.0, 40.3, 28.1; MS (ESI) m/z 504.14 [M + 1] ${ }^{+}$; IR (KBr) v 3060, 3021, 2976, 2930, 1728, 1687, 1622, 1597, 1493, 1447, 1367, 1286, 1148, 1002, 846, $698 \mathrm{~cm}^{-1} ; d r=97 / 3$, er $=96.5 / 3.5$, determined by HPLC analysis (Chiralpak AD-H, n-hexane/2-propanol $=95 / 5,0.5$ $\mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), $t_{\mathrm{R}}=21.8 \mathrm{~min}$ (major) and $t_{\mathrm{R}}=30.3 \mathrm{~min}$ (minor).

(2R,3S)-tert-Butyl 3-(4-bromophenyl)-2-(diphenylmethyleneamino)-5-oxo-5phenylpentanoate (5b): 57.1 mg , 98% yield; $[\alpha]^{20}{ }_{\mathrm{D}}+52.6$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.36(\mathrm{~s}, 9 \mathrm{H}), 3.60-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.81(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.18$ $(\mathrm{m}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.39(\mathrm{~m}, 7 \mathrm{H})$, 7.41-7.48 (m, 3H), 7.54-7.57 (m, 1H), 7.67-7.69 (m, 2H), 7.97-7.99 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.6,171.7,170.0,140.8,139.4,137.2,136.3,133.2$, $131.4,130.7,130.5,129.0 .128 .8,128.7,128.5,128.4,128.3,127.6,120.6,81.8,70.8$, 44.3, 39.9, 29.1; MS (ESI) m/z $584.11[\mathrm{M}+1]^{+}, 582.13[\mathrm{M}+1]^{+}$; IR (KBr) v 3058, 2974, 2931, 1730, 1686, 1621, 1596, 1488, 1447, 1368, 1285, 1149, 1074, 1010, 834, $698 \mathrm{~cm}^{-1} ; d r=95 / 5$, er $=94 / 6$, determined by HPLC analysis (Chiralpak AD-H, n-hexane $/ 2$-propanol $=95 / 5,0.6 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), $t_{\mathrm{R}}=24.0 \mathrm{~min}$ (major) and $t_{\mathrm{R}}=37.5 \mathrm{~min}$ (minor).

(2R,3S)-tert-Butyl phenylpentanoate (5c): 51.2 mg , 98% yield; $[\alpha]^{20}{ }_{\mathrm{D}}+74.6$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.34(\mathrm{~s}, 9 \mathrm{H}), 3.59-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.75(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.22$ (m, 2H), 6.78 (d, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.85-6.89(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.39$ $(\mathrm{m}, 5 \mathrm{H}), 7.41-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.96-7.98(\mathrm{~m}$, 2 H) ${ }^{13}{ }^{1} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.8,171.6,170.1,162.8,160.8,139.4,137.3$, $137.3,137.2,136.4,133.2,130.7,130.3,130.2,129.1,128.8,128.7,128.5,128.4$, 128.3, 127.7, 115.7, 115.2, 81.7, 71.1, 44.2, 40.3, 28.1; MS (ESI) m/z 520.17 [M -H^{-}; IR (KBr) v 3062, 3010, 2975, 2928, 1733, 1674, 1621, 1596, 1510, 1446, 1365,

1288, 1220, 1157, 1011, 840, $692 \mathrm{~cm}^{-1} ; d r=96 / 4$, er $=95 / 5$, determined by HPLC analysis (Chiralpak OD-H, n-hexane $/ 2$-propanol $=95 / 5,0.8 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), $t_{\mathrm{R}}=6.5 \mathrm{~min}$ (major) and $t_{\mathrm{R}}=14.2 \mathrm{~min}$ (minor).

(2R,3S)-tert-Butyl 2-(diphenylmethyleneamino)-5-oxo-5-phenyl-3-p-tolylpentanoate (5d): $50.8 \mathrm{mg}, 98 \%$ yield; $[\alpha]^{20}{ }_{\mathrm{D}}+73.4$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.36(\mathrm{~s}, 9 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.80(\mathrm{~m}, 1 \mathrm{H})$, 4.17-4.21 (m, 2H), 6.77 (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.78$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.07$ (d, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.33-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.42-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 8.01(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 199.0, 171.3, 170.3, $139.7,138.5,137.4,136.6,136.2,133.0,130.6,129.1,129.0,128.7,128.6,128.6$, 128.4, 128.3, 127.8, 81.4, 71.3, 44.7, 40.3, 28.1, 21.3; MS (ESI) m/z $518.23[\mathrm{M}+1]^{+}$; IR (KBr) v 3062, 3027, 2970, 2924, 1728, 1687, 1629, 1598, 1511, 1447, 1367, 1289, $1149,1003,850,695 \mathrm{~cm}^{-1} ; d r=95 / 5$, er $=94 / 6$, determined by HPLC analysis (Chiralpak OD-H, n-hexane/2-propanol $=98 / 2,0.8 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), t_{R} $=8.5 \mathrm{~min}$ (major) and $t_{\mathrm{R}}=24.8 \mathrm{~min}($ minor $)$.

(2R,3S)-tert-Butyl 2-(diphenylmethyleneamino)-3-(4-methoxyphenyl)-5-oxo-5phenylpentanoate (5e): 49.1 mg , 92% yield; $[\alpha]^{20}{ }_{\mathrm{D}}+80.4$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.34(\mathrm{~s}, 9 \mathrm{H}), 3.57-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, 4.14-4.16 (m, 2H), 6.72 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.78$ (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.33-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.40-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.5$
$\mathrm{Hz}, 2 \mathrm{H}), 7.97(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.1,171.3,170.3$, $158.4,139.6,137.4,136.5,133.6,133.0,130.6,129.7,129.1,128.7$, 128.6, 128.5, 128.4, 128.2, 127.8, 113.7, 81.5, 71.3, 55.4, 44.3, 40.6, 28.1; MS (ESI) m/z 534.19 $[\mathrm{M}+1]^{+}$; IR (KBr) v 3058, 3027, 2974, 2931, 1726, 1687, 1612, 1597, 1513, 1447, 1367, 1246, 1149, 1031, 830, $694 \mathrm{~cm}^{-1} ; d r=97 / 3$, er $=96 / 4$, determined by HPLC analysis (Chiralpak OD-H, n-hexane $/ 2$-propanol $=95 / 5,0.8 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), $t_{\mathrm{R}}=8.7 \mathrm{~min}$ (major) and $t_{\mathrm{R}}=24.4 \mathrm{~min}$ (minor).

(2R,3S)-tert-Butyl 2-(diphenylmethyleneamino)-5-oxo-3-(3-phenoxyphenyl)-5phenylpentanoate (5f): $58.4 \mathrm{mg}, 98 \%$ yield; $[\alpha]^{20}{ }_{\mathrm{D}}+70.9$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.36(\mathrm{~s}, 9 \mathrm{H}), 3.55-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.78(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.18$ (m, 2H), $6.79(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 6.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 3 \mathrm{H}), 6.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.02(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.44-7.47(\mathrm{~m}, 2 \mathrm{H})$, $7.54-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.8,171.5,170.1,157.3,157.1,143.7,139.5,137.4,136.5,133.1$, 130.6, 129.8, 129.6, 129.1 , 127.7, 128.6, 128.5, 128.4, 128.2, 127.7, 123.8, 123.1, 119.2, 118.8, 117.3, 81.6, 70.9, 44.8, 40.0, 28.1; MS (ESI) m/z $596.25[\mathrm{M}+1]^{+}$; IR (KBr) v 3052, 3027, 2976, 2929, 1730, 1686, 1595, 1581, 1487, 1446, 1367, 1247, $1148,1073,1002,908,846,755,692 \mathrm{~cm}^{-1} ; d r=95 / 5$, er $=92.5 / 7.5$, determined by HPLC analysis (Chiralpak OD-H, n-hexane $/ 2$-propanol $=95 / 5,1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), $t_{\mathrm{R}}=6.5 \mathrm{~min}$ (major) and $t_{\mathrm{R}}=12.0 \mathrm{~min}$ (minor).

(2R,3S)-tert-Butyl 3-(4-chlorophenyl)-2-(diphenylmethyleneamino)-5-oxo-5phenylpentanoate (5g): 50.6 mg , 94% yield; $[\alpha]^{20}{ }_{\mathrm{D}}+58.8\left(c \quad 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.36(\mathrm{~s}, 9 \mathrm{H}), 3.61-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.80(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.20$ (m, 2H), 6.77 (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.16$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.34-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.41-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.54-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.70(\mathrm{~m}, 2 \mathrm{H})$, 7.97-7.99 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.6,171.7,170.0,140.2,139.4$, $137.2,136.4,133.2,132.5,130.7,130.1,129.0,128.8,128.7,128.6,128.5,128.4$, 128.3, 127.7, 81.8, 70.9, 44.3, 40.0, 28.1; MS (ESI) m/z 538.18 [M] ${ }^{+}$; IR (KBr) v 3050, 3001, 2974, 2928, 1733, 1674, 1621, 1596, 1494, 1446, 1282, 1144, 1089, 1010, 836, $692 \mathrm{~cm}^{-1} ; d r=95 / 5, e r=92 / 8$, determined by HPLC analysis (Chiralpak OD-H, n-hexane $/ 2$-propanol $=95 / 5,0.8 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), $t_{\mathrm{R}}=6.6 \mathrm{~min}$ (major) and $t_{\mathrm{R}}=12.3 \mathrm{~min}$ (minor).

(2R,3S)-tert-Butyl 2-(diphenylmethyleneamino)-3-(naphthalen-2-yl)-5-oxo-5phenylpentanoate (5h): 54.3 mg , 98% yield; $[\alpha]^{20}{ }_{\mathrm{D}}+62.1$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.36(\mathrm{~s}, 9 \mathrm{H}), 3.76-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.94-4.00(\mathrm{~m}, 1 \mathrm{H}), 4.35-4.46$ $(\mathrm{m}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 2 \mathrm{H}), 7.24-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.43-7.48(\mathrm{~m}, 3 \mathrm{H})$, 7.54-7.57 (m, 1H), 7.66-7.71 (m, 3H), 7.75-7.76 (m, 3H), 8.03-8.04 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.8,171.6,170.3,139.6,139.2,137.4,136.5,133.6$, 133.1, 132.6, 130.6, 129.1, 128.8, 128.6, 128.5, 128.4, 128.3, 128.0, 127.9, 127.7, 127.5, 127.1, 126.0, 125.6, 81.6, 71.1, 45.1, 40.3, 28.1; MS (ESI) m/z $554.21[\mathrm{M}+$ $1]^{+}$; IR (KBr) v 3059, 3028, 2971, 2928, 1734, 1673, 1619, 1596, 1511, 1447, 1365,

1291, 1147, 1013, $826,701 \mathrm{~cm}^{-1} ; d r=93 / 7$, er $=93 / 7$, determined by HPLC analysis (Chiralpak OD-H, n-hexane/2-propanol $=95 / 5,0.8 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), t_{R} $=8.3 \mathrm{~min}$ (major) and $t_{\mathrm{R}}=17.1 \mathrm{~min}($ minor $)$.

(2R,3S)-tert-Butyl 3-(2-chlorophenyl)-2-(diphenylmethyleneamino)-5-oxo-5phenylpentanoate (5i): 49.6 mg , 92% yield; $[\alpha]^{20}{ }_{\mathrm{D}}+88.9$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.41(\mathrm{~s}, 9 \mathrm{H}), 3.70-3.74(\mathrm{~m}, 1 \mathrm{H}), 4.00-4.06(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.74-4.76(\mathrm{~m}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.19$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.47(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.5,171.8,170.2,139.5,138.8,137.2,136.3,134.7,133.1,130.6$, $129.8,129.3,129.0,128.7,128.6,128.4,128.4,128.2,127.8,127.5,126.5,81.7,68.1$, 40.9, 38.9, 28.2; MS (ESI) m/z 538.17 [M] ${ }^{+}$; IR (KBr) v 3059, 3025, 2977, 2930, $1728,1687,1625,1596,1475,1446,1368,1291,1149,1073,1036,1002,846,752$, $693 \mathrm{~cm}^{-1} ; d r=99 / 1$, er $=95.5 / 4.5$, determined by HPLC analysis (Chiralpak OD-H, n-hexane $/ 2$-propanol $=95 / 5,0.8 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm} \operatorname{UV}$ detector), $t_{\mathrm{R}}=7.1 \mathrm{~min}$ (major) and $t_{\mathrm{R}}=9.5 \mathrm{~min}$ (minor).

(2R,3S)-tert-Butyl 3-(2-bromophenyl)-2-(diphenylmethyleneamino)-5-oxo-5phenylpentanoate (5j): $56.0 \mathrm{mg}, 96 \%$ yield; $[\alpha]^{20}{ }_{\mathrm{D}}+93.4$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.42(\mathrm{~s}, 9 \mathrm{H}), 3.69-3.73(\mathrm{~m}, 1 \mathrm{H}), 4.04-4.09(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~d}, \mathrm{~J}=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.70-4.73(\mathrm{~m}, 1 \mathrm{H}), 6.52(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-7.02(\mathrm{~m}, 1 \mathrm{H})$,
$7.08-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.42(\mathrm{~m}, 4 \mathrm{H})$, $7.47(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.5,171.9,170.1,140.3,139.4,137.2$, 136.3, 133.2, 133.1, 130.6, 129.4, 129.0, 128.7, 128.6, 128.5, 128.4, 128.2, 128.1, 127.4, 127.1, 125.7, 81.7, 68.0, 43.3, 38.9, 28.2; MS (ESI) m/z $582.04[\mathrm{M}+1]^{+}$, $584.06[\mathrm{M}+1]^{+}$; IR (KBr) v 3060, 3021, 2976, 2928, 1728, 1687, 1624, 1597, 1470, 1446, 1368, 1291, 1151, 1022, 1003, 846, 752, $696 \mathrm{~cm}^{-1} ; d r=98 / 2$, er $=95 / 5$, determined by HPLC analysis (Chiralpak OD-H, n-hexane/2-propanol $=95 / 5,0.8$ $\mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), $t_{\mathrm{R}}=7.3 \mathrm{~min}$ (major) and $t_{\mathrm{R}}=8.8 \mathrm{~min}$ (minor).

(2R,3S)-tert-Butyl 3-(benzo[d][1,3]dioxol-5-yl)-2-(diphenylmethyleneamino)-5-oxo-5-phenylpentanoate (5k): 51.5 mg , 94% yield; $[\alpha]^{20}{ }_{\mathrm{D}}+74.3\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.36$ (s, 9H), 3.55-3.59 (m, 1H), 3.64-3.69 (m, 1H), 4.13-4.18 (m, 2H), $5.85(\mathrm{~s}, 2 \mathrm{H}), 6.64-6.67(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.35-7.41 (m, 5H), 7.42-7.47 (m, 3H), $7.55(\mathrm{t}, ~ J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.72(\mathrm{~m}, 2 \mathrm{H})$, 7.98-8.00 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.9,171.4,170.2,147.5,146.3$, 139.6, 137.3, 136.5, 135.4, 133.1, 130.6, 129.1, 128.8, 128.7, 128.5, 128.4, 128.3, 127.8, 121.9, 109.2, 108.2, 100.9, 81.5, 71.3, 44.8, 40.6, 28.1; MS (ESI) m/z 548.16 $[\mathrm{M}+1]^{+}$; IR (KBr) v 3067, 3023, 2977, 2927, 1728, 1687, 1621, 1597, 1488, 1446, $1368,1248,1149,1039,935,695 \mathrm{~cm}^{-1} ; d r=95 / 5$, er $=96 / 4$, determined by HPLC analysis (Chiralpak OD-H, n-hexane/2-propanol $=95 / 5,0.8 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), $t_{\mathrm{R}}=9.8 \mathrm{~min}$ (major) and $t_{\mathrm{R}}=20.5 \mathrm{~min}$ (minor).

(2R,3S)-tert-Butyl 3-(2,4-dichlorophenyl)-2-(diphenylmethyleneamino)-5-oxo-5phenylpentanoate (51): 56.1 mg , 98% yield; $[\alpha]^{20}{ }_{\mathrm{D}}+68.9$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.42(\mathrm{~s}, 9 \mathrm{H}), 3.70-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.99-4.04(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{~d}, \mathrm{~J}=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.66-4.69(\mathrm{~m}, 1 \mathrm{H}), 6.64(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-7.14(\mathrm{~m}, 2 \mathrm{H})$, $7.30-7.39(\mathrm{~m}, 6 \mathrm{H}), 7.40-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.3,172.1,170.0,139.3,137.6,137.0,136.1,135.3,133.3,132.8,130.7,130.1$, 129.5, 129.0, 128.8, 128.7, 128.5, 128.4, 128.3, 127.4, 126.7, 81.9, 67.8, 40.4, 38.7, 28.2; MS (ESI) m/z 572.07 [M] ${ }^{+}$; IR (KBr) v 3073, 3006, 2974, 2924, 1732, 1673, $1621,1595,1476,1445,1366,1285,1144,1009,831,691 \mathrm{~cm}^{-1} ; d r=98 / 2$, er $=95 / 5$, determined by HPLC analysis (Chiralpak OD-H, n-hexane/2-propanol $=95 / 5,0.8$ $\mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), $t_{\mathrm{R}}=6.0 \mathrm{~min}$ (major) and $t_{\mathrm{R}}=7.5 \mathrm{~min}$ (minor).

(2R,3R)-tert-Butyl 2-(diphenylmethyleneamino)-3-(furan-2-yl)-5-oxo-5-phenylpentanoate (5m): 48.4 mg , 98% yield; $[\alpha]^{20}{ }_{\mathrm{D}}+53.4$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.42(\mathrm{~s}, 9 \mathrm{H}), 3.58-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.85(\mathrm{~m}, 1 \mathrm{H}), 4.35-4.38(\mathrm{~m}$, 2H), 6.02 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.20-6.21(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.22$ (m, 1H), 7.35 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.43$ (m, 4H), $7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.05(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.5,171.7,170.0,155.1,141.2,139.8,137.2,136.5,133.2,130.6$, $129.1,128.8,128.8,128.5,128.4,128.2,127.9,110.4,106.7,81.7,68.9,38.6,38.5$, 28.2; MS (ESI) m/z 494.18 [M + 1] ${ }^{+}$; IR (KBr) v 3060, 3019, 2977, 2931, 1730, 1689,
$1625,1597,1504,1447,1368,1258,1158,1013,847,701 \mathrm{~cm}^{-1} ; d r=97 / 3$, er $=95 / 5$, determined by HPLC analysis (Chiralpak OD-H, n-hexane $/ 2$-propanol $=95 / 5,0.8$ $\mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), $t_{\mathrm{R}}=7.2 \mathrm{~min}($ major $)$ and $t_{\mathrm{R}}=25.8 \mathrm{~min}($ minor $)$.

(2R,3S)-tert-Butyl 2-(diphenylmethyleneamino)-5-oxo-3-phenyl-5-(pyridin-2-yl) pentanoate (5n): $46.4 \mathrm{mg}, 92 \%$ yield; $[\alpha]^{20}{ }_{\mathrm{D}}+40.5$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.29(\mathrm{~s}, 9 \mathrm{H}), 3.76-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.99(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{~d}, \mathrm{~J}=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.29-4.33$ (m, 1H), 6.85 (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.10-7.13 (m, 1H), 7.17 (t, $J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.39(\mathrm{~m}, 5 \mathrm{H})$, $7.64-7.70(\mathrm{~m}, 3 \mathrm{H}) 7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.5,171.0,170.2,153.7,148.9,142.0,139.6,136.8,136.6,130.4$, 129.1, 129.0, 128.5, 128.4, 128.2, 128.1, 127.9, 127.0, 126.6, 122.0, 81.2, 71.4, 45.1, 39.7, 28.0; MS (ESI) m/z $505.15[\mathrm{M}+1]^{+}$; IR (KBr) v 3062, 3027, 2975, 2919, 1728, $1698,1619,1582,1490,1445,1367,1284,1147,994,850,697 \mathrm{~cm}^{-1} ; d r=94 / 6, e r=$ 94/6, determined by HPLC analysis (Chiralpak OD-H, n-hexane/2-propanol $=90 / 10$, $0.8 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), $t_{\mathrm{R}}=7.3 \mathrm{~min}$ (major) and $t_{\mathrm{R}}=22.1 \mathrm{~min}$ (minor).

(2R,3R)-tert-Butyl
2-(diphenylmethyleneamino)-3,5-di(furan-2-yl)-5oxopentanoate (5o): 44.0 mg , 91% yield; $[\alpha]^{20}{ }_{\mathrm{D}}+64.1$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.40(\mathrm{~s}, 9 \mathrm{H}), 3.37-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.65(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.34(\mathrm{~m}$, 2H), 6.03 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.18-6.19$ (m, 1H), 6.50-6.51 (m, 1H), 6.93 (d, $J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.19-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$,
7.38-7.40(m, 4H), $7.56(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.46(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $187.5,171.7,169.9,154.8,152.9,146.5,141.3,139.7,136.5,130.6,129.1,129.1$, $128.8,128.5,128.2,128.1,127.9,127.9,117.5,112.4,110.4,106.9,81.7,68.8,38.6$, 38.5, 28.1; MS (ESI) m/z 484.09 [M + 1] ${ }^{+}$; IR (KBr) v 3119, 3052, 2977, 2931, 1728, $1679,1624,1569,1504,1468,1368,1290,1149,1078,1011,908,845,734,696,597$ $\mathrm{cm}^{-1} ; d r=98 / 2$, er $=94.5 / 5.5$, determined by HPLC analysis (Chiralpak OD-H, n-hexane $/ 2$-propanol $=90 / 10,0.8 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), $t_{\mathrm{R}}=8.7 \mathrm{~min}$ (major) and $t_{\mathrm{R}}=25.6 \mathrm{~min}$ (minor).

(2R,3S)-tert-Butyl 2-(diphenylmethyleneamino)-5-oxo-3-phenyl-5-(thiophen-2-yl) pentanoate (5p): $50.1 \mathrm{mg}, 98 \%$ yield; $[\alpha]^{20}{ }_{\mathrm{D}}+88.0\left(c \quad 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.35(\mathrm{~s}, 9 \mathrm{H}), 3.54-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.73(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.24(\mathrm{~m}$, $2 \mathrm{H}), 6.74(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.19(\mathrm{~m}, 6 \mathrm{H}), 7.32-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.42(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.7,171.4,170.2,144.8,141.3,139.6,136.5,133.6$, 132.1, 130.6, 129.1, 128.8, 128.6, 128.5, 128.4, 128.3, 128.2, 127.7, 126.9, 81.6, 71.1, 45.3, 41.0, 28.1; MS (ESI) m/z $510.12[\mathrm{M}+1]^{+}$; IR (KBr) v 3062, 3026, 2977, 2931, $1729,1664,1623,1587,1515,1413,1368,1289,1147,1024,839,696 \mathrm{~cm}^{-1} ; d r=$ $96 / 4$, er $=95 / 5$, determined by HPLC analysis (Chiralpak OD-H, n-hexane/ 2-propanol $=95 / 5,0.8 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), $t_{\mathrm{R}}=8.8 \mathrm{~min}$ (major) and $t_{\mathrm{R}}=$ 23.3 min (minor).

(2R,3S)-tert-Butyl 2-(diphenylmethyleneamino)-5-(furan-2-yl)-5-oxo-3-phenylpentanoate (5q): 47.0 mg , 95% yield; $[\alpha]^{20}{ }_{\mathrm{D}}+94.2$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.33(\mathrm{~s}, 9 \mathrm{H}), 3.42-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.63(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.24(\mathrm{~m}$, $2 \mathrm{H}), 6.46-6.47(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.18(\mathrm{~m}, 6 \mathrm{H}), 7.32-7.42(\mathrm{~m}$, $6 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.0$, $171.4,170.1,153.1,146.3,141.3,139.6,136.5,130.6,129.1,128.8,128.6,128.4$, $128.3,128.2,127.8,126.8,117.2,112.3,81.5,71.1,44.9,40.3,28.1 ;$ MS (ESI) m/z $494.19[\mathrm{M}+1]^{+}$; IR (KBr) v 3062, 3023, 2976, 2931, 1730, 1678, 1622, 1568, 1468, 1392, 1368, 1286, 1149, 1028, 846, 766, $698 \mathrm{~cm}^{-1} ; d r=98 / 2$, er $=93.5 / 6.5$, determined by HPLC analysis (Chiralpak OD-H, n-hexane/2-propanol $=95 / 5,1.0$ $\mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm} \mathrm{UV}$ detector), $t_{\mathrm{R}}=8.3 \mathrm{~min}($ major $)$ and $t_{\mathrm{R}}=21.6 \mathrm{~min}($ minor $)$.

(2R,3S)-tert-Butyl pentanoate (5r): 50.9 mg , 98% yield; $[\alpha]^{20}{ }_{\mathrm{D}}+66.2$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.34(\mathrm{~s}, 9 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.78(\mathrm{~m}, 1 \mathrm{H})$, 4.18-4.22 (m, 2H), $6.73(\mathrm{~d}, ~ J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 2H), 7.31-7.39 (m, 5H), $7.42(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.5, 171.3, 170.3, 143.7, 141.6, 139.6, $136.5,134.9,130.5,129.4,129.1,128.8,128.6,128.5,128.4,128.3,128.2,127.7$, 126.7, 81.5, 71.2, 45.1, 40.1, 28.1, 21.9; MS (ESI) m/z 518.16 [M + 1] ${ }^{+}$; IR (KBr) v 3058, 3023, 2976, 2929, 1730, 1682, 1607, 1574, 1493, 1446, 1367, 1288, 1148, 1007, $847,697 \mathrm{~cm}^{-1} ; d r=94 / 6, e r=94 / 6$, determined by HPLC analysis (Chiralpak OD-H, n-hexane $/ 2$-propanol $=95 / 5,1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), $t_{\mathrm{R}}=4.9 \mathrm{~min}$ (major) and $t_{\mathrm{R}}=13.1 \mathrm{~min}$ (minor).

(2R,3S)-tert-Butyl 2-(diphenylmethyleneamino)-5-(4-methoxyphenyl)-5-oxo-3phenylpentanoate (5s): 52.1 mg , 98% yield; $[\alpha]^{20}{ }_{\mathrm{D}}+56.5$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.34(\mathrm{~s}, 9 \mathrm{H}), 3.55-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, 4.19-4.23 (m, 2H), 6.73 (d, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.17$ (m, $5 \mathrm{H}), 7.31-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.42(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.4,171.3,170.3,163.5,141.6$, $139.6,136.5,130.7,130.6,130.5,129.1,128.8,128.6,128.4,128.3,128.2,127.7$, 126.7, 113.8, 81.5, 71.2, 55.6, 45.2, 39.9, 28.1; MS (ESI) m/z $534.22[\mathrm{M}+1]^{+}$; IR (KBr) v 3067, 3032, 2976, 2929, 1727, 1678, 1599, 1574, 1511, 1446, 1368, 1255, $1149,1029,841,696 \mathrm{~cm}^{-1} ; d r=97 / 3$, er $=93.5 / 6.5$, determined by HPLC analysis (Chiralpak OD-H, n-hexane/2-propanol $=95 / 5,0.8 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), t_{R} $=12.2 \mathrm{~min}$ (major) and $t_{\mathrm{R}}=47.1 \mathrm{~min}$ (minor).

(2R,3S)-tert-Butyl
5-(benzo[d][1,3]dioxol-5-yl)-2-(diphenylmethyleneamino)-5-oxo-3-phenylpentanoate (5t): 53.2 mg , 97% yield; $[\alpha]^{20}{ }_{\mathrm{D}}+65.0\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) $\delta 1.34$ (s, 9H), 3.54-3.57 (m, 1H), 3.66-3.71 (m, 1H), $4.20-4.22(\mathrm{~m}, 2 \mathrm{H}), 5.99(\mathrm{~s}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.13-7.18 (m, 5H), 7.31-7.37 (m, 5H), 7.40-7.44 (m, 2H), 7.64-7.66 (m, 1H), 7.71 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$) ${ }^{13}{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.9,171.4,170.2,151.7,148.3$, 141.6, 139.6, 136.5, 132.3, 130.6, 129.1, 128.8, 128.6, 128.5, 128.4, 128.3, 127.7, 126.8, 124.6, 108.3, 108.0, 102.0, 81.5, 71.2, 45.3, 40.0, 28.1; MS (ESI) m/z 548.14 $[\mathrm{M}+1]^{+}$; IR (KBr) v 3060, 3023, 2976, 2928, 1728, 1678, 1614, 1594, 1487, 1443,

1367, 1254, 1148, 1037, 846, $697 \mathrm{~cm}^{-1} ; d r=98 / 2$, er $=96.5 / 3.5$, determined by HPLC analysis (Chiralpak OD-H, n-hexane/2-propanol $=95 / 5,0.8 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), $t_{\mathrm{R}}=13.2 \mathrm{~min}$ (major) and $t_{\mathrm{R}}=33.1 \mathrm{~min}$ (minor).

(2R,3S)-tert-Butyl 2-(diphenylmethyleneamino)-5-oxo-3,7-diphenylhept-6-enoate (5u): $52.2 \mathrm{mg}, 98 \%$ yield; $[\alpha]^{20}{ }_{\mathrm{D}}+44.8\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.37(\mathrm{~s}, 9 \mathrm{H}), 3.31-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.49(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.22(\mathrm{~m}, 2 \mathrm{H}), 6.77-6.81$ (m, 2H), 7.17-7.24 (m, 5H), 7.33-7.45 (m, 10H), 7.54-7.61 (m, 3H), 7.74 (d, $J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.7, 171.2, 170.0, 142.5, 141.1, 139.4, $136.3,134.7,130.4,130.3,128.9,128.8,128.7,128.6,128.4,128.3,128.2,128.2$, 128.1, 127.6, 126.7, 126.2, 81.3, 71.0, 45.0, 42.7, 27.9; MS (ESI) m/z $530.64[\mathrm{M}+$ $1]^{+} ; \operatorname{IR}(\mathrm{KBr})$ v 3059, 3029, 2976, 2929, 1728, 1685, 1611, 1489, 1449, 1362, 1327, 1285, 1153, 1079, 977, 786, $697 \mathrm{~cm}^{-1} ; d r=97 / 3$, er $=91 / 9$, determined by HPLC analysis (Chiralpak AD-H, n-hexane/2-propanol $=90 / 10,1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), $t_{\mathrm{R}}=11.8 \mathrm{~min}$ (major) and $t_{\mathrm{R}}=21.8 \mathrm{~min}$ (minor).

(2R,3S)-tert-Butyl 2-(diphenylmethyleneamino)-5-oxo-3-phenylhexanoate (5v): $37.1 \mathrm{mg}, 84 \%$ yield; $[\alpha]^{20}{ }_{\mathrm{D}}+96.2$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.33$ $(\mathrm{s}, 9 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 3.05-3.09(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.18(\mathrm{~m}, 1 \mathrm{H}), 4.00-4.04(\mathrm{~m}, 1 \mathrm{H}), 4.09$ (d, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.30-7.38(\mathrm{~m}, 5 \mathrm{H})$, 7.39-7.42 (m, 1H), 7.67-7.69 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.6,171.3$, $170.2,141.4,139.5,136.4,130.6,129.0,128.7,128.6,128.5,128.4,128.3,127.7$,
126.9, 81.5, 71.1, 45.5, 44.8, 30.6, 28.1; MS (ESI) m/z $442.10[\mathrm{M}+1]^{+}$; IR (KBr) v 3060, 3028, 2977, 2931, 1724, 1659, 1623, 1597, 1575, 1492, 1446, 1392, 1367, 1250, $1149,1083,1028,846,765,699 \mathrm{~cm}^{-1} ; d r=93 / 7$, er $=90.5 / 9.5$, determined by HPLC analysis (Chiralpak AD-H, n-hexane $/ 2$-propanol $=95 / 5,1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), $t_{\mathrm{R}}=6.7 \mathrm{~min}$ (major) and $t_{\mathrm{R}}=8.3 \mathrm{~min}$ (minor).

(2R,3S)-tert-Butyl 2-(diphenylmethyleneamino)-6,6-dimethyl-5-oxo-3-phenylheptanoate (5w): $28.0 \mathrm{mg}, 57 \%$ yield; $[\alpha]^{20}{ }_{\mathrm{D}}+108.7$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 3.00-3.05(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.38(\mathrm{~m}, 1 \mathrm{H})$, 4.02-4.05 (m, 1H), $4.11(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.19(\mathrm{~m}$, 5H), 7.29-7.37 (m, 5H), 7.40-7.42 (m, 1H), 7.67-7.69 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 213.9,171.1,170.3,142.0,139.6,136.6,130.5,129.0,128.8,128.5,128.4$, $128.3,128.2,127.7,126.6,81.3,70.9,44.3,44.3,38.2,28.1,26.5$; MS (ESI) m/z $484.17[\mathrm{M}+1]^{+}$; $\mathrm{IR}(\mathrm{KBr}) \vee 3057,3032,2970,2924,1727,1708,1613,1480,1444$, 1367, 1285, 1148, 1070, 850, 779, $699 \mathrm{~cm}^{-1}, d r=99 / 1$, er $=91 / 9$, determined by HPLC analysis (Chiralpak AD-H, n-hexane/2-propanol $=95 / 5,0.5 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), $t_{\mathrm{R}}=12.4 \mathrm{~min}$ (major) and $t_{\mathrm{R}}=14.8 \mathrm{~min}$ (minor).

5. Large-scale Synthesis and Recovery of Catalyst 6f:

N-(diphenylmethylene)glycine tert-butyl ester $3(11.8 \mathrm{~g}, 40 \mathrm{mmol})$ was added to a mixture of 3-(2-bromophenyl)-1-phenylprop-2-en-1-one $\mathbf{4 j}$ (12.1 $\mathrm{g}, 42 \mathrm{mmol}$), $(S, S)-6 f(1.17 \mathrm{~g}, 0.4 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(6.5 \mathrm{~g}, 20 \mathrm{mmol})$ in xylene $(200 \mathrm{~mL})$ under argon atmosphere, the resulting solution was stirred at $30^{\circ} \mathrm{C}$ for 12 h . The resulting mixture was purified by column chromatographyon silica gel (AcOEt /petroleum ether $=1 / 10$ as eluant) to furnish the conjugate adducts $5 \mathbf{j}(21.4 \mathrm{~g}, 92 \%$ yield, $d r=98 / 2$, er $=95 / 5$, determined by HPLC analysis). The catalyst $6 f$ was recovered $(\mathrm{MeOH} /$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=1 / 8$ as eluant) in almost quantitative yield.

Anion exchange of recovered catalyst 6 f using Amberlyst-26A $\left(\mathrm{OH}^{-}\right.$form) gave $(S, S)-\mathbf{6 f}\left(\mathrm{OH}^{-}\right)$. The methanol solution of $(S, S)-\mathbf{6 f}\left(\mathrm{OH}^{-}\right)$was treated with $40 \% \mathrm{HBr}$ aqueous solution (excess) at room temperature. The resulting mixture was poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were washed with $5 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ aqueous solution and dried over MgSO_{4}. Evaporation of solvents gave reactivated catalyst $(S, S)-6 f\left(\mathrm{Br}^{-}\right)$of 1.12 g in 96% yield.
N-(diphenylmethylene)glycine tert-butyl ester $3(29.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added to a mixture of 3-(2-bromophenyl)-1-phenylprop-2-en-1-one $\mathbf{4 j}$ ($30.1 \mathrm{mg}, 0.105 \mathrm{mmol}$), recovered $(S, S)-6 f(2.9 \mathrm{mg}, 0.001 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(16.3 \mathrm{mg}, 0.05 \mathrm{mmol})$ in xylene $(0.5 \mathrm{~mL})$ under argon atmosphere, the resulting solution was stirred at $30^{\circ} \mathrm{C}$ for 12 h . The resulting mixture was purified by column chromatographyon silica gel ($\mathrm{AcOEt} /$
petroleum ether $=1 / 10$ as eluant) to furnish the conjugate adducts $\mathbf{5 j}$ ($54.9 \mathrm{mg}, 94 \%$ yield, $d r=98 / 2$, er $=95 / 5$ determined by HPLC analysis).

6. Synthetic Transformations of the Adducts 5:

(2R,3S)-tert-Butyl 3-(2-bromophenyl)-5-phenyl-3,4-dihydro-2H-pyrrole-2carboxylate: ${ }^{1} 1 \mathrm{~N}$ hydrochloric acid (3.0 mL) was added to a solution of $5 \mathbf{j}$ (174.8 mg , $0.3 \mathrm{mmol})$ in THF (3.0 mL) at $0^{\circ} \mathrm{C}$, and stirring was maintained for 2 h . The resulting mixture was neutralized by addition of solid NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were dried over MgSO_{4} and concentrated. The residue was purified by column chromatographyon silica gel $(\mathrm{AcOEt} /$ petroleum ether $=1 / 10$ as eluant $)$ to afford (2R,3S)-tert-Butyl 3-(2-bromophenyl)-5-phenyl-3,4-dihydro-2H-pyrrole-2carboxylate ($120.1 \mathrm{mg}, 0.3 \mathrm{mmol}$) in quantitative yield. $[\alpha]^{20}{ }_{\mathrm{D}}-59.0\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.48(\mathrm{~s}, 9 \mathrm{H}), 3.07-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.72(\mathrm{~m}, 1 \mathrm{H})$, 4.25-4.29 (m, 1H), 4.93-4.95 (m, 1H), 7.08-7.11 (m, 1H), 7.14-7.16 (m, 1H), 7.24-7.28 (m, 1H), 7.42-7.49 (m, 3H), 7.58-7.60(m, 1H), 7.91-7.93(m, 2H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 175.0,171.2,143.1,133.8,133.3,131.3,128.7,128.5$, 128.4, 128.3, 127.9, 124.3, 82.5, 81.8, 45.8, 44.4, 28.2; MS (ESI) m/z $400.07[\mathrm{M}+$ $1]^{+}, 402.06[\mathrm{M}+1]^{+}$; IR (KBr) v 3047, 3011, 2980, 2929, 1726, 1615, 1576, 1472, 1446, 1367, 1244, 1147, 1024, 795, 760, $695 \mathrm{~cm}^{-1}$; er $=95 / 5$, determined by HPLC analysis (Chiralpak AD-H, n-hexane/2-propanol $=95 / 5,1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), $t_{\mathrm{R}}=15.4 \mathrm{~min}$ (major) and $t_{\mathrm{R}}=16.7 \mathrm{~min}$ (minor).

(2R,3S,5R)-tert-Butyl 3-(2-bromophenyl)-5-phenylpyrrolidine-2-carboxylate (12):
To a solution of (2R,3S)-tert-butyl 3-(2-bromophenyl)-5-phenyl-3,4-dihydro-2H-pyrrole-2-carboxylate ($80.1 \mathrm{mg}, 0.2 \mathrm{mmol}$) in 2 mL of MeOH was added NaBH_{4} $(37.8 \mathrm{mg}, 1.0 \mathrm{mmol})$ in portions at $0^{\circ} \mathrm{C}$. The resultant mixture was stirred for 4 h at room temperature (monitored by TLC). The mixture was evaporated in vacuo, added water (5 mL), and extracted with dichloromethane ($5 \mathrm{~mL} \times 3$), washed with brine and dried with MgSO_{4}. Concentration and flash chromatography (AcOEt/petroleum ether $=1 / 20$ as eluant) afforded (2R,3S,5R)-tert-butyl 3-(2-bromophenyl)-5-phenyl-pyrrolidine-2-carboxylate 12 ($50.6 \mathrm{mg}, 0.126 \mathrm{mmol}, 63 \%$ yield) as a colorless oil. $[\alpha]^{20}{ }_{\mathrm{D}}-7.6\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.78-1.82(\mathrm{~m}$, $1 \mathrm{H}), 2.65-2.72(\mathrm{~m}, 2 \mathrm{H}), 3.99-4.07(\mathrm{~m}, 2 \mathrm{H}), 4.56-4.60(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.25-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.58(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.8$, $143.9,142.5,132.6,128.4,128.3,128.0,127.9,127.1,126.5,124.5,81.4,67.4,62.4$, 48.9, 45.1, 27.9; MS (ESI) m/z $402.15[\mathrm{M}+1]^{+}, 404.10[\mathrm{M}+1]^{+}$; IR (KBr) v 3343, 3061, 3027, 2976, 2931, 1727, 1603, 1474, 1440, 1368, 1230, 1155, 1024, 846, 752, $700 \mathrm{~cm}^{-1}$; er $=95 / 5$, determined by HPLC analysis (Chiralpak AD-H, n-hexane/ 2-propanol $=95 / 5,0.8 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm} \mathrm{UV}$ detector), $t_{\mathrm{R}}=9.4 \mathrm{~min}$ (major) and $t_{\mathrm{R}}=$ 11.7 min (minor).

10

12
tert-Butyl 3-(2-bromophenyl)-5-phenylpyrrolidine-2-carboxylate: To a solution of (2R,3S)-tert-butyl 3-(2-bromophenyl)-5-phenyl-3,4-dihydro-2H-pyrrole-2-carboxylate ($80.1 \mathrm{mg}, 0.2 \mathrm{mmol}$) in 2 mL of AcOH was added Zinc powder (30 equiv) in portions at room temperature. The resultant mixture was stirred for 1 h at $45^{\circ} \mathrm{C}$ (monitored by TLC). After Zinc powder was filtered off, the filtrate was cooled to $0^{\circ} \mathrm{C}$. The filtrate was diluted with ethyl acetate and neutralized by the addition of sodium hydrogen carbonate (70% saturated $a q$). The mixture was extracted with dichloromethane (10 $\mathrm{mL} \times 4$), washed with brine and dried with MgSO_{4}. Concentration and flash chromatography (AcOEt/petroleum ether $=1 / 20-1 / 4$ as eluant) afforded both (2R,3S,5S)-tert-butyl 3-(2-bromophenyl)-5-phenylpyrrolidine-2-carboxylate 10 (39.2 $\mathrm{mg}, 0.097 \mathrm{mmol}, 48 \%$ yield) as a colorless oil and ($2 R, 3 S, 5 R$)-tert-butyl 3-(2-bromophenyl)-5-phenylpyrrolidine-2-carboxylate 12 ($12.2 \mathrm{mg}, 0.030 \mathrm{mmol}, 15 \%$ yield).
(2R,3S,5S)-tert-butyl 3-(2-bromophenyl)-5-phenylpyrrolidine-2-carboxylate (10): $[\alpha]^{20}{ }_{\mathrm{D}}-26.2\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.41(\mathrm{~s}, 9 \mathrm{H}), 2.19-2.24$ $(\mathrm{m}, 1 \mathrm{H}), 2.28-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-4.05(\mathrm{~m}, 1 \mathrm{H})$, $4.46(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.38(\mathrm{~m}, 3 \mathrm{H})$, 7.47-7.50 (m, 3H), 7.57-7.59 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.2,143.7$, 142.2, 133.1, 128.8, 128.3, 128.2, 128.2, 128.0, 127.5, 126.9, 124.9, 81.7, 67.7, 62.4, 49.3, 42.9, 28.1; MS (ESI) m/z $402.03[\mathrm{M}+1]^{+}, 404.05[\mathrm{M}+1]^{+}$; IR (KBr) v 3359, 3060, 2976, 2930, 1727, 1472, 1392, 1367, 1246, 1155, 1023, 846, 753, $700 \mathrm{~cm}^{-1}$; er $=95 / 5$, determined by HPLC analysis (Chiralpak AD-H, n-hexane $/ 2$-propanol $=95 / 5$, $0.8 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), $t_{\mathrm{R}}=9.4 \mathrm{~min}$ (minor) and $t_{\mathrm{R}}=17.2 \mathrm{~min}$ (major).

(2R,3S,5S)-tert-Butyl 3-(2-bromophenyl)-1-(4-nitrobenzoyl)-5-phenylpyrrolidine-2-carboxylate: (2R,3S,5S)-tert-Butyl 3-(2-bromophenyl)-5-phenylpyrrolidine-2carboxylate $10(40.2 \mathrm{mg}, 0.1 \mathrm{mmol})$ was dropped to a mixture of 4-nitrobenzoyl chloride ($37.1 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(41.8 \mu \mathrm{l}, 0.3 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere, then stirring was maintained for 16 h at room temperature. The resulting mixture was quenched with aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were dried over MgSO_{4} and concentrated. The residue was purified by column chromatographyon silica gel (AcOEt/petroleum ether $=1 / 4$ as eluant) to afford the product ($48.0 \mathrm{mg}, 0.087 \mathrm{mmol}, 87 \%$ yield) as a white solid. Mp $70-72{ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}-34.8\left(c \quad 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.47(\mathrm{~s}, 9 \mathrm{H}), 2.37-2.48(\mathrm{~m}, 2 \mathrm{H}), 4.19-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.81-4.83(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.24-8.30(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 169.5,169.2,148.3,142.1,142.7,138.3,133.3,128.9,128.8,127.9,127.7$, $127.3,126.7,124.9,123.5,123.1,82.2,66.5,58.4,44.4,43.1,28.0$; MS (ESI) m/z $573.05[\mathrm{M}+\mathrm{Na}]^{+}, 575.05[\mathrm{M}+\mathrm{Na}]^{+}$; IR (KBr) v 3062, 2975, 2929, 2868, 1739, 1646, $1601,1524,1417,1346,1224,1148,1024,850,758,702 \mathrm{~cm}^{-1} ;$ er $=95 / 5$, determined by HPLC analysis (Chiralpak AD-H, n-hexane $/ 2$-propanol $=70 / 30,1.0 \mathrm{ml} / \mathrm{min}, 254$ nm UV detector), $t_{\mathrm{R}}=24.8 \mathrm{~min}$ (minor) and $t_{\mathrm{R}}=35.6 \mathrm{~min}$ (major).

(2R,3S,5S)-Methyl 3-(2-bromophenyl)-1-(4-nitrobenzoyl)-5-phenylpyrrolidine-
2-carboxylate (16): tert-Butyl 3-(2-bromophenyl)-1-(4-nitrobenzoyl)-5-phenyl-pyrrolidine-2-carboxylate $(48.0 \mathrm{mg}, 0.087 \mathrm{mmol})$ was stirred in neat trifluoroacetic acid $(4 \mathrm{~mL})$ for 8 h at room temperature. The mixture was evaporated in vacuo, and
purified by flash column chromatographyon silica gel ($\mathrm{AcOEt} /$ petroleum ether $=1 / 1$ as eluant) to afford 3-(2-bromophenyl)-1-(4-nitrobenzoyl)-5-phenylpyrrolidine-2-carboxylic acid. $\mathrm{SOCl}_{2}(12.7 \mu \mathrm{~L}, 0.128 \mathrm{mmol})$ was dropped to a solution of 3-(2-bromophenyl)-1-(4-nitrobenzoyl)-5-phenylpyrrolidine-2-carboxylic acid (43.0 $\mathrm{mg}, 0.087 \mathrm{mmol})$ in dry methanol $(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, then stirring was maintained for 16 h at room temperature. The mixture was evaporated in vacuo, and purified by column chromatographyon silica gel $(\mathrm{AcOEt} /$ petroleum ether $=1 / 4$ as eluant $)$ to afford the product $16(40.7 \mathrm{mg}, 0.080 \mathrm{mmol}, 92 \%$ yield). Recrystallization of this product from AcOEt/hexane furnished suitable crystals for X-ray structure analysis. Mp $86-89{ }^{\circ} \mathrm{C}$; $[\alpha]^{20}{ }_{\mathrm{D}}-63.2\left(c \quad 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.48-2.56(\mathrm{~m}, 2 \mathrm{H}), 3.86$ $(\mathrm{s}, 3 \mathrm{H}), 4.19-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.85-4.87(\mathrm{~m}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.27$ (m, 4H), $7.35(\mathrm{~d}, ~ J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.63(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,169.1,148.3,141.7,138.3$, 133.6, 129.1, 128.8, 128.1, 127.8, 127.7, 126.7, 124.9, 123.1, 65.6, 63.6, 52.8, 44.3, 42.9; MS (ESI) m/z $509.02[\mathrm{M}+1]^{+}, 511.04[\mathrm{M}+1]^{+}$; IR (KBr) v 2955, 2919, 2847, 1737, 1645, 1593, 1399, 1386, 1359, 1209, 1152, 1019, 827, 758, $707 \mathrm{~cm}^{-1} ; d r>$ 99.9/0.1, er $=95 / 5$ ($>99.9 / 0.1$ after recrystallization), determined by HPLC analysis (Chiralpak AD-H, n-hexane $/ 2$-propanol $=50 / 50,0.8 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), t_{R} $=28.3 \mathrm{~min}$ (major) and $t_{\mathrm{R}}=60.3 \mathrm{~min}$ (minor).

5j

15
(2R,3S)-tert-Butyl 1-benzhydryl-3-(2-oxo-2-phenylethyl)indoline-2-carboxylate
(17): ${ }^{2}$ A benzene solution of the $5 \mathbf{j}(99.5 \mathrm{mg}, 0.17 \mathrm{mmol})$ and ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnH}(110.6 \mathrm{mg}$, 0.38 mmol) was warmed to $85^{\circ} \mathrm{C}$ under argon atmosphere. AIBN ($34.5 \mathrm{mg}, 0.21$
mmol) was added as a benzene solution by syringe pump over a $4-5$ hour period. The solution was refluxed an additional hour, cooled, and concentrated. The residue was treated with a $1 / 1(\mathrm{v} / \mathrm{v})$ ether-satd $a q$ KF solution and stirred vigorously until a white precipitate formed. The organic layer was washed with water, dried with MgSO_{4}, filtered, and concentrated. The residue was purified by column chromatographyon silica gel $(\mathrm{AcOEt} /$ petroleum ether $=1 / 10$ as eluant $)$ to afford the product $17(70.7 \mathrm{mg}$, $0.14 \mathrm{mmol}, 82 \%$ yield) as a whiter solid. $\mathrm{Mp} 58-60{ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}+112.0\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.05(\mathrm{~s}, 9 \mathrm{H}), 3.29-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.57(\mathrm{~m}, 1 \mathrm{H})$, 4.37-4.42 (m, 2H), $5.59(\mathrm{~s}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.32$ $(\mathrm{m}, 4 \mathrm{H}), 7.41(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.99-8.01 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.7,170.6,151.4,142.8,140.5$, $136.8,133.5,131.2,129.8,128.9,128.8,128.2,127.9,127.7,127.2,127.1,122.1$, 118.1, 109.7, 81.5, 69.9, 67.2, 39.6, 38.7, 28.0; MS (ESI) m/z 503.98 [M] ${ }^{+}$; IR (KBr) v 3052, 3027, 2958, 2924, 2858, 1728, 1689, 1604, 1480, 1451, 1367, 1217, 1146, 1028, 1001, 845, 746, $704 \mathrm{~cm}^{-1} ; d r=98 / 2$, er $=95 / 5$, determined by HPLC analysis (Chiralpak OD-H, n-hexane $/ 2$-propanol $=90 / 10,0.8 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), t_{R} $=11.4 \mathrm{~min}$ (minor) and $t_{\mathrm{R}}=16.8 \mathrm{~min}$ (major).

(2R,3S,5R)-tert-Butyl 3,5-diphenylpyrrolidine-2-carboxylate (11): 1 N hydrochloric acid (2.0 mL) was added to a solution of $\mathbf{5 a}(100.7 \mathrm{mg}, 0.2 \mathrm{mmol})$ in THF (2.0 mL) at $0^{\circ} \mathrm{C}$, and stirring was maintained for 2 h . The resulting mixture was neutralized by addition of solid NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were dried over MgSO_{4} and concentrated. The residue was purified by column chromato- graphyon silica gel $(\mathrm{AcOEt} /$ petroleum ether $=1 / 20$ as eluant) to afford (2R,3S)-tert- butyl 3,5-diphenyl-3,4-dihydro-2H-pyrrole-2-carboxylate in
quantitative yield. To a solution of (2R,3S)-tert-butyl 3,5-diphenyl-3,4-dihydro-2H-pyrrole-2-carboxylate ($64.3 \mathrm{mg}, 0.2 \mathrm{mmol}$) in 2 mL of MeOH was added $\mathrm{NaBH}_{4}(37.8 \mathrm{mg} 1.0 \mathrm{mmol})$ in portions at $0{ }^{\circ} \mathrm{C}$. The resultant mixture was stirred for 4 h at room temperature (monitored by TLC). The mixture was evaporated in vacuo, added water (5 mL), and extracted with dichloromethane (5 $\mathrm{mL} \times 3$), washed with brine and dried with MgSO_{4}. Concentration and flash chromatography (AcOEt/petroleum ether $=1 / 20$ as eluant) afforded (2R,3S,5R)-tert-butyl 3,5-diphenylpyrrolidine-2-carboxylate 11 ($37.6 \mathrm{mg}, 0.116 \mathrm{mmol}$, 58% yield) as a colorless oil. $[\alpha]^{20}{ }_{\mathrm{D}}+18.6$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.44(\mathrm{~s}, 9 \mathrm{H}), 2.01-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{~s}, 1 \mathrm{H}), 3.45(\mathrm{~d}, \mathrm{~J}$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.39(\mathrm{~s}, 6 \mathrm{H}), 7.52(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 174.3, 144.1, 142.7, 128.5, 128.4, 127.6, 127.0, 126.6, 126.5, 81.2, 67.9, 62.4, 51.1, 45.1, 28.0; MS (ESI) $\mathrm{m} / \mathrm{z} 324.19[\mathrm{M}+1]^{+}$; IR (KBr) v 3344, 3061, 3028, 2977, 2932, 1725, 1603, 1492, 1457, 1367, 1228, 1157, 1028, 846, 753, $699 \mathrm{~cm}^{-1}$; er $=96 / 4$ determined by HPLC analysis (Chiralpak AD-H, n-hexane $/ 2$-propanol $=95 / 5,1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), $t_{\mathrm{R}}=7.4 \mathrm{~min}$ (major) and $t_{\mathrm{R}}=10.7 \mathrm{~min}$ (minor).

tert-Butyl 3,5-diphenylpyrrolidine-2-carboxylate: To a solution of ($2 R, 3 S$)-tert-butyl 3,5-diphenyl-3,4-dihydro-2H-pyrrole-2-carboxylate ($64.3 \mathrm{mg}, 0.2$ mmol) in 2 mL of AcOH was added Zinc powder (30 equiv) in portions at room temperature. The resultant mixture was stirred for 1 h at $45^{\circ} \mathrm{C}$ (monitored by TLC). After Zinc powder was filtered off, the filtrate was cooled to $0^{\circ} \mathrm{C}$. The filtrate was diluted with ethyl acetate and neutralized by the addition of sodium hydrogen carbonate (70% saturated $a q$). The mixture was extracted with dichloromethane (10
$\mathrm{mL} \times 4$), washed with brine and dried with MgSO_{4}. Concentration and flash chromatography (AcOEt /petroleum ether $=1 / 20-1 / 4$ as eluant) afforded both (2R,3S,5S)-tert-butyl 3,5-diphenylpyrrolidine-2-carboxylate 9 ($35.0 \mathrm{mg}, 0.108 \mathrm{mmol}$, 54% yield) as a colorless oil and ($2 R, 3 S, 5 R$)-tert-butyl 3,5-diphenylpyrrolidine-2-carboxylate 11 ($11.1 \mathrm{mg}, 0.034 \mathrm{mmol}, 17 \%$ yield).
(2R,3S,5S)-tert-Butyl 3,5-diphenylpyrrolidine-2-carboxylate (9): $[\alpha]^{20}{ }_{\mathrm{D}}-34.5$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.42(\mathrm{~s}, 9 \mathrm{H}), 2.25-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.46$ $(\mathrm{m}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 1 \mathrm{H}), 3.46-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.2,143.9,142.8,128.6,128.5,127.5,127.2,126.7,126.6,81.3$, 68.8, 62.4, 49.9, 43.4, 28.0; MS (ESI) m/z $324.07[\mathrm{M}+1]^{+}$; IR (KBr) v 3375, 3067, 2970, 2929, 1724, 1603, 1501, 1454, 1367, 1244, 1153, 1029, 845, 756, $700 \mathrm{~cm}^{-1}$; er $=96 / 4$, determined by HPLC analysis (Chiralpak AD-H, n-hexane $/ 2$-propanol $=95 / 5$, $1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), $t_{\mathrm{R}}=10.4 \mathrm{~min}$ (minor) and $t_{\mathrm{R}}=16.8 \mathrm{~min}$ (major).

tert-Butyl 5-tert-butyl-3-phenylpyrrolidine-2-carboxylate: 1 N hydrochloric acid $(2.0 \mathrm{~mL})$ was added to a solution of $5 \mathrm{w}(96.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ in THF $(2.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and stirring was maintained for 2 h . The resulting mixture was neutralized by addition of solid NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were dried over MgSO_{4} and concentrated. The residue was purified by column chromatographyon silica gel ($\mathrm{AcOEt} /$ petroleum ether $=1 / 10$ as eluant) to afford ($2 R, 3 S$)-tert-butyl 5-tert-butyl-3-phenyl-3,4-dihydro-2H-pyrrole-2-carboxylate in quantitative yield. To a solution of (2R,3S)-tert-butyl 5-tert-butyl-3-phenyl-3,4-dihydro-2H-pyrrole-2-
carboxylate ($60.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) in 2 mL of MeOH was added $\mathrm{NaBH}_{4}(37.8 \mathrm{mg} 1.0$ mmol) in portions at $0{ }^{\circ} \mathrm{C}$. The resultant mixture was stirred for 3 h at room temperature (monitored by TLC). The mixture was evaporated in vacuo, added water (5 mL), and extracted with dichloromethane $(5 \mathrm{~mL} \times 3)$, washed with brine and dried with MgSO_{4}. Concentration and flash chromatography ($\mathrm{AcOEt} /$ petroleum ether $=$ $1 / 10$ as eluant) afforded both (2R,3S,5R)-tert-butyl 5-tert-butyl-3-phenylpyrrolidine-2-carboxylate 14 ($36.3 \mathrm{mg}, 0.120 \mathrm{mmol}, 60 \%$ yield) as a colorless oil and ($2 R, 3 S, 5 S$)-tert-butyl 5-tert-butyl-3-phenylpyrrolidine-2-carboxylate 15 ($8.6 \mathrm{mg}, 0.028 \mathrm{mmol}$, 14% yield) as a colorless oil.
(2R,3S,5R)-tert-butyl 5-tert-butyl-3-phenylpyrrolidine-2-carboxylate (14): $[\alpha]^{20}{ }_{\mathrm{D}}$ -37.1 (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.95(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H})$, $1.76-1.84(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 1 \mathrm{H}), 3.13-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~d}, \mathrm{~J}=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.35(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $174.2,142.5,128.3,127.5,126.5,80.9,68.2,67.9,51.9,37.3,33.5,27.9,26.3$; MS (ESI) m/z 304.17 [M + 1] ${ }^{+}$; IR (KBr) v 3351, 3029, 2955, 2867, 1726, 1478, 1455, 1367, 1227, 1158, 847, 760, $699 \mathrm{~cm}^{-1}$; er $=91 / 9$, determined by HPLC analysis (Chiralpak AD-H, n-hexane $/ 2$-propanol $=99 / 1,0.8 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), t_{R} $=13.7 \mathrm{~min}$ (major) and $t_{\mathrm{R}}=28.0 \mathrm{~min}$ (minor).
(2R,3S,5S)-tert-butyl 5-tert-butyl-3-phenylpyrrolidine-2-carboxylate (15): $[\alpha]^{20}{ }_{D}$ -43.0 (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.00(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H})$, 1.87-1.94 (m, 1H), 2.04-2.11 (m, 1H), 2.19 (s, 1H), 3.13-3.21 (m, 2H), 3.66 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.34(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 173.0, 143.4, 128.4, 127.5, 126.4, 81.0, 69.1, 68.5, 51.1, 36.8, 33.1, 27.9, 26.5; MS (ESI) m/z $304.07[\mathrm{M}+1]^{+}$; IR (KBr) v 3306, 3026, 2960, 2869, 1727, 1476, 1458, 1367, 1255, 1158, 848, 761, $699 \mathrm{~cm}^{-1}$; er $=91 / 9$, determined by HPLC analysis (Chiralpak AD-H, n-hexane $/ 2$-propanol $=99 / 1,0.8 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector), t_{R} $=8.5 \mathrm{~min}($ minor $)$ and $t_{\mathrm{R}}=9.9 \mathrm{~min}$ (major).

(2R,3S,5S)-tert-Butyl 5-methyl-3-phenylpyrrolidine-2-carboxylate (13): 1 N hydrochloric acid (2.0 mL) was added to a solution of $5 \mathbf{v}(88.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ in THF $(2.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and stirring was maintained for 2 h . The resulting mixture was neutralized by addition of solid NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were dried over MgSO_{4} and concentrated. The residue was purified by column chromatographyon silica gel ($\mathrm{AcOEt} /$ petroleum ether $=1 / 1$ as eluant) to afford (2R,3S)-tert-butyl 5-methyl-3-phenyl-3,4-dihydro-2H-pyrrole-2-carboxylate in quantitative yield. To a solution of ($2 R, 3 S$)-tert-butyl 5-methyl-3-phenyl-3,4-dihydro-2H-pyrrole-2-carboxylate ($51.9 \mathrm{mg}, 0.2 \mathrm{mmol}$) in 2 mL of MeOH was added NaBH_{4} $(37.8 \mathrm{mg} 1.0 \mathrm{mmol})$ in portions at $0^{\circ} \mathrm{C}$. The resultant mixture was stirred for 1.5 h at room temperature (monitored by TLC). The mixture was evaporated in vacuo, added water (5 mL), and extracted with dichloromethane ($5 \mathrm{~mL} \times 3$), washed with brine and dried with MgSO_{4}. Concentration and flash chromatography (AcOEt /petroleum ether $=1 / 1$ as eluant) afforded the product $13(30.8 \mathrm{mg}, 0.118 \mathrm{mmol}, 59 \%$ yield $)$ as a colorless oil. $[\alpha]^{20}{ }_{\mathrm{D}}-45.1\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.23(\mathrm{~d}, \mathrm{~J}=$ $6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 1.59-1.67(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.33(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 1 \mathrm{H})$, $3.21-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.22(\mathrm{~m}, 1 \mathrm{H})$, $7.30(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.2,142.9,128.4,127.5$, 126.5, 81.0, 67.6, 54.3, 51.4, 43.9, 27.9, 21.3; MS (ESI) m/z $262.16[\mathrm{M}+1]^{+}$; IR (KBr) v 3342, 3063, 3029, 2967, 2929, 1725, 1603, 1494, 1456, 1368, 1229, 1160, 1137, 958, 848, 760, $700 \mathrm{~cm}^{-1}$; er $=90 / 10$, determined by HPLC analysis (Chiralpak $\mathrm{AD}-\mathrm{H}, n$-hexane $/ 2$-propanol $=95 / 5,1.0 \mathrm{ml} / \mathrm{min}, 254 \mathrm{~nm} \mathrm{UV}$ detector $), t_{\mathrm{R}}=8.4 \mathrm{~min}$ (major) and $t_{\mathrm{R}}=9.7 \mathrm{~min}$ (minor).

7. References:

1. a) M.-Q. Hua, H.-F. Cui, L. Wang, J. Nie, J.-A. Ma, Angew. Chem., Int. Ed. 2010, 49, 2772.
b) T. Ooi, M. Kameda, K. Maruoka, J. Am. Chem. Soc. 2003, 125, 5139.
c) T. Ooi, K. Maruoka, Angew. Chem. Int. Ed. 2007, 46, 4222.
d) T. Hashimoto, K. Maruoka, Chem. Rev. 2007, 107, 5656.
2. a) R. Viswanathan, E. N. Prabhakaran, M. A. Plotkin, J. N. Johnston, J. Am. Chem. Soc. 2003, 125, 163.
b) R. Viswanathan, C. R. Smith, E. N. Prabhakaran, J. N. Johnston, J. Org. Chem. 2008, 73, 3040.

8. NMR Spectra and HPLC Charts for the Addition Adducts

and thy

Signal 1: VWD1 A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	Area		Height		Area
				mind	*s	[m (U)]	*
1	21.188	BBA	0.5196	4.13	69e4	1197	419	48.1231
2	24.395		0.4825	1043	23901	32.	8769	1.2130
3	25.185		0.7334	2229	09375	46.	1133	2.5919
4	28.936	vV	0.7218	4.13	29e4	863.	4637	48.0720

Signal 1: VWD1 A, Wavelength=254 nm

Peak \#	```RetTime [min]```	Type	Area		Height	Area
			[min]	mAU *s	[maU]	
1	23.898	BB	0.6467	2.30223 e 4	542.28558	48.0725
2	34.321	BV	1. 2760	1815.20227	19.69900	3.7903
3	37.083	VBA	1.0398	2.30533 e 4	338.23761	48.1372
Total	s :			4.78908e4	900.22219	

Signal 1: UWD1 A, Wavelength=254 nm

$\begin{gathered} \text { Peal } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	Area		Height		Area
				minu	*s	[mdU	J]	*
1	24.014	VB	0.6596	3.75	97e4	866	. 06055	89.8518
2	34.663	vV	0.7449	648	54541		. 47726	1. 5535
3	35.572	vV	1.0498	1263	17358		7. 72588	3.0258
4	37.485	VB	1.0310	2324	74316		. 10902	5.5688
Total	s :			4.17	6le 4	931	. 37271	

Signal l: UWD1 A, Wavelength=254 nm

$\begin{gathered} \text { Peal } \\ \text { \# } \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	Area		Height		Area
				mind	*s	[mAU]	
1	6.553	BBA	0.2384	5996	61816	382.	1124	46.5679
2	7. 540	BV	0.3068	446	20929	22.	24915	3.4651
3	8.461	VV	0.3828	448	91202	17.	72485	3.4861
4	13.483	BB	1. 1597	5985	41504	75.	11106	46.4809

Signal 1: UWD A A, Wavelength=254 nm

$\begin{gathered} \text { Peal } \\ \text { \# } \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	Area		Height		Area
				minu	*s	[mad]	*
1	6.557	vV	0.2469	2.83	201e4	1751	7644	91.3599
2	7.826	vV	0.1810	488	. 61374	39.	03368	1. 5763
3	8.488	vV	0.3674	782	. 26178	32.	59212	2.5236
4	14.243	UBA	1. 1068	1407	. 42529	18.	78976	4.5403

Signal 1: VWD1 A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	Area		Height		Area
				mad	*s	[mbU]	*
1	8. 525	VBA	0.3820	1.05	52e4	421.	. 70993	48.1343
2	11.308	BV	0.7038	298	97260		. 52066	1. 3647
3	12.671		0.7780	423	57214		. 78541	1. 9334
4	22.230	BB	2. 5668	1.06	01e4		. 35965	48.5676
Total	s :			2.19	78 e 4	495.	. 37565	

Signal 1: UTDI A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \text { \# } \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	Area		Height		Area
				mad	*s	[minu	J]	*
1	8.470	vV	0.3883	3.42	49e4	1341	1.93127	88.8417
2	12.609	UB	0.6261	1952	19739		6.83176	5.0602
3	24.833	BB	2.0579	2352	63818		5.53568	6.0981
Total	s :			3.85	97e4	1404	4.29871	

Signal l: UTDD A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \text { \# } \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Area		Height	Area *
			[min]	maU *s	[maU]	
1	8.769	UBA	0.3620	1.72750 e 4	733.94446	48.7011
2	12.842	BV	0.4186	485.11447	18.04025	1. 3676
3	13.731	VB	0.4551	515.12958	17.44913	1. 4522
4	20.834	BB	2.1772	1. 71963 e 4	107.03320	48.4791
Total	5 :			3.54716e4	876.46704	

Signal l: UWDl A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \text { \# } \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\min]} \end{aligned}$	Type	Width [min]	Area		Height		Area
				madu	*s	[maU]	
1	8.734	UV	0.3601	1.93	12e4	826	. 34949	93.6836
2	12.808	BV	0.4236	532	43567		. 31321	2.5817
3	24.409	BB	1. 7000	770	23920		. 24946	3.7347
Total	s :			2.06	38 e 4	851	. 91216	

Signal 1: VWD A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \text { \# } \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	Area	Height	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
				mid *s	[mAU]	
1	6.566	BV	0.3327	1.91276 e 4	868.19684	48.1063
2	7.393	UV	0.5013	1743.82324	48.13354	4.3858
3	11.131	UB	1. 1520	1.88896 e 4	227.54025	47.5079
Total	s :			3.97610 e 4	1143.87063	

Signal 1: VWD1 A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	Area	Height	Area
				midu *s	[mAU]	
1	6.478	vV	0.3278	4.73691e4	2218.13989	88.0218
2	7.307	vV	0.3953	2630.88989	96.92289	4.8888
3	12.064	VBA	1.0022	3815.16650	56.99771	7.0894
Total	s :			5.38151e4	2372.06049	

Signal 1: VWD1 A, Wavelength=254 nm

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	Area		Height		Area
				mad	*s	[maU]	
1	6.494	VBA	0.2469	8719	17187	539.	16956	49.1664
2	7.895	BV	0.1430		75677	10.	73397	0.5456
3	8.824	VV	0.4089	164	02328		11796	0.9249
4	11.481	VBA	0.9691	8754	05566	133.	96846	49.3631

Signal 1: WWDl A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \text { \# } \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width	Area	Height	Area
			[min]	mind *s	[mAU]	
1	6.626	vV	0.2647	3.60430 e 4	2095.97388	87.2983
2	8.066	vV	0.2118	254.91852	17.10040	0.6174
3	8.990	vV	0.4372	1708.31287	57.93135	4.1376
4	12.364	UBA	0.9541	3280.92261	52.02935	7.9466
Tota	s :			4.12872e4	2223.03498	

Signal 1: VoD 1 A, Wavelength $=254 \mathrm{~nm}$

Pealz	$\begin{aligned} & \text { RetTime } \\ & {[\text { [min] }} \end{aligned}$		Width [min]	Area		Height		Area
\#				madu	*s	[midu]	
1	8.305	BV	0.3954	1.63	47e4	625.	3080	48.5634
2	10.847	vV	0.6613	613	48279	13.6	4758	1.8206
3	15.342	BB	1.4905	1.60	91e4	151.5	4115	47.6865
4	19.593	BBA	1.2685	650	20966	6.	2297	1.9295

Signal l: UWD1 A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \text { \# } \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width	Area	Height	Area\%
			[min]	maU *s	[mimu]	
1	8.332	vV	0.3964	2.06254 e 4	793.71204	86.3170
2	10.223	UB	0.6420	1013.81250	23.14939	4.2428
3	17.171	UV	1.3751	1477.55444	16.20851	6.1836
4	20.048	VBA	1.4717	778.17010	7.34610	3.2566
Total	s :			2.38949 e 4	840.41604	

Signal 1: VWD A, Wavelength=254 nm

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width	Area	Height	Area
			[min]	midu *s	[mbU]	
1	7.119	UV	0.2814	2.22049 e 4	1208. 13550	49.2917
2	8.019	vV	0.2138	552.38226	36.63074	1. 2262
3	8.959	vV	0.5961	2.22907 e 4	577.23853	49.4821
Tota	1s:			4. 50480e4	1822.00476	

Signal 1: VWD1 A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \text { \# } \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	Area		Height		Area
				mind	*s	[mind	J]	*
1	7.140	BV	0.2822	2.59	31 e 4	1404	4.33374	94.9596
2	8.027	vV	0.2111	162	79120		0.96045	0.5968
3	9.511	UBA	0.5279	1212	12842		4.86501	4.4436
Total	s :			2.72	80e4	1450	0.15919	

Signal l: UWD A A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \text { \# } \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	Area		Height		Area
				maU	*s	[maU]	
1	7.332	vV	0.2930	1.05	47e4	554.	08124	49.7068
2	7.986	VV	0.1710	143	53465	12.	30884	0.6734
3	8.573	VBA	0.4642	1.05	6le4	346.	19043	49.6198
Total	s :			2.13	44 e 4	912.	58050	

Signal 1: UTD1 A, Wavelength=254 nm

$\begin{gathered} \text { Pealz } \\ \text { \# } \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width[min]	Area		Height		Area
				madu	*s	[midu]	*
1	7.356	vV	0.2980	2.93	57 e 4	1500.	04626	92.7057
2	8.034	vV	0.1959	716	55371	52.	88936	2.2652
3	8.799	UBA	0.4326	1590	85498	56.	62020	5.0291
Totals	s :			3.16	31 l 4	1609.	55583	

Signal 1: VToD 1 A , Wavelength $=254 \mathrm{~nm}$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	Area		Height		Area
				mad	*s	[mAU]	咅
1	9.805	UBA	0.4382	2.08	21 4	724	40387	49.0565
2	15.952	vV	0.7799	904	78900		. 13997	2. 1255
3	17.340	UB	1.7661	2.07	05e4	160	. 26247	48.8179
Total	5 :			4.25	74e4	902	. 80630	

Signal 1: VWD1 A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	Area	Height	Area *
				mAU *s	[mad]	
1	9.878	VV	0.4428	1.86365 e 4	643.42371	91.0944
2	16.320	BB	0.8972	982.48517	15.67514	4.8023
3	20.527	BBA	1. 4990	839.46356	7.84427	4.1033
Total	s :			2.04584 e 4	666.94312	

Signal l: UWD1 A, Wavelength=254 nm

Peal	RetTime	Type	Width	Area	Height	Area
\#	[min]		[min]	mmU *s	[mAU]	*
1	6.043	BBA	0.2149	1.81331 e 4	1301.75061	47.7088
2	7.221	BV	0.3915	1.78761 e 4	692.43280	47.0327
3	7.822	VV	0.1954	1998.67505	142.71268	5.2586
Total	5 :			3.80079 e4	2136.89609	

Signal 1: UWD1 A, Wavelength=254 nm

$\begin{gathered} \text { Pealk } \\ \text { \# } \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width[min]	Area		Height		Area
				mev	*s	[maU]	*
1	6.042	vV	0.2187	1.29	61 e4	894.	17065	93.2055
2	7.501	vV	0.4007	694	63715	27.	38734	4.9933
3	7.819	vV	0.1990	250	56900	17.	81872	1.8012
Total	s :			1.39	113 e 4	939.	37672	

Signal 1: WWD1 A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \text { \# } \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	idth Area		Height	Area
			[min]	mid *s	[mAU]	
1	7.180	BV	0.2357	1.85352 e 4	1198.77820	46.9936
2	9.698	vV	0.4347	1053.33228	37.59023	2.6706
3	10.576	vV	0.5275	1182.66675	34.05288	2.9985
4	21.078	BBA	2.7340	1. 86708 e 4	91.34817	47.3373
Total	s :			3.94420 e 4	1361.76948	

Signal 1: VWD1 A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	Area		Height		Area
				madu	*s	[minu]	
1	7.182	BV	0.2398	2.13	7 e 4	1371	. 27734	92.5832
2	9.754	BV	0.3847		57313		. 12762	0.2237
3	10.724	vV	0.5275	521	52295		. 12486	2.2624
4	25.798	BB	1. 7632	1136	58972		. 59979	4.9307

Signal 1: VWD A A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \text { \# } \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	Area		Height		Area
				medu	*s	[mAU]	*
1	7.316	vV	0.2673	1.23	3028 e4	706	. 23834	49.1220
2	9.544	vV	0.4738	282	2.81067		. 23348	1. 1292
3	10.377	VB	0.5714	336	6.54373		. 68573	1. 3437
4	19.073	BB	2. 1860	1.21	1233 e 4		. 40735	48.4051
Total	s :			2.50	0454e4	800	. 56490	

Signal 1: VTOD A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \text { \# } \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	Area		Height	Area
				mind	*s	[muU]	
1	7.306	vV	0.2610	1.50	9860e4	893.59448	88.6019
2	9.506	UV	0.5046	890	. 00354	27.37225	5.2271
3	10.399	vV	0.3064		4.95107	3.90174	0.4989
4	22.138	BBA	1. 6860	965	. 77838	8.54176	5.6721
Total	5 :			1.70	2026e4	933.41024	

Signal 1: VWDl A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width	Area	Height	Area
			[min]	mim *s	[mAU]	
1	8.703	vV	0.3343	4.94305 e4	2281.17285	45.5083
2	10.058	VBA	0.4891	4853.96924	150.80789	4.4688
3	13.476	BB	0.8116	4841.74854	90.34537	4.4576
4	19.900	BBA	2.9111	4.94926 e 4	224.89774	45.5654
Total	5 :			1.08619 e 5	2747.22385	

\footnotetext{

Signal 1 : UWD A, Wavelength=254 nm

Peak	RetTime	Type	Width	Area	Height	Area
\#	[min]		[min]	maU *s	[mAU]	*
1	8.682	BV	0.3264	2.46013e4	1158.18677	92.8335
2	10.129	VB	0.5809	132.27531	3.28140	0.4991
3	14.136	BB	0.8257	333.77219	6.06288	1.2595
4	25.614	BBA	1.8900	1433.11682	11.25727	5.4079
Tota	s :			2. 65004 e 4	1178.78832	

Signal 1: UWD A A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \text { \# } \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width Area		Height	Area
			[min]	midu *s	[mAU]	
1	8.824	UV	0.3610	4.89067e4	2063.07080	90.7641
2	10.192	UV	0.5525	1080.23364	28.15181	2.0048
3	14.476	vV	0.7327	1096. 55347	23.29380	2.0351
4	23.326	BBA	1.8175	2799.79590	22.16162	5.1960
Total	s :			5.38832 e 4	2136.67803	

Signal l: UTDD A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \text { \# } \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width Area		Height	Area
			[min]	midu *s	[mAU]	
1	8.337	VB	0.3581	5.16925 e4	2203.83447	91.5991
2	16.636	BB	1. 1188	1159.09021	15.62423	2.0539
3	21.679	BB	1. 7447	3581.83105	29.76369	6.3470

[^0]

Signal 1: VWD1 A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \text { \# } \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	Area	Height	Area
				midu *s	[mAU]	*
1	5.935		0.2298	2.05134 e 4	1371.86792	48.5980
2	7.369	BV	0.3194	1304.91895	59.62043	3.0915
3	14.031		1. 5266	2.03920 e 4	190.77527	48.3105
Tota	s :			4.22103e4	1622.26362	

Signal 1: VODl A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \text { \# } \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	Area	Height	Area *
				midu *s	[mAU]	
1	4.910	VV	0.1811	2. 12029e4	1763.24304	87.7563
2	8.765	BB	0.6028	1500.90002	37.34822	6.2121
3	13.183	BB	1. 2217	1457.30127	18.15881	6.0316
Total	5 :			2.41611 e4	1818.75007	

Signal 1: VWD 1 A, Wavelength $=254 \mathrm{~nm}$

$\begin{gathered} \text { Peal } \\ \text { \# } \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	Area	Height	Area
				midU *s	[mAU]	*
1	12.559	VBA	0.6386	3.25142 e 4	778.68781	49.0169
2	22.390	VB	0.8951	706.59784	12.18184	1.0652
3	30.150	BB	1.8707	812.83490	5.30881	1. 2254
4	40.853	BB	6.0140	$3.22991 e 4$	67.31870	48.6925
Total	s :			6. 63327e4	863.49714	

Signal l: UWD A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\text { [min] }} \end{aligned}$	Type	Width [min]	Area		Height	Area
				mad	*s	[mbU]	
1	12.183	BB	0.5951	3.16	697e4	816.69629	90.6911
2	21.331	BB	0.8220	330	. 89316	6.04581	0.9476
3	29.047	BB	1. 7289	713	. 80933	5.01983	2.0441
4	47.179	BEA	3.3952	2205	. 99658	7.67909	6.3172
Total	s :			3.49	204e4	835.44102	

Signal 1: VWD 1 A, Wavelength $=254 \mathrm{~nm}$

$\begin{gathered} \text { Peal } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	Area	Height	Area
				m HU *s	[mimu]	
1	13.174	BB	0.6499	1.96294 e 4	462.12119	94.3795
2	16.434	BB	0.8638	48.75469	$6.76776 e-1$	0.2344
3	23.005	BB	1. 1504	399.68509	4.52266	1. 9217
4	33.112		2.0397	720.54321	4.13916	3.4644
Total	s :			2.07984 e 4	471.45978	

Signal 1: VWD1 A, Wavelength $=254 \mathrm{~nm}$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\min]} \end{aligned}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	Area		Height		Area
				maU	*s	[maU	,	
1	11.666	vBA	0.4080	1.35	432e4	506.	61539	48.5050
2	14.041	BB	0.5088	881	. 58838	26.	40933	3.1574
3	21.517	vB	0.7762	1.34	964e4	265.	65402	48.3376
Totals :				2.79	12e4	798.	67874	

Signal 1: VToD A, Wavelength $=254$ nm

$\begin{gathered} \text { Peak } \\ \text { \# } \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\min]} \end{gathered}$	Type	Width[min]	Area		Height		Area
				misu	*s	[mad]	*
1	11.788	vV	0.4160	2.09	75 e 4	763	16248	88.6798
2	14.148	VB	0.3554	598	62341	24	46507	2.5367
3	21.800	BBA	0.7233	2072	82446	44	79878	8.7835
Total	s :			2.35	90 e 4	832	42632	

Signal 1: UWD1 A, Wavelength=254 nm

Signal l: UWD A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width	Area	Height	Area
			[min]	mim *s	[madu	\%
1	6.292	vV	0.1225	1013.97980	122.90707	6.5030
2	6.713	vV	0.1659	1.31918 e 4	1202.25427	84.6039
3	8.313	vV	0.2086	1386.64221	99.87807	8.8930
Total	s :			1. 55924 e 4	1425.03941	

Signal 1: WWD1 A, Wavelength=254 nm

Peak \#	$\begin{aligned} & \text { RetTime } \\ & {[\min]} \end{aligned}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	Area		Height		Area
				mav	*s	[madu]	
1	12.315	BV	0.2606	2.32	2282 e 4	1338.	97925	49.6715
2	13.459	vV	0.3058	735	5.27258	35.	92561	1.5723
3	14.168	vV	0.2365	558	8.10199	35.	93771	1. 1935
4	14.657	VB	0.3189	2.22	2421 e4	1042.	24854	47.5628

Signal 1: VWD1 A, Wavelength=254 nm

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	Area	Height	Area
				mAU *s	[mAU]	
1	12.438	vV	0.2782	3.99024 e 4	2144.39429	90.1626
2	13.590	vV	0.3146	234.40588	11.04586	0.5297
3	14.343	vV	0.2598	231.27678	13.38842	0.5226
4	14.823	UB	0.3238	3887.95166	178.61230	8.7851
Total	s :			4. 42560 e 4	2347.44087	

Signal 1 : WWD A, Wavelength $=254 \mathrm{~nm}$

Signal 1: VWD A, Wavelength=254 nm

9. X-Ray Analysis for the Amino Acid 16

CCDC 742621 contains the supplementary crystallographic data for the product 16.
These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

[^0]: Totals:
 $5.64335 \mathrm{e} 4 \quad 2249.22239$

