Cationic and charge-neutral calcium tetrahydroborate complexes and their

use in the controlled ring-opening polymerisation of rac-lactide

Michael G. Cushion and Philip Mountford*

Supporting Information

Figure S1. M_n (as measured by GPC) vs % rac-LA converted using [Ca(BH₄)(THF)₅][BPh₄] (1-BPh₄). The dotted line is that expected for one PLA chain per BH₄ group. Conditions: THF, 70 °C, 4.5 hours, [rac-LA]₀:[1-BPh₄]₀ = 100. M_w/M_n values are 1.3, 1.2, 1.2, 1.2, 1.3.

Figure S2. First order plot (linear fit, $R^2 = 0.987$) for *rac*-LA consumption using [Ca(BH₄)(THF)₅][BPh₄] (**1-BPh**₄). Conditions: THF, 70 °C, 4.5 hours, [*rac*-LA]₀:[**1-BPh**₄]₀ = 100. Apparent first order propagation rate constant (k_{app}) = 8.4(2) x 10⁻³ min⁻¹.

Figure S3. M_n (as measured by GPC) vs equivs. rac-LA converted using $[(Tpm)Ca(BH_4)(THF)_2][BPh_4]$ (**2-BPh_4**). The gradient of the fitted line ($R^2 = 0.982$) is 157(11) g mol⁻¹ (equivs. converted)⁻¹ (expected 144.1 g mol⁻¹) with an intercept of $M_n = 9580(1890)$. Conditions: THF, RT, 2 hours, [rac-LA]_0:[**2-BPh_4**]_0 = 50, 100, 150, 200, 250. M_w/M_n values are 1.2, 1.3, 1.4, 1.4, 1.4.

Figure S4. M_n (as measured by GPC) *vs* equivs. *rac*-LA converted using (Tp^{tBu,Me})Ca(BH₄)(THF) (**3**). The gradient of the fitted line ($R^2 = 0.996$) is 239(7) g mol⁻¹ (equivs. converted)⁻¹ (expected 144.1 g mol⁻¹) with an intercept of $M_n = 0$. Conditions: THF, RT, 5 mins, [*rac*-LA]_0:[**4**]_0 = 40, 80, 120, 160, 200. M_w/M_n values are 1.6, 1.7, 1.6, 1.6, 1.7, 1.6.

Experimental Details

General methods and instrumentation. All manipulations were carried out using standard Schlenk line or dry-box techniques under an atmosphere of argon or dinitrogen. Solvents were degassed by sparging with dinitrogen and dried by passing through a column of the appropriate drying agent. Toluene and THF was refluxed over sodium or potassium, respectively, and distilled. Deuterated solvents were dried over potassium (C_6D_6 , THF- d_8 ,) or phosphorous oxide (CD_2Cl_2), distilled under reduced pressure and stored under argon in Teflon valve ampoules.

NMR tube samples were prepared under dinitrogen in 5 mm Wilmad 507-PP tubes fitted with J. Young Teflon valves. ¹H, ¹³C-¹{H} and ¹¹B-{¹H} NMR spectra were recorded on Varian Mercury-VX 300 and Varian Unity Plus 500 spectrometers at ambient temperature unless stated otherwise. ¹¹B spectra were referenced externally to BF₃·Et₂O. Other NMR spectra were referenced internally to residual protio-solvent (¹H) or solvent (¹³C) resonances, and are reported relative to tetramethylsilane ($\delta = 0$ ppm). ¹H and ¹³C assignments were confirmed using two dimensional ¹H- ¹H and ¹³C-¹H NMR correlation experiments. Chemical shifts are quoted in δ (ppm) and coupling constants in Hz. IR spectra were recorded on a Nicolet Magna 560 E.S.P. FTIR spectrometer. Samples were prepared in a dry-box as Nujol mulls or in solution between NaCl plates, and the data are quoted in wavenumbers (cm⁻¹). Elemental analyses were carried out by Elemental Microanalysis Ltd., Okehampton, UK.

MALDI-ToF mass spectra were measured using a Waters MALDI micro equipped with a 337 nm nitrogen laser. An accelerating voltage of 25 kV was applied. The polymer samples were dissolved in THF at a concentration of 1 mg mL⁻¹. The cationization agent used was potassium trifluoroacetate (Fluka, > 99 %) dissolved in THF at a concentration of 5 mg mL⁻¹. The matrix used was *trans*-2-[3-(4-*tert*-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) (Fluka) and was dissolved in THF at a concentration of 40 mg mL⁻¹. Solutions of matrix, salt and polymer were mixed in a volume ratio of 4:1:4, respectively. The mixed solution was hand-spotted on a stainless steel MALDI target and left to dry. The spectra were recorded in the refectron mode. Polymer molecular weights (M_n , M_w) were determined by GPC using a Polymer Laboratories Plgel Mixed-D column (300 mm length, 7.5 mm diameter) and a Polymer Laboratories PL-GPC50 Plus instrument equipped with a refractive index detector. THF (HPLC grade) was used as an eluent at 30 °C with a rate of 1 mL min⁻¹. Linear polystyrenes were used as primary calibration standards, and Mark-Houwink corrections for poly(ϵ -CL) and poly(*rac*-LA) in THF were applied for the experimental samples.¹⁻³

Starting materials. [Et₃NH][BPh₄], HC(Me₂pz)₃ (Tpm), 3,5^{-t}BuMepzH and KTp^{tBu,Me} were prepared according to literature methods.⁴⁻⁷ HC(Me₂pz)₃ was further purified by trituration with

pentane. ε -CL was dried over CaH₂ for 5 d at RT and then distilled and stored over 4 Å molecular sieves at 4 °C. *Rac*-LA was recrystallized twice from sodium-dried toluene and subsequently sublimed twice prior to use. Ca(BH₄)₂(THF)₂ was purchased from Sigma-Aldrich and used as received.

[Ca(BH₄)(THF)₅][BPh₄] (1-BPh₄). A solution of [Et₃NH][BPh₄] (3.94 g, 9.40 mmol) in THF (20 mL) was added to a solution of Ca(BH₄)₂(THF)₂ (2.00 g, 9.40 mmol) in THF (20 mL) at -78 °C. The resulting white suspension was stirred for 30 min at this temperature, then allowed to warm to RT and stirred for a further 2 h (gas evolution was observed). The volatiles were removed under reduced pressure, leaving a white solid. This was extracted into THF (3 x 15 mL), and the solution concentrated and cooled to -30 °C, yielding 1-BPh₄ as a colorless microcrystalline solid. Yield: 3.50 g (51 %). Diffraction-quality crystals were grown from a saturated THF solution at -30 °C. ¹H NMR (CD₂Cl₂, 299.9 MHz, 293 K): 7.35 (8 H, m, o-B(C₆H₅)₄), 7.05 (8 H, t, ${}^{3}J$ = 7.5 Hz, m- $B(C_6H_5)_4)$, 6.90 (4 H, t, ${}^{3}J = 7.5$ Hz, p- $B(C_6H_5)_4$), 3.83 (20 H, m, OCH₂CH₂), 1.95 (20 H, m, OCH_2CH_2 , -0.19 (4 H, q, ${}^{1}J_{BH}$ = 82 Hz) ppm. ${}^{13}C{}^{1}H$ NMR (CD_2Cl_2 , 75.5 MHz, 293 K): 164.4 (*i*-B(C₆H₅)₄), 153.3 (136.3 (*o*-B(C₆H₅)₄), 125.9 (*m*-B(C₆H₅)₄), 122.1 (*p*-B(C₆H₅)₄), 69.2 (O<u>C</u>H₂CH₂), 25.7 (OCH₂<u>C</u>H₂) ppm. ¹¹B{¹H} NMR (CD₂Cl₂ 96.2 MHz): $\delta = -6.6$ (BPh₄), -36.1 (BH₄). IR (NaCl plates, Nujol mull, cm⁻¹): 2725 (s), 2670(s), 2336(s), 2261(s), 2217(s), 1261(s), 1150(m), 1092(s), 1023(s), 870(m), 732(s), 705(s). IR (NaCl cell, THF, v(B-H), cm⁻¹): 2406 (s, B-H_t of BH₄), 2260 and 2208 (s, B-H_b of BH₄; 52 cm⁻¹ splitting). Anal. found (calcd. for $C_{44}H_{64}B_2CaO_5$): C, 71.75 (71.93); H, 8.72 (8.78) %. ES⁺-MS (THF): $m/z = 415 ([1]^+)$.

[(Tpm)Ca(BH₄)(THF)₂][BPh₄] (2-BPh₄). A solution of Tpm (0.300 g, 1.00 mmol) in CH₂Cl₂ (20 mL) was added dropwise to a solution of $[Ca(BH_4)(THF)_5][BPh_4]$ (0.670 g, 1.00 mmol) in CH₂Cl₂ (20 mL) at -78 °C. The resulting pale yellow solution was stirred at this temperature for 2 h, then allowed to warm to RT and stirred for a further h. The volatiles were removed under reduced pressure, leaving a spongy yellow solid. Recrystallisation from CH₂Cl₂:pentane (1:3) at -30 °C, gave **2-BPh**₄ as an off-white microcrystalline solid. Yield: 0.61 g (74 %). Diffraction-quality crystals were grown from a hexane-layered THF solution at RT. These were also used for elemental analysis. Both batches contained residual THF according to analysis. ¹H NMR (CD₂Cl₂, 299.9 MHz, 293 K): 7.80 (1 H, s, <u>HC</u>(Me₂pz)₃), 7.33 (8 H, m, *o*-B(C₆H₅)₄), 7.00 (8 H, t, ³*J* = 7.2 Hz, *m*-B(C₆H₅)₄), 6.84 (4 H, t, ³*J* = 7.2 Hz, *p*-B(C₆H₅)₄), 5.98 (3 H, s, N₂C₃Me₂<u>H</u>), 3.82 (8 H, m, OC<u>H</u>₂CH₂), 2.41 (9 H, s, 3-N₂C₃<u>Me</u>₂H), 2.29 (9 H, s, 5-N₂C₃<u>Me</u>₂H), 1.94 (8 H, OCH₂C<u>H</u>₂), 0.15 (4 H, q, ¹*J*_{BH} = 82 Hz) ppm. ¹³C{¹H} NMR (CD₂Cl₂, 75.5 MHz, 293 K): 164.5 (*i*-B(C₆H₅)₄), 153.3 (3-N₂C₃Me₂H), 141.5 (5-N₂C₃Me₂H), 136.3 (*o*-B(C₆H₅)₄), 125.9 (*m*-B(C₆H₅)₄), 122.1 (*p*-B(C₆H₅)₄), 69.2 (overlapping HC(Me₂pz)₃ and OCH₂CH₂), 25.7 (OCH₂CH₂), 14.0 (3-N₂C₃Me₂H), 11.4 (5-

 $N_2C_3Me_2H$) ppm. ¹¹B{¹H} NMR (CD₂Cl₂, 96.2 MHz). ¹¹B{¹H} NMR (CD₂Cl₂, 96.2 MHz): $\delta = -6.9$ (BPh₄), -35.6 (BH₄). IR (NaCl plates, Nujol mull, cm⁻¹): 2725 (s), 2670(s), 2336(s), 2269(s), 2214(s), 1377 (s), 1306 (s), 1260(s), 1154(m), 1098(m), 1032(s), 977(s), 858(s). IR (NaCl cell, THF, v(B-H), cm⁻¹): 2410 (s, B-H_t of BH₄), 2270 and 2220 (s, B-H_b of BH₄; 50 cm⁻¹ splitting). Anal. found (calcd. For C₅₂H₇₀B₂CaN₆O₃ (**2-BPh₄·**THF)): C, 69.98 (70.27); H, 7.93 (7.94); N, 9.43 (9.45) %. ES⁺-MS (THF): m/z = 426 ([**2**-THF]⁺), 353 ([**2**-2(THF)]⁺).

(Tp^{tBu,Me})Ca(BH₄)(THF) (3). A suspension of KTp^{tBu,Me} (0.500 g, 1.08 mmol) in THF (30 mL) was added dropwise over 30 mins to a solution of Ca(BH₄)₂(THF)₂ (0.230 g, 1.08 mmol) in THF (20 mL) at RT. The resulting suspension was stirred for 3 h. After this time, the suspension was filtered and the volatiles removed under reduced pressure, leaving a white residue. This was extracted into benzene (3 x 10 mL) and the volatiles were removed under reduced pressure to give a spongy white solid. This was recrystallised from THF :pentane (1:3) to give 3 as a colorless microcrystalline solid. Yield: 0.37 g (65 %). ¹H NMR (C₆D₆, 299.9 MHz, 293 K): 5.68 (3 H, s, pzH), 3.26 (4 H, m, OCH₂CH₂), 2.19 (9 H, s, N₂C₃^tBuMeH), 1.42 (27 H, s, N₂C₃^tBuMeH), 1.17 (4 H, m, OCH₂CH₂), B-H of $Tp^{^{t}Bu,Me}$ and BH_4 not observed. $^{^{13}}C{^{1}H}$ NMR (C₆D₆, 75.5 MHz, 293 K): 163.4 (3- $N_2C_3^{t}BuMeH$, 145.3 (5- $N_2C_3^{t}BuMeH$), 103.1 (4- $N_2C_3^{t}BuMeH$), 68.6 (OCH₂CH₂), 32.2 $(N_2C_3C(Me_3)MeH)$, 31.5 $(N_2C_3C(Me_3)MeH)$, 25.5 (OCH_2CH_2) , 13.5 $(N_2C_3^{t}BuMeH)$ ppm. ¹¹B{¹H} NMR (C₆D₆, 96.2 MHz): $\delta = -7.9$ (Tp^{tBu,Me}), -32.1 (BH₄). IR (NaCl plates, Nujol mull, cm⁻¹): 2558 (s), 2396(s), 2255(m), 2214(s), 1541(s), 1334(s), 1240(s), 1199(s), 1178(s), 1068(s), 1027(s), 705(s). IR (NaCl cell, CH₂Cl₂), v(B-H), cm⁻¹) : 2565 (s, B-H of Tp^{tBu,Me}), (2413 (s, B-H_t of BH₄), 2304 and 2247 (s, B-H_b of BH₄; 57 cm⁻¹ splitting). Anal. found (calcd. for C₂₈H₅₂B₂CaN₆O): C, 60.67 (61.10); H, 9.35 (9.52); N, 14.56 (15.27) %. EI-MS: $m/z = 478 (80 \%, [3-THF]^+)$.

Procedure for polymerization of \varepsilon-CL. ε -CL (3.31 mmol) was weighed into a Schlenk tube and dissolved in 2 mL of anhydrous THF. A sufficient quantity of catalyst ([ε -CL]₀:[Ca]₀ = 200) was weighed into a separate Schlenk and dissolved in 1.4 mL anhydrous THF. The ε -CL solution was added in one portion with vigorous stirring. The polymerization was quenched by addition of a few drops of wet THF. An aliquot was taken for NMR analysis (determination of conversion). Poly(ε -CL) was precipitated from ethanol (100 mL), filtered and dried to constant weight *in vacuo*. Low molecular weight samples for MALDI-ToF MS analysis ([ε -CL]₀:[Ca]₀ = 20) were prepared in an analogous way except that the polymerization mixtures were simply evaporated to dryness.

Procedure for polymerisation of *rac*-LA. *Rac*-lactide (3 mmol) was weighed into a Schlenk tube and dissolved in 3 mL of anhydrous THF. A sufficient amount of catalyst for the required [*rac*-LA]₀:[Ca]₀ ratio was weighed into a separate Schlenk tube and dissolved in 1.0 mL of anhydrous THF. The *rac*-LA solution was added in one portion with vigourous stirring. After the desired time

interval the polymerisation was quenched by addition of *ca*. 0.5 mL of wet THF. Samples were evaporated to dryness and conversions were determined by ¹H NMR integration of the OC<u>H</u>Me resonance relative intensities of the residual *rac*-LA and poly(*rac*-LA). Low molecular weight samples for MALDI-ToF MS analysis ([ϵ -CL]₀:[Ca]₀ = 20) were prepared as above for ϵ -CL. An analogous method and was used for the -20 °C polymerisations using **3** in the case of [*rac*-LA]₀:[Ca]₀ > 100 except that the volume of THF used for the *rac*-LA solution was increased to 5 mL (due to the lower solubility of *rac*-LA at this temperature) and the *rac*-lactide and initiator solutions were cooled to -20 °C prior to mixing, and maintained at this temperature until quenching.

References

- 1. R. Alfred and L. W. H. Howard, J. Polym. Sci. Part A: Polym. Chem., 1972, 10, 217.
- 2. I. Barakat, D. Ph, R. Jérôme and T. Ph, J. Polym. Sci. Part A: Polym. Chem., 1993, 31, 505.
- 3. R. D. John, J. Jay, M. K. Daniel, B. H. Sukhendu, R. L. Bradford and H. H. Matthew, J. Polym. Sci. Part B: Polym. Phys., 2005, 43, 3100.
- 4. D. Robert, M. Kondracka and J. Okuda, *Dalton Trans.*, 2008, 2667.
- 5. D. L. Reger, T. C. Grattan, K. J. Brown, C. A. Little, J. J. S. Lamba, A. L. Rheingold and R. D. Sommer, *J. Organomet. Chem.*, 2000, **607**, 120.
- 6. F. W. Swamer and C. R. Hauser, J. Am. Chem. Soc., 1950, 72, 1352.
- 7. S. Trofimenko, J. Calabrese, J. K. Kochi, S. Wolowiec, F. B. Hulsbergen and J. Reedijk, *Inorg. Chem.*, 1992, **31**, 3943.