Stereoselective Construction of 5-*aza*-Spiro[2,4]heptane Motif *via* Catalytic Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides and Ethyl Cyclopropylidene Acetate

Tang-Lin Liu, Zhao-Lin He, Hai-Yan Tao, Yue-Peng Cai, and Chun-Jiang Wang*

E-mail: cjwang@whu.edu.cn

Table of Contents

I.	General Remarks	2	
II.	General Procedure for racemic 1,3-Dipolar Cycloaddition of Imino Esters with		
	Ethyl Cyclopropylidene Acetate Catalyzed by Cu(CH ₃ CN) ₄ BF ₄ /(±)-	
	TF-BiphamPhos Complex	2	
III.	General Procedure for Asymmetric 1,3-Dipolar Cycloaddition of In	ral Procedure for Asymmetric 1,3-Dipolar Cycloaddition of Imino Ester	
	n Ethyl cyclopropylidene acetate Catalyzed by $Cu(CHC_3CN)_4BF_4/(S)$ -		
	TF-BiphamPhos Complex	3-12	
IV.	X-Ray Crystal Structures of endo-Adducts (4R,6S,7R)-3aa	(absolute	
	configuration)	13	
V.	coposed Transition States of the endo-Selectivity for Asymmetric 1,3-Dipolar		
	Cycloaddition of Imino Esters with 2-Cyclopropylidene Acetate	13-14	
VI.	References	15	
VII.	¹ H NMR and ¹³ C NMR spectra	16-51	
VIII.	HPLC Chromatograms	52-87	

General Remarks.

¹H NMR spectra were recorded on a VARIAN Mercury 300 MHz spectrometer in chloroform-d₃. Chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as a standard. The data are reported as (s = single, d = double, t = triple, q = quarte, m = multiple or unresolved, brs = broad single, coupling constant(s) in Hz, integration). ¹³C NMR spectra were recorded on a VARIAN Mercury 75 MHz spectrometer in CDCl₃. Chemical shifts are reported in ppm with the internal chloroform signal at 77.0 ppm as a standard. Commercially obtained reagents were used without further purification. All reactions were monitored by TLC with silica gel-coated plates. Diastereomeric ratios were determined from crude ¹H NMR or HPLC analysis. Enantiomeric ratios were determined by HPLC, using a chiralcel AD-H column, a chiralpak AS-H column with hexane and *i*-PrOH as solvents. Ligands L1 and L2 were prepared according to the literature procedure reported by us.^[1] Ethyl cyclopropylidene acetate and imino esters were prepared according to the literature procedure.^[1,2] The racemic adducts were attained by using Cu(CH₃CN)₄BF₄/(\pm)-TF- BiphamPhos as the catalyst. The absolute (4*R*,6*S*,7*R*)-3aa achieved by $Cu(CH_3CN)_4BF_4/(S)$ -TF-BiphamPhos was determined unequivocally according to the X-ray diffraction analysis, and those of other adducts were deduced on the basis of these results.

General Procedure for racemic 1,3-Dipolar Cycloaddition of Azomethine Ylides with Ethyl Cyclopropylidene Acetate Catalyzed by $Cu(CH_3CN)_4BF_4/(\pm)$ -TF-BiphamPhos Complex

Under argon atmosphere, (\pm)-TF-BiphamPhos (4.6 mg, 0.0072 mmol) and Cu(CH₃CN)₄BF₄ (1.9 mg, 0.006 mmol) were dissolved in 2 mL DCM, and stirred at room temperature for about 1h. Then, imine substrate (0.4 mmol), Et₃N (0.03 mmol) and Ethyl cyclopropylidene acetate (0.2 mmol) were added sequentially. Once starting material was consumed (monitored by TLC), the organic solvent was removed and the residue was purified by column chromatography to give the cycloaddition product (76-90% yield), which was used as the racemic sample for the chiral HPLC analysis.

General Procedure for Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides with Ethyl cyclopropylidene acetate Catalyzed by Cu(CHC₃CN)₄BF₄/(*S*)-TF-BiphamPhos Complex

Under argon atmosphere (*S*)-TF-BiphamPhos **1a** (4.6 mg, 0.0072 mmol) and $Cu(CH_3CN)_4BF_4$ (1.9 mg, 0.006 mmol) were dissolved in 2 mL DCM, and stirred at room temperature for about 1h. After it was cooled to the indicated temperature, imine substrate (0.4 mmol), Et₃N (0.03 mmol) and Ethyl cyclopropylidene acetate (0.2 mmol) were added sequentially. Once starting material was consumed (monitored by TLC), the mixture was filtered through celite and the filtrate was concentrated to dryness. The product purified by column chromatography to give the corresponding cycloaddition product, which was then directly analyzed by chiral HPLC to determine the enantiomeric excess.

(**3aa**)

(4*R*,6*S*,7*R*)-7-ethyl 4-methyl 6-(4-chlorophenyl)-5-azaspiro[2.4]heptane-4,7-dicarboxylate (Table 2, entry 1)

The title compound was prepared according to the general procedure as described above in 90% yield. $[\alpha]^{25}{}_{\rm D} = -14.6 \ (c \ 0.82, \text{CHCl}_3); {}^{1}\text{H} \text{NMR} \ (\text{CDCl}_3, \text{TMS}, 300 \text{ MHz})$ $\delta \ 7.24 \ (\text{m}, 4\text{H}), 4.61 \ (\text{d}, J = 5.7 \text{ Hz}, 1\text{H}), 3.78-3.71 \ (\text{m}, 6\text{H}), 3.41 \ (\text{br}, 1\text{H}), 2.76 \ (\text{d}, J = 6.0 \text{ Hz}, 1\text{H}), 0.92-0.60 \ (\text{m}, 7\text{H}); {}^{13}\text{C} \text{NMR} \ (\text{CDCl}_3, \text{TMS}, 75 \text{ MHz}) \ \delta \ 172.01, 171.57, 136.43, 133.07, 128.43, 127.66, 65.49, 64.34, 60.30, 58.47, 52.07, 29.42, 15.52, 13.88, 8.05; IR \ (\text{KBr}) \ v \ 3685, \ 3624, \ 3019, \ 2977, \ 2400, \ 1731, \ 1519, \ 1426, \ 1215, \ 1045, \ 929, 756 \ \text{cm}^{-1}. \ \text{HRMS: calcd. for } \text{C}_{17}\text{H}_{20}\text{ClNO}_4: \ 337.1076, \ found. \ 337.1075. \ \text{dr} > 98:2; 98\% \ \text{ee}, \ \text{HPLC} \ (\text{Chiralcel AS-H}, \ i\text{-propanol/hexane} = 10/90, \ flow \ rate \ 1.0 \ \text{mL/min}, \lambda = 220 \ \text{nm}); \ t_r = 6.69 \ \text{and} \ 9.80 \ \text{min}.$

(**3ba**)

(4*R*,6*S*,7*R*)-dimethyl 6-(4-chlorophenyl)-5-azaspiro[2.4]heptane-4,7-di-carboxylate (Table 1, entry 9)

The title compound was prepared according to the general procedure as described above in 87% yield. $[\alpha]^{25}{}_{D} = -15.0 (c \ 0.64, CHCl_3)$; ¹H NMR (CDCl₃, TMS, 300 MHz) δ 7.23 (m, 4H), 4.61 (d, J = 5.7 Hz, 1H), 3.75-3.72 (m, 4H), 3.39 (br, 1H), 3.28 (s, 3H), 2.77 (d, J = 5.4 Hz, 1H), 0.92-0.61 (m, 7H); ¹³C NMR (CDCl₃, TMS, 75 MHz) δ 172.74, 171.86, 136.58, 133.43, 128.77, 127.86, 65.68, 64.67, 60.56, 58.63, 52.39, 51.53, 15.83, 8.27; IR (KBr) v 3684, 3626, 3018, 2978, 2401, 1730, 1518, 1427, 1214, 1046, 930, 757 cm⁻¹. dr = 86:14; 98% ee, HPLC (Chiralcel AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 220$ nm); t_r = 8.15 and 13.19 min.

(**3ab**)

(4*R*,6*S*,7*R*)-7-ethyl 4-methyl 6-(2-chlorophenyl)-5-azaspiro[2.4]heptane-4,7-dicarboxylate (Table 2, entry 2)

The title compound was prepared according to the general procedure as described above in 97% yield. $[\alpha]^{25}{}_{D} = -63.2$ (*c* 0.84, CHCl₃); ¹H NMR (CDCl₃, TMS, 300 MHz) δ 7.43 (d, *J* = 6.6 Hz, 1H), 7.29 (d, *J* = 7.2 Hz, 1H), 7.24-7.16 (m, 2H), 4.88 (s, 1H), 3.74 (m, 4H), 3.64 (q, *J* = 6.9 Hz, 7.2 Hz, 2H), 3.09 (s, 1H), 2.92 (br, 1H), 0.95-0.59 (m, 7H); ¹³C NMR (CDCl₃, TMS, 75 MHz) δ 172.02, 135.30, 133.26, 129.36, 128.68, 126.87, 126.75, 65.15, 62.46, 60.09, 56.44, 52.10, 29.33, 15.44, 13.85, 8.45; IR (KBr) v 3683, 3625, 3020, 2976, 2401, 1732, 1520, 1425, 1214, 1047, 926, 754 cm⁻¹. HRMS calcd. for C₁₇H₂₀ClNO₄: 337.1081, found 337.1080. dr = 97:3; 97% ee, HPLC (Chiralcel AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 5.81 and 11.27 min.

(**3ac**)

(4R,6S,7R)-7-ethyl 4-methyl 6-(4-bromophenyl)-5-azaspiro[2.4]heptane-4,7-di-

carboxylate (Table 2, entry 3)

The title compound was prepared according to the general procedure as described above in 87% yield. $[\alpha]^{25}{}_{\rm D}$ = -16.5 (*c* 0.46, CHCl₃); ¹H NMR (CDCl₃, TMS, 300 MHz) δ 7.39 (d, *J* = 7.8 Hz, 2H), 7.18 (d, *J* = 8.1 Hz, 2H), 4.59 (d, *J* = 5.1 Hz, 1H), 3.78-3.71 (m, 6H), 3.17 (br, 1H), 2.76 (d, *J* = 4.8 Hz, 1H), 0.92-0.60 (m, 7H); ¹³C NMR (CDCl₃, TMS, 75 MHz) δ 171.99, 171.58, 137.00, 131.32, 127.97, 121.12, 65.44, 64.37, 60.26, 58.39, 52.05, 29.43, 15.48, 13.86, 8.03; IR (KBr) v 3683, 3622, 3017, 2979, 2402, 1735, 1515, 1423, 1217, 1045, 924, 759 cm⁻¹. HRMS calcd. for C₁₇H₂₀BrNO₄: 381.0576, found 381.0568. dr = 95:5; 98% ee, HPLC (Chiralcel AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 7.07 and 11.14 min.

(**3ad**)

(4*R*,6*S*,7*R*)-7-ethyl 4-methyl 6-(4-fluorophenyl)-5-azaspiro[2.4]heptane-4,7-dicarboxylate (Table 2, entry 4)

The title compound was prepared according to the general procedure as described above in 85% yield. $[\alpha]^{25}_{D} = -15.6 (c \ 0.64, CHCl_3)$; ¹H NMR (CDCl₃, TMS, 300 MHz) δ 7.27 (d, J = 6.6 Hz, 2H), 6.96 (t, J = 8.4 Hz, 2H), 4.63 (d, J = 5.7 Hz, 1H), 3.77-3.72 (m, 6H), 3.37 (br, 1H), 2.75 (d, J = 5.1 Hz, 1H), 0.92-0.60 (m, 7H); ¹³C NMR (CDCl₃, TMS, 75 MHz) δ 172.11, 171.63, 163.57, 133.62, 127.93, 115.29, 115.00, 65.52, 60.21', 58.65, 52.05, 29.39, 15.52, 13.86, 8.03; IR (KBr) v 3681, 3622, 3021, 2980, 2403, 1733, 1516, 1429, 1217, 1049, 924, 751 cm⁻¹. HRMS calcd. for C₁₇H₂₀FNO₄: 321.1376, found 321.1374. dr = 97:3; 97% ee, HPLC (Chiralcel AS-H,

i-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 6.58 and 9.39 min.

(**3ae**)

(4*R*,6*S*,7*R*)-7-ethyl 4-methyl 6-phenyl-5-azaspiro[2.4]heptane-4,7-dicarboxylate (Table 2, entry 5)

The title compound was prepared according to the general procedure as described above in 81% yield. $[\alpha]^{25}{}_{\rm D} = -20.3$ (*c* 0.54, CHCl₃); ¹H NMR (CDCl₃, TMS, 300 MHz) δ 7.31-7.18 (m, 5H), 4.67 (d, *J* = 5.7 Hz, 1H), 3.75-3.67 (m, 6H), 3.42 (br, 1H), 2.78 (d, *J* = 5.7 Hz, 1H), 0.93-0.60 (m, 7H); ¹³C NMR (CDCl₃, TMS, 75 MHz) δ 172.22, 171.68, 137.77, 128.27, 127.29, 126.17, 65.59, 64.97, 60.11, 58.76, 52.02, 29.38, 15.54, 13.78, 8.06; IR (KBr) v 3681, 3620, 3015, 2972, 2397, 1728, 1523, 1429, 1211, 1040, 926, 759 cm⁻¹. HRMS calcd. for C₁₇H₂₁NO₄: 303.1471, found 303.1478. dr = 95:5; 95% ee, HPLC (Chiralcel AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 220$ nm); t_r = 6.06 and 9.36 min.

(**3af**)

(4*R*,6*S*,7*R*)-7-ethyl 4-methyl 6-*p*-tolyl-5-azaspiro[2.4]heptane-4,7-dicarboxylate (Table 2, entry 6)

The title compound was prepared according to the general procedure as described above in 78% yield. $[\alpha]^{25}{}_{\rm D} = -14.7$ (*c* 0.64, CHCl₃); ¹H NMR (CDCl₃, TMS, 300 MHz) δ 7.17 (d, J = 8.1 Hz, 2H), 7.06 (d, J = 8.7 Hz, 2H), 4.64 (d, J = 5.7 Hz, 1H), 3.77-3.70 (m, 6H), 2.75 (d, J = 5.7 Hz, 1H), 2.25 (s, 3H), 0.94-0.61 (m, 7H); ¹³C NMR (CDCl₃, TMS, 75 MHz) δ 172.31, 171.66, 136.93, 134.57, 128.95, 126.04, 65.56, 64.81, 60.14[°], 58.79, 52.05, 29.33, 21.03, 15.58, 13.84, 8.02; IR (KBr) v 3682, 3623, 3016, 2975, 2403, 1727, 1521, 1422, 1214, 1043, 927, 754 cm⁻¹. HRMS calcd.

for C₁₈H₂₃NO₄: 317.1627, found 317.1625. dr = 96:4; 97% ee, HPLC (Chiralcel AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 5.84 and 9.39 min.

(**3ag**)

(4*R*,6*S*,7*R*)-7-ethyl 4-methyl 6-*m*-tolyl-5-azaspiro[2.4]heptane-4,7-dicarboxylate (Table 2, entry 7)

The title compound was prepared according to the general procedure as described above in 90% yield. $[\alpha]^{25}{}_{\rm D} = -7.3$ (*c* 0.76, CHCl₃); ¹H NMR (CDCl₃, TMS, 300 MHz) δ 7.20-6.99 (m, 4H), 4.64 (m 1H), 3.78-3.73 (m, 6H), 2.78 (s, 1H), 2.27 (s, 3H), 0.93-0.62 (m, 7H); ¹³C NMR (CDCl₃, TMS, 75 MHz) δ 172.32, 171.74, 137.77, 128.11, 127.90, 126.84, 123.18, 65.60, 64.94, 60.01, 58.78, 51.94, 29.44, 21.39, 15.48, 13.77, 8.08; IR (KBr) v 3685, 3623, 3020, 2974, 2399, 1730, 1518, 1425, 1213, 1043, 932, 754 cm⁻¹. HRMS calcd. for C₁₈H₂₃NO₄: 317.1627, found 317.1631. dr > 98:2; 98% ee, HPLC (Chiralcel AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 5.57 and 8.72 min.

(**3ah**)

(4*R*,6*S*,7*R*)-7-ethyl 4-methyl 6-*o*-tolyl-5-azaspiro[2.4]heptane-4,7-dicarboxylate (Table 2, entry 8)

The title compound was prepared according to the general procedure as described above in 87% yield. $[\alpha]^{25}{}_{\rm D} = -43.5$ (*c* 0.72, CHCl₃); ¹H NMR (CDCl₃, TMS, 300 MHz) δ 7.32 (d, *J* = 6.6 Hz, 1H), 7.12-7.08 (m, 3H), 4.74 (s, 1H), 3.74 (m, 4H), 3.60 (q, *J* = 7.2 Hz, 2H), 3.37 (br, 1H), 2.83 (d, *J* = 5.1 Hz, 1H), 2.29 (s, 3H), 0.98-0.54 (m, 7H); ¹³C NMR (CDCl₃, TMS, 75 MHz) δ 172.07, 135.49, 130.26, 127.36, 125.92, 124.71,

65.29, 62.60, 60.09[°], 57.20, 52.09, 29.32, 19.75, 15.50, 13.79, 8.60; IR (KBr) v 3685, 3624, 3020, 2980, 2402, 1732, 1518, 1425, 1214, 1043, 929, 756 cm⁻¹. HRMS calcd. for C₁₈H₂₃NO₄: 317.1627: found 317.1626. dr > 98:2; 96% ee, HPLC (Chiralcel AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 5.30 and 10.94 min.

(3ai)

(4*R*,6*S*,7*R*)-7-ethyl 4-methyl 6-(4-methoxyphenyl)-5-azaspiro[2.4]heptane-4,7-dicarboxylate (Table 2, entry 9)

The title compound was prepared according to the general procedure as described above in 78% yield. $[\alpha]^{25}{}_{D} = -3.2$ (*c* 0.64, CHCl₃); ¹H NMR (CDCl₃, TMS, 300 MHz) δ 7.22 (d, *J* = 6.6 Hz, 2H), 6.79 (d, *J* = 5.1 Hz, 2H), 4.63 (d, *J* = 5.7 Hz, 1H), 3.78-3.72 (m, 9H), 2.74 (d, *J* = 5.7 Hz, 1H), 0.95-0.61 (m, 7H); ¹³C NMR (CDCl₃, TMS, 75 MHz) δ 172.77, 172.15, 159.08, 130.24, 127.71, 114.00, 65.98, 64.92, 60.51, 59.27, 55.58, 52.39, 15.92, 14.27, 8. 42; IR (KBr) v 3685, 3624, 3019, 2977, 2400, 1731, 1519, 1426, 1215, 1045, 929, 756 cm⁻¹. HRMS calcd. for C₁₈H₂₃NO₅: 333.1576: found 333.1572. dr > 98:2; 98% ee, HPLC (Chiralcel AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 9.12 and 12.63 min.

(3aj)

(4*R*,6*S*,7*R*)-7-ethyl 4-methyl 6-(naphthalen-1-yl)-5-azaspiro[2.4]heptane-4,7-dicarboxylate (Table 2, entry 10)

The title compound was prepared according to the general procedure as described above in 82% yield. $[\alpha]^{25}{}_{D} = -145.7$ (*c* 0.90, CHCl₃); ¹H NMR (CDCl₃, TMS, 300

MHz) δ 7.92 (d, J = 8.7 Hz, 1H), 7.68 (d, J = 7.8 Hz, 1H), 7.70 (d, J = 8.1 Hz, 1H), 7.54-7.37 (m, 4H), 5.32 (m 1H), 3.84 (s, 1H), 3.74 (s, 3H), 3.46 (q, J = 7.2 Hz, 2H), 3.06 (d, J = 5.1 Hz, 1H), 0.99-0.46 (m, 7H), ¹³C NMR (CDCl₃, TMS, 75 MHz) δ 171.82, 133.42, 132.92, 131.03, 128.82, 128.07, 126.13, 125.44, 125.08, 122.74, 122.53, 65.14, 61.88, 59.78, 58.64, 51.97, 29.63, 15.40, 13.46, 8.49; IR (KBr) v 3683, 3622, 3017, 2979, 2403, 1734, 1517, 1426, 1215, 1045, 929, 756 cm⁻¹. HRMS calcd. for C₂₁H₂₃NO₄: 353.1627, found 353.1628. dr > 98:2; 92% ee, HPLC (Chiralcel AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 220$ nm); t_r = 11.28 and 15.66 min.

(3ak)

(4*R*,6*S*,7*R*)-7-ethyl 4-methyl 6-(thiophen-2-yl)-5-azaspiro[2.4]heptane-4,7-dicarboxylate (Table 2, entry 11)

The title compound was prepared according to the general procedure as described above in 89% yield. $[\alpha]^{25}{}_{D} = -3.0 (c \ 0.30, CHCl_3)$; ¹H NMR (CDCl₃, TMS, 300 MHz) δ 7.15 (d, *J* = 4.8 Hz, 1H), 6.92-6.84 (m, 2H), 4.74 (m, 1H), 3.87 (q, *J* = 7.4 Hz, 2H), 3.73 (s, 1H), 3.70 (s, 3H), 2.76 (d, *J* = 5.4 Hz, 1H), 0.98-0.62 (m, 7H); ¹³C NMR (CDCl₃, TMS, 75 MHz) δ 171.93, 171.17, 140.70, 126.48, 124.01, 123.89, 65.43, 61.33, 60.15, 58.64, 51.77, 29.44, 15.31, 13.71, 7.71; IR (KBr) v 3684, 3623, 3019, 2977, 2400, 1730, 1519, 1427, 1215, 1045, 929, 756 cm⁻¹. HRMS: calcd. for C₁₅H₁₉NO₄S: 309.1039, found 309.1041. dr > 98:2; 94% ee, HPLC (Chiralcel AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 220 nm); t_r = 9.57 and 16.36 min.

(3al)

(4*R*,6*R*,7*R*)-7-ethyl 4-methyl 6-styryl-5-azaspiro[2.4]heptane-4,7-dicarboxylate (Table 2, entry 12)

The title compound was prepared according to the general procedure as described above in 87% yield. $[\alpha]^{25}{}_{\rm D} = -17.8 (c \ 0.56, {\rm CHCl}_3)$; ¹H NMR (CDCl}3, TMS, 300 MHz) δ 7.37-7.24 (m, 5H), 6.71 (d, J = 15.9 Hz, 1H), 6.24 (dd, J = 6.3 Hz, 15.9 Hz, 1H), 4.33-4.28 (m, 1H), 4.13-4.06 (m, 2H), 3.77-3.72 (m, 4H), 2.61 (d, J = 5.1 Hz, 1H), 1.18-0.71 (m, 7H); ¹³C NMR (CDCl}3, TMS, 75 MHz) δ 172.31, 171.57, 136.36, 133.07, 128.53, 127.85, 126.44, 125.05, 65.49, 63.66, 60.45, 57.86, 52.08, 29.64, 15.58, 14.36, 7.76; IR (KBr) v 3684, 3624, 3019, 2977, 2403, 1731, 1519, 1426, 1216, 1045, 929, 756 cm⁻¹. HRMS calcd. for C₁₉H₂₃NO₄: 329.1627, found 329.1627. dr > 98:2; 93% ee, HPLC (Chiralcel AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 220$ nm); t_r = 6.86 and 11.33 min.

(3am)

(4*R*,6*S*,7*R*)-7-ethyl 4-methyl 4-methyl-6-phenyl-5-azaspiro[2.4]heptane-4,7-dicarboxylate (Figure 2)

The title compound was prepared according to the general procedure as described above in 89% yield. $[\alpha]^{25}{}_{D} = \pm 10.7$ (*c* 0.90, CHCl₃); ¹H NMR (CDCl₃, TMS, 300 MHz) δ 7.31-7.17 (m, 5H), 4.76 (d, *J* = 6.0 Hz, 1H), 3.74 (s, 3H), 3.68 (q, *J* = 7.2 Hz, 2H), 2.82 (d, *J* = 6.6 Hz, 1H), 1.35 (s, 3H), 0.95-0.66 (m, 7H); ¹³C NMR (CDCl₃, TMS, 75 MHz) δ 175.00, 172.52, 138.43, 132.65, 128.44, 126.54, 67.07, 62.95, 61.02, 60.24, 52.54, 34.37, 24.64, 14.02, 13.00, 9.39; IR (KBr) v 3688, 3624, 3019, 2981, 2400, 1731, 1523, 1426, 1215, 1050, 929, 756 cm⁻¹. dr > 98:2; 98% ee, HPLC (Chiralcel AS-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, λ = 220 nm); t_r = 7.84 and 8.72 min.

(**3an**)

(4*R*,6*S*,7*R*)-7-ethyl 4-methyl 6-(4-chlorophenyl)-4-methyl-5-azaspiro[2.4]heptane-4,7-dicarboxylate (Figure 2)

The title compound was prepared according to the general procedure as described above in 87% yield. $[\alpha]^{25}{}_{D} = +10.9$ (*c* 0.84, CHCl₃); ¹H NMR (CDCl₃, TMS, 300 MHz) δ 7.24 (m, 4H), 4.75 (d, *J* = 6.3 Hz, 1H), 3.74-3.69 (m, 5H), 2.80 (d, *J* = 6.3 Hz, 1H), 1.36 (s, 3H), 0.93-0.69 (m, 7H); ¹³C NMR (CDCl₃, TMS, 75 MHz) δ 171.95, 136.60, 133.05, 128.39, 127.79, 66.94, 62.09, 60.23, 52.44, 33.96, 29.67, 24.14, 13.85, 12.76, 9.00; IR (KBr) v 3685, 3620, 3019, 2977, 2400, 1730, 1519, 1426, 1215, 1045, 931, 756 cm⁻¹. HRMS calcd. for C₁₈H₂₂ClNO₄: 351.1237, found 351.1239. dr > 98:2; 97% ee, HPLC (Chiralcel AS-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, λ = 220 nm); t_r = 8.94 and 12.17 min.

(3ao)

(4*R*,6*S*,7*R*)-7-ethyl 4-methyl 6-(4-bromophenyl)-4-methyl-5-azaspiro[2.4] heptane-4,7-dicarboxylate (Figure 2)

The title compound was prepared according to the general procedure as described above in 88% yield. $[\alpha]^{25}{}_{D} = +7.8 (c \ 0.90, CHCl_3)$; ¹H NMR (CDCl₃, TMS, 300 MHz) δ 7.38 (d, J = 8.1 Hz, 2H), 7.18 (d, J = 8.4 Hz, 2H), 4.65 (d, J = 6.0 Hz, 1H), 3.72-3.67 (m, 5H), 2.78 (d, J = 6.3 Hz, 1H), 1.31 (s, 3H), 0.88-0.64 (m, 7H); ¹³C NMR (CDCl₃, TMS, 75 MHz) δ 174.54, 171.92, 137.23, 131.27, 128.12, 121.08, 66.87, 62.10, 60.14, 52.36, 33.99, 29.63, 24.15, 13.82, 12.71, 8.98; IR (KBr) v 3685, 3625, 3020, 2977, 2399, 1731, 1521, 1426, 1219, 1045, 929, 756 cm⁻¹. dr = 95:5; 97% ee, HPLC (Chiralcel AS-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, λ = 220 nm); t_r = 9.62 and 12.51 min.

(**3ap**)

(4R,6S,7R)-7-ethyl 4-methyl 6-(4-bromophenyl)-4-ethyl-5-azaspiro[2.4]heptane-

4,7-dicarboxylate (Figure 2)

The title compound was prepared according to the general procedure as described above in 74% yield. $[\alpha]^{25}{}_{D} = +15.9$ (*c* 0.72, CHCl₃); ¹H NMR (CDCl₃, TMS, 300 MHz) δ 7.42 (d, *J* = 8.4 Hz, 2H), 7.25 (d, *J* = 8.1 Hz, 2H), 4.61 (d, *J* = 6.0 Hz, 1H), 3.77-3.71 (m, 5H), 2.76 (d, *J* = 6.3 Hz, 1H), 1.58 (m, 2H), 1.01-0.68 (m, 10H); ¹³C NMR (CDCl₃, TMS, 75 MHz) δ 174.33, 172.11, 137.77, 131.23, 128.25, 120.99, 70.50, 62.26, 60.71, 52.12, 33.60, 29.66, 11.98, 9.63, 8.44; IR (KBr) v 3685, 3623, 3019, 2977, 2407, 1731, 1519, 1431, 1215, 1045, 929, 756 cm⁻¹. HRMS calcd. for C₁₉H₂₄BrNO₄: 409.0889, found 409.0886. dr > 98:2; 97% ee, HPLC (Chiralcel AS-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, λ = 220 nm); t_r = 6.44 and 7.72 min.

(**3aq**)

(4*R*,6*S*,7*R*)-7-ethyl 4-methyl 4-isobutyl-6-phenyl-5-azaspiro[2.4]heptane-4,7-dicarboxylate (Figure 2)

The title compound was prepared according to the general procedure as described above in 81% yield. $[\alpha]^{25}{}_{\rm D}$ = +13.5 (*c* 0.78, CHCl₃); ¹H NMR (CDCl₃, TMS, 300 MHz) δ 7.32-7.15 (m, 5H), 4.60 (d, *J* = 6.3 Hz, 1H), 3.69-3.61 (m, 5H), 2.84 (d, *J* = 6.3 Hz, 1H), 1.57-1.52 (m, 3H), 0.90-0.53 (m, 13H); ¹³C NMR (CDCl₃, TMS, 75 MHz) δ 174.38, 172.38, 138.63, 128.13, 127.05, 126.40, 69.54, 62.53, 60.41, 59.90, 51.87, 44.28, 35.35, 29.64, 25.19, 24.47, 22.38, 13.75, 11.74, 9.47; IR (KBr) v 3686, 3623, 3019, 2979, 2400, 1734, 1519, 1426, 1215, 1045, 926, 756 cm⁻¹. dr > 98:2; 97% ee, HPLC (Chiralcel AS-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, λ = 220 nm); t_r = 4.69 and 5.41 min.

X-ray Crystal Structures of *endo*-Adducts (4*R*,6*S*,7*R*)-3aa (absolute configuration)

Figure 1. X-ray structure of (4*R*,6*S*,7*R*)-**3aa**.

Crystal data for (4R,6S,7R)-**3aa**: C₁₇H₂₀ClNO₄, $M_r = 337.79$, T = 298 K, Monoclinic, space group P2(1), a = 9.479(2), b = 27.837(6), c = 13.143(4) Å, V = 3467.8(13) Å³, Z = 8, 7093 unique reflections, final $R_1 = 0.0514$ and $wR_2 = 0.1506$ for 11687 observed [$I > 2\sigma(I)$] reflections. CCDC 785673 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or <u>deposit@ccdc.cam.ac.uk</u>)

Proposed transition states of the *endo*-selectivity for asymmetric 1,3-dipolar cycloaddition of imino esters with 2-cyclopropylidene Acetate

Based on the relative and absolute configuration of (4R,6S,7R)-**3aa** and previous studies,^[1,3] a plausible transition state accounting for the obsevered *endo*-selectivity of the 1,3-DC addition of imino esters with ethyl 2-cyclopropylidene acetate in the presence of Cu(CH₃CN)₄BF₄/(*S*)-TF-BiphamPhos (**L1**) is shown in Figure 2. The *in situ*-formed azomethine ylide is coordinated to the metallic center and oriented in

such way because of the steric repulsion between the phenyl group in the ylide and the phenyl ring on the phosphorus atom of the chiral ligand, and the highly steric congestion imposed by the latter effectively blocks the dipolarophile ethyl 2-cyclopropylidene acetate (**1a**) approach from the *Re* (C=N) face of the azomethine ylide and forms the *endo*-(4R,6S,7R)-5-*aza*-spiro[2,4]-heptane through *Si* face attack, which is compatible with the experimental results. The carbonyl group of ethyl 2-cyclopropylidene acetate (**1a**) could coordinate with the Cu(I) center, which can stabilize the negatively charged oxygen atom in the proposed transition states.^[4] It could not rule out the possible hydrogen bond interaction between the carbonyl group of dipolarophile **1a** and the NH₂ group of the chiral (*S*)-TF-BiphamPhos ligand (**L1**), which also facilitates stabilizing the proposed transition states.^[3b,3c] Nevertheless, the real catalytic mechanism still needs further investigation.

Figure 2. Proposed transition states leading to (4R,6S,7R)-5-aza-spiro[2,4]-heptanes.

References

a) C.-J. Wang, G. Liang, Z.-Y. Xue, F. Gao, J. Am. Chem. Soc. 2008, 130, 17250; b)
 C.-J. Wang, Z.-Y. Xue, G. Liang, Z. Lu, Chem. Commun. 2009, 2905; c) G. Liang,
 M.-C. Tong, C.-J. Wang, Adv. Synth. Catal. 2009, 351, 3101; d) Z.-Y. Xue, T.-L. Liu,
 Z. Lu,; H. Huang, H.-Y. Tao, C.-J. Wang, Chem. Commun. 2010, 46, 1727.

2 a) J.; Salaun, J. Marguerite, Org. Synth. Coll. Vol. 7, 131; Vol. 63, 147; b) J. R. Henderson, M. Parvez, B. A. Keay, Org. Lett. 2007, 9, 5167.

3 a) S. Cabrera, R. G. Arrayás, B. Martín-Matute, F. P. Cossío, J. C. Carretero, *Tetrahedron* 2007, 63, 6587; b) W. Zeng, G.-Y. Chen, Y.-G. Zhou, Y.-X. Li, J. Am. Chem. Soc. 2007, 129, 750; c) H. Y. Kim, H.-J. Shih, W. E. Knabe, K. Oh, Angew. Chem., Int. Ed. 2009, 48, 7420; d) J. M. Longmire, B. Wang, X. Zhang, J. Am. Chem. Soc. 2002, 124, 13400; e) W. Gao, X. Zhang, M. Raghunath, Org. Lett. 2005, 7, 4241.
4 X.-X. Yan, Q. Peng, Y. Zhang, K. Zhang, W. Hong, X.-L. Hou, Y.-D. Wu, Angew. Chem., Int. Ed. 2006, 45, 1979.

115-8-9-D

1t1-7-82 Archive directory: /export/home/wu/vnmrsys/data Sample directory: File: PROTON

Data File D:\LC\LTL\DATA\LTL-5-7\LTL-5-7-10-AS-220 2010-03-31 16-05-42\SIG1000002.D Sample Name: LTL-5-7-1.0-AS-220

Instrument 1 4/3/2010 9:50:02 AM THL

Data File D:\LC\LTL\DATA\LTL-5-18\LTL-5-18 2010-04-10 10-52-58\SIG1000002.D Sample Name: LTL-5-18

Acq. Operator : LTL Seq. Line : 2
less Transmission - Transmission - I I - I - I - I - I - I - I - I - I
Acq. Instrument : Instrument : Location : Viai 25
Injection Pace . 4/10/2010 11:05:20 M Inj . 1
Acq. Method : D:\LC\LTL\data\LTL-5-18\LTL-5-18 2010-04-10 10-52-58\ASH-10-90-10ML-220NM- 14MIN.M
Last changed : 4/3/2010 9:58:28 AM by THL
Analysis Method : D:\LC\LTL\DATA\LTL-5-18\LTL-5-18 2010-04-10 10-52-58\SIG1000002.D\DA.M (
Last changed : 4/10/2010 11:22:17 AM by tmc (modified after 1 loading)
VWD1 A, Wavelength=220 nm (DXLCLTL/DATALTL-5-18/LTL-5-18/2010-04-10 10-52-58/SIG 1000002.D)
mAU 1 5 29
700-1 Å
$[1]$ EtO ₂ C \vee
333
300-]
200-
100 - g . 100 - ()
Les Percent Denort
àrea Percent Report
Area Percent Report
Area Percent Report
Area Percent Report Sorted By : Signal Multiplier : 1.0000
Area Percent Report
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier 4 Dilution Factor with ISTDs
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs
Area Percent Report
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 &, Wavelength=220 mm
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 &, Wavelength=220 nm Peak RetTime Type Width Area Height Area
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 &, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] mall *s [mall] 8
Àrea Percent Report
Area Percent Report
Area Percent Report
Area Percent Report
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : Signal 1: VUD1 Å, Wavelength=220 nm Peak RetTime Type Width Area # [min] [min] [mAU 1 7.408 MM 0.2554 255.61493 16.67875 1.1987 2 11.381 MM 0.4807 2.13250e4 747.14061
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VUD1 Å, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] 1 7.408 MM 0.2554 255.61493 16.67875 1.1987 2 11.381 MM 0.4807 2.10693e4 730.46185 98.8013 Totals : 2.13250e4 747.14061

Instrument 1 4/10/2010 11:22:23 AM tmc

Data File D:\LC\LTL\DATA\LTL-5-28\LTL-5-28 2010-04-16 08-14-35\SIG1000002.D Sample Name: LTL-5-28A

Sorted By	:	Sign	nal	
Multiplier	:	1.00	000	
Dilution	:	1.00	000	
Use Multinlier /	Dilution	Factor	with	ISTDS

Signal 1: VWD1 A, Wavelength=220 nm

Peak	RetTime	Type	Width	Ar	rea	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	믭
1	6.946	MM	0.2547	843.	53784	55.	20173	5.5291
2	8.152	MM	0.3208	6814.	19873	354.	07333	44.6644
3	10.521	MM	0.3992	879.	61652	36.	72753	5.7655
4	13.189	MM	0.5782	6719.	09766	193.	67729	44.0410

Totals: 1.52565e4 639.67988

*** End of Report ***

Instrument 1 4/16/2010 9:38:04 AM TMC

Data File D:\LC\LTL\DATA\LTL-5-28\LTL-5-28 2010-04-16 08-14-35\SIG1000003.D Sample Name: LTL-5-28B

=================			======		
Acq. Operator	: LTL	Seq. Line :	3		
Acq. Instrument	: Instrument l	Location : V	ial 25		
Injection Date	: 4/16/2010 8:48:29 AM	Inj :	1		
		Inj Volume : 5	μl		
Acq. Method	: D:\LC\LTL\data\LTL-5-28\LTI 20MIN.M	-5-28 2010-04-16	08-14-35\ASH-10-9	0-10ML-220NM	-
Last changed	: 3/31/2010 4:54:37 PM by LTH				
Analysis Method	: D:\LC\LTL\DATA\LTL-5-28\LTI	-5-28 2010-04-16	08-14-35\SIG10000	03.D\DA.M (
-	ASH-10-90-10ML-220NM-20MIN.	M)			
Last changed	: 4/16/2010 9:36:37 AM by TMC				
	(modified after loading)				
WVD1 A, Way	elength=220 nm (DALCALTLADATAALTL-5-28ALTL	-5-28 2010-04-16 08-14:35\S	IG1000003.D)		
mAU -			e_ 52		
350 -		Мо	A start		
300 -		21416	{ }		
250 -	MeO₂C ▷				
200 -	3ba				
150 -	, 33 , 53	19 ¹⁹	{ \		
100-					
	∿ _n° /∖				
50 g cv	_ ~ .≪ ³² / \	1			
1	/ \	. /			
0 - 1	<u>~~_</u>	<u> </u>			
<u><u><u></u></u></u>	· · · · · · · · · · · · · · · · · · ·	···········	· · · · · · · · · · · · · · · · · · ·	· · · <u>.</u> · · ·	<u>.</u>
(8 9 10	11 12	13 14	10	mn
			======		
	Area Percent Report				
			======		
Sorted By	: Signal				
Multiplier	: 1.0000				
Dilution	: 1.0000				
Use Multiplier a	Dilution Factor with ISTDs				
Signal 1: VWD1 A	, Wavelength=220 nm				
Peak RetTime Typ # [min]	e Width Area Height [min] mAU *s [mAU]	Area %			
	-				
1 2 72 2 1000		- V- 11 A-V-V-			

Totals: 1.66145e4 497.19820

*** End of Report ***

Instrument 1 4/16/2010 9:36:42 AM TMC

Data File D:\LC\LTL\DATA\LTL-5-32-33\LTL-5-32A 2010-04-17 15-17-50\SIG1000002.D Sample Name: LTL-5-32A

Totals: 3993.50212 226.31142

*** End of Report ***

Instrument 1 4/17/2010 5:36:37 PM LTL

Data File D:\LC\LTL\DATA\LTL-5-32-33\LTL-5-32B-33B 2010-04-17 16-18-09\SIG1000001.D Sample Name: LTL-5-32B

*** End of Report ***

Instrument 1 4/17/2010 5:47:42 PM LTL

Data File D:\LC\TONG...2-LTL-5-19A-1\TMC-2-12-LTL-5-19A-1 2010-04-14 08-50-59\SIG1000003.D Sample Name: LTL-5-19A-1

Peak	RetTime	Type	Width	Ar	ea	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	믭
					·			
1	7.068	MM	0.2862	2329.	92407	135.	66257	48.8813
2	8.453	MM	0.3132	80.	99151	4.	31001	1.6992
3	11.144	MM	0.4609	2281.	91309	82.	51217	47.8741
4	14.189	MM	0.5210	73.	66246	2.	35661	1.5454

4766.49113 224.84135 Totals :

*** End of Report ***

Instrument 1 4/17/2010 3:20:15 PM LTL

Data File D:\LC\LTL\DATA\LTL-5-23\LTL-5-20-23-XZY 2010-04-13 11-20-17\SIG1000006.D Sample Name: LTL-5-22

*** End of Report ***

Instrument 1 4/24/2010 9:15:10 AM LTL

Data File D:\LC\LTL\DATA\LTL-5-23\LTL-5-20-23-XZY 2010-04-13 11-20-17\SIG1000004.D Sample Name: LTL-5-21A

Acq. Operator : LTL Seq. Line : 4
Acq. Instrument : Instrument 1 Location : Vial 4
Injection Date : 4/13/2010 12:26:01 PM Inj : 1
Inj Volume : 5 µl Acq. Method : D:\LC\LTL\data\LTL-5-23\LTL-5-20-23-XZY 2010-04-13 11-20-17\ASH-10-90-
IURI-220MR-20MR-20MLN.M
Last Changed : 3/31/2010 4:34:3/ Ph Dy L1L Avalancia Merked : D: 110111103731111-5-201111-5-20-22 VZV 2010-04 12 11-20-12 STC1000004 D)
TARYSIS RECTOR : D. (DC) DIFLORATION - 223(DIFL-3-20-23-A21 2010-04-13 11-20-17)(SIG1000004.D) D) M (S44-10-90-10M1-220MM-20MTM M)
Last changed : 4/13/2010 9:08:43 PM by LTL
(modified after loading)
WVD1 A, Wavelength=220 nm (D/LCULTU/DATA/LTL-5/23/LTL-5/20-23-XZY 2010-04-13 11-20-17/SIG1000004.D)
50-1 (F
)→CO2CH3
0 6 7 8 9 10 11 12 13 min Δrea Percent Report
0 6 7 8 9 10 11 12 13 min Δrea Percent Report
0 6 7 8 9 10 11 12 13 min Δrea Percent Report
0 -
0
0
Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDS
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDS
Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDS Signal 1: VWD1 A, Wavelength=220 nm
Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDS Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area
0 - </td
0 7 8 9 10 11 12 13 min Area Percent Report
0 7 8 9 10 11 12 13 min Area Percent Report
0 7 8 9 10 11 12 13 min Area Percent Report
0 7 8 9 10 11 12 13 min Area Percent Report
0 7 8 9 10 11 12 13 min Area Percent Report
Image: state of the state
Image: Arrow of the second

**** End of Report ***

Instrument 1 4/13/2010 9:08:46 PM LTL

数据文件: C:\1000526\2\LC\LTL\DATA\LTL-5-31\LTL-5-31 2010-04-16 19-22-27\SIG1000001.D 样品名称: LTL-5-31A

仪器 1 2010-7-24 10:28:41 上午

页1/1

Data File D:\LC\LTL\DATA\LTL-5-23\LTL-5-20-23-XZY 2010-04-13 11-20-17\SIG1000001.D Sample Name: LTL-5-23A

Acq. Operator	: LTL Seq. Line : 1	
Acq. Instrument	: Instrument l Location : Vial l	
Injection Date	: 4/13/2010 11:21:32 AM Inj: 1	
-	Inj Volume : 5 ul	
Acq. Method	: D:\LC\LTL\data\LTL-5-23\LTL-5-20-23-XZY 2010-04-13 11-2	0-17\ASH-10-90-
	10ML-220NM-20MIN.M	
Last changed	: 3/31/2010 4:54:37 PM by LTL	
Analysis Method	I : D:\LC\LTL\DATA\LTL-5-23\LTL-5-20-23-XZY 2010-04-13 11-2	0-17\SIG1000001.D\
	DA.M (ASH-10-90-10ML-220NM-20MIN.M)	
Last changed	: 4/13/2010 9:01:15 PM by LTL	
-	(modified after loading)	
WVD1 A, We	avelength=220 nm (DALCALTAVDATAVLTL-5-234LTL-5-20-23-XZY 2010-04-13 11-20-17/SIG1000001	1.D)
mAU 🕹 🟅	.e%	
1 7	1. SP	
1001 116	se	
1 1007 11	EtO ₂ C	X
	5 . ¹	/ 002003
° 1	ÿ4°° ∕∕∕ Ì	N I
	AAAAAAA	-1
. 1		
™] [[3a	e
	, j j	-
401		
	ی ا	
	N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	\sim $/$ \sim $/$	
6	7 8 9 10 11	12 13 min
	Area Dercent Denort	
Sorted By	: Simmal	
Multinlier	• 1 0000	
Dilution	. 1.0000	
Una Waltipliar	: 1.0000 A Dilution Regtor with ISTDa	
ose mulcipiter	& DILUCION FACCOR WICH ISIDS	
Cérerel 1. 1777-1	I Harry Lawrence 200 mm	
signal I: VWDI .	A, wavelengtn=220 mm	
De els Det Mine - Min	na Ilideb luca llaidet luca	
reak ketTime Tyj	pe wigth Area Height Area	
# [min]	iminj mau *s imau j %	
1 6.064 MM	í 0.2265 1525.99890 112.28498 47.9707	
2 7.057 MM	i 0.2611 77.79130 4.96639 2.4454	
3 9.361 MM	í 0.3387 1496.19031 73.62195 47.0336	
4 11.286 MM	í 0.3822 81.12847 3.53753 2.5503	
Totals :	3181.10898 194.41085	

*** End of Report ***

Instrument 1 4/13/2010 9:01:19 PM LTL

Data File D:\LC\LTL\DATA\LTL-5-23\LTL-5-20-23-XZY 2010-04-13 11-20-17\SIG1000002.D Sample Name: LTL-5-23B

Acq. Operator	: LTL Seq. Line : 2
Acq. Instrument	: Instrument 1 Location : Vial 2
Injection Date	: 4/13/2010 11:43:10 AM Inj: 1
-	Inj Volume : 5 µl
Acq. Method	: D:\LC\LTL\data\LTL-5-23\LTL-5-20-23-XZY 2010-04-13 11-20-17\ASH-10-90-
	10ML-220NM-20MIN.M
Last changed	: 3/31/2010 4:54:37 PM by LTL
Analysis Method	: D:\LC\LTL\DATA\LTL-5-23\LTL-5-20-23-XZY 2010-04-13 11-20-17\SIG1000002.D\
-	DA.M (ASH-10-90-10ML-220MM-20MIN.M)
Last changed	: 4/13/2010 9:03:22 PM by LTL
-	(modified after loading)
WVD1 A, Wa	velength=220 nm (DALCUTL/DATA/LTL-5-23/LTL-5-20-23-XZY 2010-04-13 11-20-17/SIG1000002.D)
mAU	<u></u>
300-1	<u>д</u>
250 -	
	$() \sim $
200	
2007	EtO ₂ C
150-	
100 -	
50	
1 9	
1 01-0-2-	
1 1	
L 0	i o a io ii iz i3 mm
	Area Fercent Report

area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier a	Dilution	Factor with	ISTDs

Signal 1: VWD1 A, Wavelength=220 nm

Peak	RetTime	Type	Width	Ar	ea	Heig	j ht	Area
#	[min]		[min]	mAU	*s	[mAU]	5
1	6.098	VV	0.1954	174.	70584	13.6	59851	2.3876
2	7.060	MM	0.2400	7.	36311	5.1136	54e-1	0.1006
3	9.281	VB	0.3286	6652.	47070	312.3	32367	90.9136
4	11.221	MM	0.4672	482.	81299	17.2	22181	6.5982

Totals: 7317.35264 343.75536

*** End of Report ***

Instrument 1 4/13/2010 9:03:26 PM LTL

Data File D:\LC\LTL\DATA\LTL-5-20\LTL-5-20 2010-04-12 16-12-37\SIG1000002.D Sample Name: LTL-5-20A

Acq. Operator	: LTL Seq. Line : 2
Acq. Instrument	: Instrument 1 Location : Vial 51
Injection Date	: 4/12/2010 4:25:00 PM Inj: 1
	Inj Volume : 5 µl
Acq. Method	: D:\LC\LTL\data\LTL-5-20\LTL-5-20 2010-04-12 16-12-37\ASH-10-90-10ML-220MA-
T	ZUMIN.M
Last changed	: 3/31/2010 4:34:3/ FR DY LLL • D. LCUITUDATAULTI E 20 JULI E 20 2010 04 12 16 12 270 CTC1000002 DUDA W /
Anarysis neurou	2010-04-12 10-12-37(510100002.D)DA.M (
Last changed	: 4/13/2010 9:04:58 PM by LTL
Labo ondigea	(modified after loading)
WVD1 A, War	velength=220 nm (DXLCVLTL/DATAVLTL-5-20 VLTL-5-20 2010-04-12 16-12-37/SIG1000002.D)
mAU %	.n.
1 1	, to"
l i í	
200-	۴ _BetO2C
	ы ма туро,сн.
	「 … 」 人 … / … 」 (
150 -	
1 1 1	
100-	{ }{ ´ 3at
50 - (
0	
 	8 7 8 0 10 11 12 13 min
. ·	
	Area Percent Report
Sorted By	: Signal
Multiplier	: 1.0000
Dilution	: 1.0000
Use Multiplier a	Dilution Factor with ISTDs
Signal 1: VWD1 A	, Wavelength=220 nm
Deals Det Time	. Hidth lung Haidht lung
reak kecilme Typ	e windu Afea Heighl Afea
# [miii]	циллі мал з цихо ј в
1 5.836 MM	0.2274 3176.42310 232.76852 47.2824
2 6.814 MM	
3 9.388 MM	0.3463 3209.38770 154.45337 47.7731
3 9.388 MM 4 11.409 MM	0.3463 3209.38770 154.45337 47.7731 0.4078 163.67644 6.68915 2.4364

Totals: 6717.97922 403.12641

*** End of Report ***

Instrument 1 4/13/2010 9:05:03 PM LTL

	. I TT					
b ≪ (F4目 仪器	: LIL : Instrim	ent l		/11/2011 位智	. 4 : 样品版 4〕	
进样日期	: 2010-4-3	17 9:34:01	上午	点 型 进样次数 进峰马	: 1	
采集方法	: D:\LC\L'	IL\data\LTL-	-5-30\LTL-5-	班件室 30 2010-04	: 5 µ1 -16 18-21-40\А	SH-10-90-10ML-
电电热飞	220NM-2	DMIN. M	/T			
取后修改 分析方法	: 2010-4-1 • C•N1000	1 8:54:37 上 526\2\IC\ITI	+ : ЬТЬ Зуратаутт		30 2010-04-14	18-21-40
707765	STG1000	002.D/DA.M ((ASH-10-90-1	-30 (LIL-3- LOML-220NM-	-20MIN.M)	10-21-40/
最后修改	: 2010-7-0	24 10:22:17	,			
	(虎 A.))(からしorath=220 pr	明后修改)		2001 TL-6-20-2010	04-16-19-21-40/910100	20002 D)
mAU 1	A, Watelengar-220 m	1(0.1000020202020		2012-10-300 2010 20	-0+1010-21-40-01010	55552.5)
1				ň.	s ^{y -}	
250 -	- 1-	. Ц			1-	
	γ		~~	* *		
		\sim	∎CO2Me	11		
200-	\sim			- { }		
1			>			
	EtC	$J_2 C V$		J (
150 -		3af				
				()		
100 -						
				1 \		
50	_3 ^{9*}					<u> </u>
l ³⁰]					i i	e /
1	8.4°° 5	ANS.			/	
₀1	<u> </u>	×			<u> </u>	<u> </u>
<u></u>	<u>,</u>	· · · · · · ·	· · , · ·	<u>,</u> -	···· <u>,</u> · ·	· · . · · · ·
. 0	6	(8	a	10	11
 ↓ ↓	:	信号				
來权因子 1998 円 7	:	1.0000				
怖种齿于 市标使电乘 PD	്റുറെം എംകുംയും ലോട നിക്കും	1.0000				
内你还用米伙	,ወፓመቶ መቻ	-				
<u>жа.</u>						
115년 1: WWD1	. A, Wavelengtl	n=220 nm				
峰 保留时间	类型 峰宽	峰面积	峰高	峰面积		
# [min]	[min]	mAU *s	[mAU]	튐		
	·					
1 5.631	. MM 0.2327	109.59352	7.84948	1.7418		
2 5.432 3 9.975	, mm 0.1748 ; mm 0.3540	40.54253	3.86616 276 70812	0.0444 93 6486		
4 10.910	MM 0.4124	249.49547	10.08218	3.9653		
. 10.010		210.1001/	10.00010	0.0000		
总量:		6291.97625	298.50595			
		*** 报告绪5	₹ ***			
			•			

数据文件: C:\1000526\2\LC\LTL\DATA\LTL-5-30\LTL-5-30 2010-04-16 18-21-40\SIG1000002.D || 品名称: LTL-5-30A Data File D:\LC\LTL\DATA\LTL-5-35\LTL-5-35A 2010-04-17 17-23-26\SIG1000001.D Sample Name: LTL-5-35A

Instrument 1 4/17/2010 5:49:17 PM LTL

Data File D:\LC\LTL\DATA\LTL-5-34-35B\LTL-5-34-35B 2010-04-19 16-07-43\SIG1000003.D Sample Name: LTL-5-35B

Instrument 1 4/19/2010 5:19:11 PM LTL

Data File D:\LC\LTL\DATA\LTL-5-34\LTL-5-34A 2010-04-17 17-06-04\SIG1000001.D Sample Name: LTL-5-34A

Instrument 1 4/17/2010 5:24:16 PM LTL

Data File D:\LC\LTL\DATA\LTL-5-34-35B\LTL-5-34-35B 2010-04-19 16-07-43\SIG1000002.D Sample Name: LTL-5-34B

Acq. Operator : LTL S	šeq. Line: 2
Acq. Instrument : Instrument 1	Location : Vial 71
Injection Date : 4/19/2010 4:20:03 PM	Inj: 1
Ir Acq. Method : D:\LC\LTL\data\LTL-5-34-35B\LTL-	nj Volume : 5 µl -5-34-35B 2010-04-19 16-07-43\ASH-10-90-
10ML-220NM-20MIN.M	
Last changed : 3/31/2010 4:54:37 PM by LTL	
Analysis Method : D:\LC\LTL\DATA\LTL-5-34-35B\LTL-	-5-34-35B 2010-04-19 16-07-43\SIG1000002.D\
DA.M (ASH-IU-90-IUML-220NM-20MIN Lost showerd : A(10(2010 E:15:52 DW has ITL	4. M)
Last Changed : 4/19/2010 5:15:53 PM by LLL	
W/D1 A Wavelength=220 nm/DALCVTL/DATAVLTL-5-34-35BVLTL-5-	34-358 2010-04-19 16-07-43\SIG1000002.D\
mAU]	2
250	(~)
200-	1
	_CO2Me (}
150-1 EtO-C V	
ah 3ah	
100 -	
I 50 -I	
50 - 5 ⁸⁰	
50 - Frank	
	9 10 11 12 min
	9 10 11 12 min
	9 10 11 12 min
Area Percent Report	9 10 11 12 mh
Area Percent Report	9 10 11 12 min
Area Percent Report	9 10 11 12 min
Area Percent Report	9 10 11 12 min
Area Percent Report	9 10 11 12 min
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000	9 10 11 12 min
Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs	9 10 11 12 min
50 7 8 0 6 7 8	9 10 11 12 min
Area Percent Report Δrea Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs	9 10 11 12 min
60 7 8 0 6 7 8	9 10 11 12 min
Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peek PetTime Type Width Area Height	9 10 11 12 min
Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height	Area
Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height # [min] [min] mAU *s [mAU]	Area %
Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height # [min] [min] mAU *s [mAU] 	Area \$ 1 1.9927
50 50 50 7 8 Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area # [min] [min] mAU *s 1 5.324 MM 0.2137 194.04799 15.13305 2 10.579 MM 0.5770 9543.77930 275.69261	Area <u><u><u><u></u></u><u><u><u></u><u></u><u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u></u></u>
50 7 8 0 6 7 8 Area Percent Report 7 8 Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height # [min]	Area <u>s</u> 1.9927 38.0073
50 50 7 8	Area 8

Instrument 1 4/19/2010 5:15:57 PM LTL

Page l of l

Data File D:\LC\LTL\DATA\LTL-5-24\LTL-5-24-19A 2010-04-13 20-33-07\SIG1000003.D Sample Name: LTL-5-24A

Instrument 1 4/14/2010 9:20:23 AM LTL

数据文件: C:\1000526\2\LC\LTL\DATA\LTL-5-30\LTL-5-30 2010-04-16 18-21-40\SIG1000003.D 样品名称: LTL-5-30B

仪器 1 2010-7-24 10:25:55 上午

页1/1

Data File D:\LC\LTL\DATA\LTL-6-21\LTL-6-21 2010-06-08 10-13-30\SIG1000002.D Sample Name: LTL-6-21

== == == == == == == ==		
Acq. Operator :	LTL	Seq. Line: 2
Acq. Instrument :	Instrument l	Location : Vial 41
Injection Date :	6/8/2010 10:25:53 AM	Inj: 1
		Inj Volume : 5 µl
Acq. Method :	D:\LC\LTL\data\LTL-6-21 60MIN.M	1\LTL-6-21 2010-06-08 10-13-30\ASH-10-90-10ML-220NM-
Last changed :	11/15/2009 6:41:50 PM h	by DXQ
Analysis Method :	D:\LC\LTL\DATA\LTL-6-21 ASH-10-90-10ML-220NM-60	l\LTL-6-21 2010-06-08 10-13-30\SIG1000002.D\DA.M (OMIN.M)
Last changed :	6/8/2010 10:51:45 AM by (modified after loading	d)
VUUDI A, VUANE	sength=220 nm (D3LC/LTD/DATA/LTE-5-	F21VLTL-6-21 2010-06-08 10-13-30/S1G1000002.0)
m AU	2 x2	
2000 -	Hanner Hanner	[™] ₂ t ^{el} st ^{tolo} ⊟O ₂ C − CO ₂ CH ₃
1500 -		J J J Jaj
1000 -		
500 -		
10	12	14 16 18 min
Area Percent Report		
Controd Dr.	. Gimel	
Multinlier	· 1 0000	
Dilution	. 1.0000	
Hee Multiplier (Dilution Rector with IST	The
ose micipiter a	PILACION FACTOR WICH 151	200
Signal 1: VWD1 Å,	Wavelength=220 nm	
Peak RetTime Type # [min] 	: Width Area He [min] mAU *s [mAU -]]	eight Area U] %
1 11.278 MM 2 15.663 MM	0.6621 9.44872e4 2378 0.8501 9.79706e4 1920	8.58472 49.0950 0.70276 50.9050
T	1.00450-5.400	0.00740
locals :	1.9Z458e5 4Z95	9.20/40

Instrument 1 6/8/2010 10:51:50 AM dxq
Acq. Operator : LTL Acq. Instrument : Instrument 1 Seq. Line : 2 Location : Vial 43 Injection Date : 6/9/2010 4:48:19 PM Inj : 1 Inj Volume : 5 µl Acq. Method : D:\LC\LTL\data\LTL-6-21\LTL-6-24 2010-06-09 16-35-54\ASH-10-90-10ML-220NM-20MIN.M Last changed : 3/31/2010 4:54:37 PM by LTL Analysis Method : D:\LC\LTL\DATA\LTL-6-21\LTL-6-24 2010-06-09 16-35-54\SIG1000002.D\DA.M (ASH-10-90-10ML-220NM-20MIN.M) Last changed : 6/9/2010 5:09:46 PM by LTL (modified after loading) WWD1 A. Wavelergth=220 nm (D\LCLTL\DATA\LTL-6.21\LTL-6.242010-06-09 16-3554\SIG1000002.D) mAU 1750 1500 .CO₂Me 1250 EtO₂C 1000 3aj 750 500 1.^{1.2005}22 45 250 ۵ 11 15 16 17 13 14 18 12 min _____ Area Percent Report _____ Sorted By : Signal Multiplier 1.0000 : 1.0000 Dilution : Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 Å, Wavelength=220 nm Peak RetTime Type Width Height Area Area 믢 -|-----1 0.5668 4305.21631 126.59375 4.2294 0.8702 9.74867e4 1867.12585 95.7706 2 15.652 MM Totals : 1.01792e5 1993.71960

Data File D:\LC\LTL\DATA\LTL-6-21\LTL-6-24 2010-06-09 16-35-54\SIG1000002.D Sample Name: LTL-6-24

Instrument 1 6/9/2010 5:09:50 PM LTL

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Data File D:\LC\LTL\DATA\LTL-6-25\LTL-6-25 2010-06-09 19-34-35\SIG1000002.D Sample Name: LTL-6-25

Acq. Operator : LTL Seq. Line : 2
Acq. Instrument : Instrument I Location : Vial 44
Injection Date : 6/9/2010 /:4/:00 Pn Inj: 1 Inj Kolume : 5 ul
Acq. Method : D:\LC\LTL\data\LTL-6-25\LTL-6-25 2010-06-09 19-34-35\ASH-5-95-10ML-220NM- 60MIN.M
Last changed : 6/9/2010 8:05:19 PM by LTL (modified after loading)
Analysis Method : D:\LCL\LTL\DATA\LTL-6-25\LTL-6-25 2010-06-09 19-34-35\SIG1000002.D\DA.M (
Last changed : 6/9/2010 8:08:42 PM by LTL
[modified after loading]
l l a st
250
EtO ₂ C
150 N
5ak / /
50-1 { }
9 10 11 12 13 14 16 16 17 min
luce Deveet Devet
Area Fercenc Report
Sorted By : Signal Multiplier · 1 0000
Dilution : 1.0000
Use Multiplier & Dilution Factor with ISTDs
Signal 1: VWD1 A, Wavelength=220 nm
Deals Destring These III is the loss
[min] [min] mAII *s [mAII] \$
1 9.568 MM 0.3494 6338.94092 302.37076 50.0772
2 16.357 MM 0.5855 6319.40674 179.87982 49.9228
Totals : 1.26583e4 482.25058

*** End of Report ***

Instrument 1 6/9/2010 8:08:48 PM LTL

Data File D:\LC\LTL\DATA\LTL-6-30\LTL-6-30A-1 2010-06-14 11-03-07\SIG1000002.D Sample Name: LTL-6-30A-1

Instrument 1 6/14/2010 11:37:18 AM LTL

Data File D:\LC\LTL\DATA\LTL-5-51\LTL-5-51A 2010-04-29 09-52-13\SIG1000002.D Sample Name: LTL-5-51A

Instrument 1 5/25/2010 8:09:47 PM thl

Data File D:\LC\LTL\DATA\LTL-5-73\LTL-5-73 2010-05-25 19-12-04\SIG1000002.D Sample Name: LTL-5-73

Acq. Operator : LTL Seq. Line : 2
Acq. Instrument : Instrument 1 Location : Vial 52
Injection Date : 5/25/2010 7:24:32 PM Inj: 1
Ing Volume : 5 pl Acq. Method : D:\LC\LTL\data\LTL-5-73\LTL-5-73 2010-05-25 19-12-04\ASH-10-90-10ML-220MM- 20MIN.M
Last changed : 3/31/2010 4:54:37 PM by LTL
Analysis Method : D:\LC\LTL\DATA\LTL-5-73\LTL-5-73 2010-05-25 19-12-04\SIG1000002.D\DA.M (ASH-10-90-10ML-220MM-20MIN.M)
Last changed : 5/25/2010 8:10:31 PM by LTL (modified after loading)
Wi/D1 A, Vitavelength=220 nm (D3LC)LTUDALALTL-5-73/LTL-5-75/TA-75/T5-75/T5-75/T5-75/T5-75/LTL-5-75/T5-7575/T5-75-7575/T5-75/T5
45
EtO ₂ C
3al
7 8 9 10 11 12 min
معتمد المعتمين المعتم
Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Use Multiplier & Dilution Factor with ISTDs
Signal 1: VWD1 A, Wavelength=220 nm
Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] %
1 6.911 MM 0.3542 44.40071 2.08896 3.5810 2 10.997 MM 0.4776 1195.49963 41.71612 96.4190
Totals: 1239.90035 43.80508

Instrument 1 5/25/2010 8:10:34 PM LTL

Data File D:\LC\LTL\DATA\LTL-5-43\LTL-5-43 2010-04-27 10-59-37\SIG1000001.D Sample Name: LTL-5-43A

Instrument 1 5/4/2010 8:41:05 PM TMC

Data File D:\LC\LTL\DATA\LTL-5-43-44\LTL-5-43-44 2010-04-27 08-40-08\SIG1000005.D Sample Name: LTL-5-44B

Instrument 1 5/4/2010 8:43:59 PM TMC

Data File D:\LC\LTL\DATA\LTL-5-38\LTL-5-39 2010-04-21 16-53-56\SIG1000002.D Sample Name: LTL-5-38A

Acq. Operator : LTL Seq. Line : 2 Acq. Detrument : Instrument 1 Incetion Date : $4/21/2010$ 5:06:40 PM Inj : 1 Inj Volume : 5 µl Acq. Method : D:VLCUTL/Meta_NLTL-5-39, LTL-5-39 2010-04-21 16-53-56, STGL000002. D\DA.M (MDH-5-95-10ML-220MH-599, LTL Analysis Method : D:VLCUTL/DATALEL-539, LTL-5-39 2010-04-21 16-53-56, STGL000002. D\DA.M (MDH-5-95-10ML-220MH-599, LTL Analysis Method : D:VLCUTL/DATALEL-539, LTL-5-39 2010-04-21 16-53-56, STGL000002. D\DA.M (MDH-5-95-10ML-220MH-599, LTL Inducting a terr to adding) Inducting a terr to adding Induct MOH A Wavelergen-220 mm COULT LOAVALLE-539, LTL-5-39 2010-04-21 18-5360506 000002. D) MOH A Wavelergen-220 mm COULT LOAVALLE-539, LTL-5-39 2010-04-21 18-5360506 000002. D) Acg. Geo Geo Geo Geo Geo Geo Geo Geo Geo Geo						
Acq. Instrument : Instrument 1 Location : Vial 67 Injection Date : 4/21/2010 5:06:40 PM Inj : 1 Inj Volume : 5 µl Acq. Method : D: LICLITI/Ldata.LILI-5-39;LILI-5-39 2010-04-21 16-53-56;MDH-5-95-10ML-220MF- 30HTN.H Last changed : 4/21/2010 6:58:01 PM by LI Last changed : 4/21/2010 6:58:01 PM by LI Last changed : 4/21/2010 6:58:01 PM by LI Indified after loading) Model Adverse of the state of the	Acq. Operator :	LTL	Seq.	Line: 2		
Injection Date : 4/21/2010 5:06:40 PM Inj : 1 Inj Volume : 5 µl Acq. Method : D: \LC\LTL\data \LTL-5-39 \LTL-5-39 2010-04-21 16-53-56\LDH-5-95-10ML-220MM- SOUTH.N Last changed : 4/21/2010 4:53:02 PM by LTL Analysis Method : D: \LC\LTL\DATA.HL-5-39 \LTL-5-39 2010-04-21 16-53-56\LDH-5-95-10ML-220MM- South : 5-95-10ML-220MM-30ML 5-39 2010-04-21 16-53-56\LDH-5-95-10ML-220MM- method : D: \LC\LTL\DATA.HL-5-39 \LTL-5-39 2010-04-21 16-53-56\LDH-5-20 IN Multiplier : Signal Hitiplier : Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 mM Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] * [Acq. Instrument :	Instrument l	Loc	ation : Vial 6	57	
Acq. Method :: D:\LC\LTL\data\LTL-5-39\LTL-5-39\LTL-5-39\LTL-5-35-56\LDH-5-95-10RL-220RM- SOURD N Last changed :: 4/21/2010 4:53:23 PM by LTL Analysis Method :: D:\LC\LTL\DATA\LTL-5-39\LTL-5-39\LTL-5-39 2010-04-21 16-53-56\LTL-5000002.D\DA.H (LRE-5-95-10RL-220RM-SOURD N) Last changed :: 4/21/2010 6:58:01 PM by LTL modified a fire 1 onding) Toda Medenger 220 mCOLCUTURATALT-500(TL-5002010-50000002D) MOTA Medenger 220 mCOLCUTURATALT-500(TL-5002010-50000002D) Acquire 200 mCOLCUTURATALT-500(TL-5002010-50000002D) Acquire 200 mCOLCUTURATALT-500(TL-5002010-500000002D) MOTA Medenger 220 mCOLCUTURATALT-500(TL-5002010-500000002D) Acquire 200 mCOLCUTURATALT-500(TL-5002010-500000000D) Acquire 200 mCOLCUTURATALT-500(TL-5002010-500000000D) Method = 0 m m modified a fire 1 mo	Injection Date :	4/21/2010 5:06:40 P	M	Inj: 1		
Lest changed : $4/21/2010$ 4:53:23 PM by LTL Analysis Method : D: VLC/ITL/DATALITL-5-39 (D10-04-21 16-53-56) STG1000002.D)DA.H (DH-5-95-10H-200m-30HILM] Let changed : $4/21/2010$ 6:58:01 PM by LTL (modified a first loading) Todation of the state of the sta	Acq. Method :	D:\LC\LTL\data\LTL-	Inj V 5-38\LTL-5-39 20	olume: 5 µl 10-04-21 16-53	3-56\ADH-5-95-10M	L-220 NM -
Analysis Method : D: VICVITIDATA/ITL-5-39 2010-04-21 16-53-56/SIG1000002.D/DA.M ($\Delta DH-5-95-10ML-220MH-30MIN.M$) Last changed : $4/2L/2010$ 653:01 PM by ITL (modified after loading) $I_{M} = \frac{1}{10001} = \frac{1}{10001} = \frac{1}{10000} = \frac{1}{100000} = \frac{1}{100000} = \frac{1}{10000000000000000000000000000000000$	Last changed :	4/21/2010 4:53:23 P	M by LTL			
Lest changed : $4/21/2010$ 6:58:01 PM by LTL (modified after loading) The Work Wavelength 220 nm (CALCULUCATALTS 302 01:04 21 16:5336516 000002.0) The Wavelength 220 nm (CALCULUCATALTS 302 01:04 21 16:5336516 000002.0) The Wavelength 220 nm (CALCULUCATALTS 302 01:04 21 16:5336516 000002.0) The Wavelength 220 nm (CALCULUCATALTS 302 01:04 21 16:5336516 000002.0) The Wavelength 220 nm (CALCULUCATALTS 302 01:04 21 16:5336516 000002.0) The Wavelength 220 nm (CALCULUCATALTS 302 01:04 21 16:5336516 000002.0) The Wavelength 220 nm (CALCULUCATALTS 302 01:04 21 16:5336516 000002.0) The Wavelength 220 nm (CALCULUCATALTS 302 01:04 21 16:5336516 000002.0) The Wavelength 220 nm (Marculu 31 16:5396 Min 0.4228 1:5890464 16:56.41632 51.66976 2 12.167 MM 0.3009 1.46527e4 801.25385 46:3124 Totals : 3.07431e4 1427.67017	Analysis Method :	D: \LC\LTL\DATA\LTL- ADH-5-95-10ML-220NM		10-04-21 16-53	3-56\SIG1000002.D	\DA.M (
With A Wavelength=220 nm (DALCLTLDATALTL-539 2010-04-21 16-3595051000002.D) InAl = 1 + InAl = 1 + InAl +	Last changed :	4/21/2010 6:58:01 P (modified after loa	M by LTL ding)			
$\begin{array}{c} \begin{array}{c} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	WVD1 A, Wave	length=220 nm (DALCALTEADATAN	LTL-5-38\LTL-5-39 2010-04	-21 16-53-56\SIG 10000	002.D)	
$I = \frac{1}{1000} \int_{0}^{0} \int_{0}^{0}$	mAU]			1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
$I = \frac{1}{1000} \int_{000}^{000} \int_{1000}^{000} $	700 -			Hanne F	to _n c D	
500 0	600 -	Â				CO2CH3
300 300 300 300 300 200 9 10 11 12 13 14 15 min Area Percent Report Area Percent Report Sorted By :: Signal Multiplier :: 1.0000 1000 11 12 13 14 15 min Sorted By :: Signal Multiplier :: 1.0000 1 12 13 14 15 min Dilution :: 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Nea	500 - 400 -				H	
200 0	300 -				Jan	
100 0 0 10 11 12 13 14 15 min Area Percent Report	200					
Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : Signal : Signal : Multiplier : 1.0000 : Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 Å, Wavelength=220 nm Peak RetTime Type Width Area # [min] [min] [mAU ** : 1 8.936 MM 0.4228 1.58904e4 626.41632 51.6876 2 12.167 MM 0.3089 1.48527e4 801.25385 48.3124 Totals : 3.07431e4 1427.67017	100 -					
Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 Å, Wavelength=220 nm Peak RetTime Type Width Area # (min) (min)				/	<u> </u>	
i i	· · · · · · · · · · · · · · · · · · ·			 		
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 Å, Wavelength=220 nm Peak RetTime Type Width Årea Height Årea # [min] [min] mÅU *s	8	<u>9 10</u>	11 1	2 13	14	15 min
Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier 4 Dilution Factor with ISTDs Signal 1: VMD1 Å, Wavelength=220 nm Peak RetTime Type Width Årea # [min] [min] mÅU *s [mAU] %		Area Percent	Report			
Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VMD1 Å, Wavelength=220 nm Peak RetTime Type Width Årea # [min] [min] måU *s						
Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 Å, Wavelength=220 nm Peak RetTime Type Width Årea # [min] [min] måU *s	Sorted By	: Signal				
Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 Å, Wavelength=220 nm Peak RetTime Type Width Årea Height Årea # [min] [min] mÅU *s [mÅU] % 	Multiplier	: 1.0000				
Use Multiplier 4 Dilution Factor with ISTDs Signal 1: VWD1 Å, Wavelength=220 nm Peak RetTime Type Width Årea Height Årea # [min] [min] mAU *s [mAU] % 	Dilution	: 1.0000				
Signal 1: VWD1 Å, Wavelength=220 nm Peak RetTime Type Width Årea # [min] [min] mÅU *s [mÅU] %	Use Multiplier &	Dilution Factor with	ISTDs			
Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU]	Signal 1: VWDl A,	Wavelength=220 nm				
1 8.936 MM 0.4228 1.58904e4 626.41632 51.6876 2 12.167 MM 0.3089 1.48527e4 801.25385 48.3124 Totals : 3.07431e4 1427.67017	Peak RetTime Type # [min]	: Width Area [min] mAU *s	Height Ares [mAU] %	a !		
Totals: 3.07431e4 1427.67017	1 8.936 MM 2 12.167 MM	0.4228 1.58904e4 0.3089 1.48527e4	626.41632 51.6 801.25385 48.3	876 124		
	Totals :	3.07431e4	1427.67017			

Instrument 1 4/21/2010 6:58:06 PM LTL

Acq. Operator : LTL Seq. Line : 3 Location : Vial 69 Acq. Instrument : Instrument 1 Injection Date : 4/21/2010 5:38:00 PM Inj : 1 Inj Volume : 5 µl Acq. Method : D:\LC\LTL\data\LTL-5-38\LTL-5-39 2010-04-21 16-53-56\ADH-5-95-10ML-220NM-30MIN.M Last changed : 4/21/2010 4:53:23 PM by LTL Analysis Method : D:\LC\LTL\DATA\LTL-5-38\LTL-5-39 2010-04-21 16-53-56\SIG1000003.D\DA.M (ADH-5-95-10ML-220NM-30MIN.M) Last changed : 4/21/2010 6:55:47 PM by LTL (modified after loading) WWD1 A. Wavelength=220 nm (D%LCVLTLVDATAVLTL-538VLTL-539 2010-04-21 18-53-58%SIG1000003.D) mAU 600 С 500 .CO₂Me 400 EtO₂C 3an 300 200 100 ē Û 12 13 15 min ŵ 11 14 _____ Area Percent Report _____ Sorted By : Signal Multiplier 1.0000 : 1.0000 Dilution : Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [mAU] [min] mAU *s # [min] 믢 -----____ -1 0.4165 263.95801 1 9.061 MM 10.56129 1.5900 2 11.955 MM 0.4414 1.63369e4 616.88617 98.4100 Totals : 1.66008e4 627.44746

Data File D:\LC\LTL\DATA\LTL-5-38\LTL-5-39 2010-04-21 16-53-56\SIG1000003.D Sample Name: LTL-5-39

Instrument 1 4/21/2010 6:56:07 PM LTL

Data File D:\LC\LTL\DATA\LTL-5-43-44\LTL-5-43-44 2010-04-27 08-40-08\SIG1000004.D Sample Name: LTL-5-44A

Instrument 1 5/4/2010 8:45:14 PM TMC

Data File D:\LC\LTL\DATA\LTL-5-43-44\LTL-5-43-44 2010-04-27 08-40-08\SIG1000003.D Sample Name: LTL-5-43B

Instrument 1 5/4/2010 8:46:39 PM TMC

Data File D:\LC\LTL\DATA\LTL-5-47\LTL-5-47A 2010-04-27 20-23-48\SIG1000002.D Sample Name: LTL-5-47A

Instrument 1 4/28/2010 6:15:22 PM LTL

Data File D:\LC\LTL\DATA\LTL-5-47\LTL-5-47B 2010-04-28 17-10-24\SIG1000001.D Sample Name: LTL-5-47B

Instrument 1 4/28/2010 6:13:59 PM LTL

Data File D:\LC\LTL\DATA\LTL-5-49\LTL-5-49A-1 2010-04-28 16-17-11\SIG1000001.D Sample Name: LTL-5-49A

Instrument 1 4/28/2010 8:33:28 PM LTL

Data File D:\LC\LTL\DATA\LTL-5-49\LTL-5-49B 2010-05-04 15-00-56\SIG1000002.D Sample Name: LTL-5-49B

Instrument 1 5/4/2010 3:52:33 PM TMC