SUPPORTING INFORMATION

A New Method for the Construction of the Hydroxylated Tropane Skeleton: Enantioselective Synthesis of (–)-Bao Gong Teng A

Geng-Jie Lin, Xiao Zheng, Pei-Qiang Huang* Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China

Contents

General Methods	S2
Experimental Procedures	S2-S12
References	S12
NMR Spectra	S13-S38

General Methods

Melting points were determined on a Yanaco MP-500 melting point apparatus and are uncorrected. Optical rotations were recorded on a Perkin-Elmer 341 automatic polarimeter. IR spectra were recorded on a Nicolet Avatar 360 FT-IR spectrophotometer. ¹H NMR and ¹³C NMR spectra were recorded on a Varian unity +500 NMR spectrometer or a Bruker AV 400 NMR spectrometer. Unless otherwise noted, ¹H NMR spectra were registered in CDCl₃, and chemical shifts are expressed in parts per million (δ) relative to internal Me₄Si. Mass spectra were recorded by Bruker Dalton Esquire 3000 plus and Finnigan Mat-LCQ (ESI direct injection). HRMS spectra were recorded on a Shimadzu LCMS-IT-TOF apparatus. Elemental analyses were performed using a Vario RL analyzer. Tetrahydrofuran was distilled prior to use from sodium benzophenone ketyl. Methylene dichloride was distilled from phosphorus pentoxide. Silica gel (zhifu, 300-400 mesh) from Yantai silica gel factory (China) was used for column chromatography, eluting (unless otherwise stated) with ethyl acetate/ petroleum ether (PE) (60-90 °C) mixture.

Experimental Procedures

(S)-1-Allyl-3-(benzyloxy)pyrrolidine-2,5-dione (6).

To a suspension of (*S*)-1-allyl-3-(benzyloxy)pyrrolidine-2,5-dione¹ (8.80 g, 56.8 mmol) and Ag₂O (39.7 g, 171 mmol) in Et₂O (114 mL) was added BnBr (20.5 mL, 171 mmol). After stirring at dark for two days at room temperature, the mixture was filtered through celite and the residue concentrated in vacuo. Purification of the residue by flash chromatography on silica gel (CH₂Cl₂: PE = 3: 1) afforded compound **6** (13.1 g, 53.4 mmol, 94%) as a colorless oil. [α] D¹⁷ –100.9 (*c* 1.60, CHCl₃); IR (film): 3083, 3058, 3031, 2979, 2932, 2868, 1784, 1712, 1644, 1497, 1455, 1429, 1396, 1333, 1289, 1253, 1196, 1124 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 2.67 (dd, *J* = 4.1, 18.3 Hz, 1H, H-4), 2.96 (dd, *J* = 8.2, 18.3 Hz, 1H, H-4), 4.09-4.12 (m, 2H, NCH₂), 4.37 (dd, *J* = 4.1, 8.2 Hz, 1H, H-3), 4.78 (d, *J* = 11.7 Hz, 1H, OCH₂Ph), 4.99 (d, *J* = 11.7 Hz, 1H, OCH₂Ph), 5.17-5.26 (m, 2H, CH=CH₂), 5.72-5.83 (m, 1H,

CH=CH₂), 7.29-7.41 (m, 5H, ArH); ¹³C-NMR (100 MHz, CDCl₃) δ 36.2, 40.6, 72.0, 72.9, 118.5, 128.1, 128.2, 128.5, 130.3, 136.6, 173.6, 175.4; MS (ESI) *m/z* 268 (M+Na⁺, 100%); Anal. calcd for C₁₄H₁₅NO₃: C, 68.56; H, 6.16; N, 5.71. Found: C, 68.33; H, 6.14; N, 5.70.

(4S,5R)-1-Allyl-4-(benzyloxy)-5-(3-hydroxypropyl)pyrrolidin-2-one (8).

To a cooled solution (0 °C) of compound **6** (1.96 g, 8.00 mmol) in CH₂Cl₂ (64 mL) was added a 0.5 M solution of Grignard reagent **7** in THF (64 mL, 32.0 mmol), prepared from 3-*tert*-butyldimethylsilyloxypropyl bromide. After stirring at 0 °C for 8 h, the reaction was quenched with H₂O (20 mL). The aqueous phase was extracted with CH₂Cl₂ (4×60 mL). The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. After filtration and concentration in vacuo, the residue was purified by flash chromatography on silica gel (EtOAc: PE = 1: 2) to afford the adduct (*N*,*O*-acetal) as a diastereomeric mixture in a combined yield of 94%, which, without further separation, was used in the next step.

To a cooled solution (-55 °C) of the diastereomeric mixture of *N*,*O*-acetals in CH₂Cl₂ (50 mL) were added successively Et₃SiH (16.8 mL, 110 mmol) and BF₃·OEt₂ (5.2 mL, 44.2 mmol). After stirring at -55 °C for overnight, the mixture was allowed to slowly warm to room temperature and stirred for another 2 days. Saturated aqueous NaHCO₃ (20 mL) was added and the aqueous phase was extracted with CH₂Cl₂ (4×30 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and filtered. After concentration in vacuo, the residue was purified by flash chromatography on silica gel (EtOAc: PE = 2: 1) to afford compound **8** (1.88 g, 6.51 mmol, 82%) as a colorless oil. $[\alpha]_D^{17}$ +50.5 (*c* 0.97, CHCl₃); IR (film): 3408, 3083, 3063, 3030, 2927, 2867, 1674, 1636, 1496, 1454, 1413, 1359, 1264, 1196, 1067 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 1.35-1.60 (m, 3H), 1.70-1.80 (m, 1H), 1.90-2.20 (br s, 1H, OH, D₂O exchangeable), 2.49 (dd, *J* = 2.0, 17.5 Hz, 1H, H-3), 2.68 (dd, *J* = 6.6, 17.5 Hz, 1H, H-3), 3.48 (dd, *J* = 7.0, 15.8 Hz, 1H, CH₂N), 3.62 (t, *J* = 6.3 Hz, 2H, CH₂OH), 3.65 (ddd, *J* = 2.0, 3.4, 7.1 Hz, 1H, H-5), 3.90 (ddd, *J* = 2.0, 2.0, 6.6 Hz, 1H, H-4), 4.35 (dd, *J* = 4.3, 15.8 Hz, 1H, CH₂N), 4.48 (d, *J* = 11.8 Hz, 1H, OCH₂Ph), 4.54

(d, J = 11.8 Hz, 1H, OCH₂Ph), 5.15-5.28 (m, 2H, CH=CH₂), 5.67-5.79 (m, 1H, CH=CH₂), 7.28-7.38 (m, 5H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 27.2, 27.8, 37.2, 42.9, 62.2, 63.6, 70.7, 75.8, 117.8, 127.7, 127.9, 128.5, 132.3, 137.5, 172.3; MS (ESI) *m*/*z* 312 (M+Na⁺, 100%); Anal. calcd for C₁₇H₂₃NO₃: C, 70.56; H, 8.01; N, 4.84. Found: C, 70.50; H, 8.03; N, 4.84.

(4S,5R)-4-(Benzyloxy)-5-(3-hydroxypropyl)pyrrolidin-2-one (9).

A mixture of compound 8 (1.92 g, 6.64 mmol) and RhCl₃·xH₂O (107 mg) in EtOH (65 mL) was refluxed for 6 hours. After removal of the solvent, the residue was dissolved in H₂O/AcOH (45 mL /45 mL) and refluxed for another 48 hours. Water and the acetic acid were removed under reduced pressure. To the resulting residue in 40 mL EtOH (40 mL) was added AcCl (1.1 mL, 15.5 mmol) at 0 °C under nitrogen atmosphere. After stirring at room temperature for one day, the reaction mixture was concentrated and the residue was dissolved in CH₂Cl₂ (100 mL). The organic phase was washed successively with saturated aqueous NaHCO₃ and brine, dried over Na₂SO₄. After filtration and concentration in vacuo, the residue was purified by flash chromatography on silica gel (EtOAc: MeOH = 20: 1) to afford compound 9 (1.24 g, 4.98 mmol, 75%) as a colorless oil. $[\alpha]_{D}^{17}$ +59.8 (c 1.85, CHCl₃); IR (film): 3272, 3088, 3054, 3025, 2935, 2868, 1693, 1497, 1454, 1393, 1354, 1310, 1267, 1067, 1029 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ1.44-1.54 (m, 1H), 1.54-1.69 (m, 3H), 2.39 (dd, J = 3.9, 17.4 Hz, 1H, H-3), 2.62 (dd, J = 6.9, 17.4 Hz, 1H, H-3), 3.48 (br s, 1H, OH), 3.54-3.68 (m, 3H, CH₂OH and H-5), 3.86 (ddd, J = 3.6, 3.9, 6.9 Hz, 1H, H-4), 4.46 (d, J = 11.7 Hz, 1H, OCH₂Ph), 4.52 (d, J = 11.7 Hz, 1H, OCH₂Ph), 7.25-7.37 (m, 5H, ArH), 7.62 (brs, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ 28.7, 31.2, 37.1, 60.7, 61.7, 71.1, 79.0, 127.6, 127.8, 128.4, 137.3, 175.8; MS (ESI) *m/z* 272 (M+Na⁺, 100%); Anal. calcd for C₁₄H₁₉NO₃: C, 67.45; H, 7.68; N, 5.62. Found: C, 67.57; H, 7.66; N, 5.63.

(4*S*,5*R*)-4-(Benzyloxy)-5-(3-*tert*-butyldimethylsilyloxypropyl)pyrrolidin-2-one (10).

A mixture of hydroxy-lactam 9 (1.40 g, 5.62 mmol), imidazole (444 mg, 16.9 mmol), TBSCl (1.70 g, 11.3 mmol) and DMAP (50 mg) in anhydrous CH₂Cl₂ (8 mL) was stirred at room temperature under nitrogen atmosphere for 24 hours. After quenching with water (15 mL) at 0 °C, the aqueous phase was extracted with CH₂Cl₂ (3×40 mL). The combined organic phases were washed successively with a saturated aqueous solution of NaHCO₃ and brine, dried over Na₂SO₄. After filtration and concentration in vacuo, the residue was purified by flash chromatography on silica gel (EtOAc: PE = 1: 5) to afford compound 10 (1.73 g, 4.77 mmol, yield: 85%) as a colorless oil. [α]_D²⁵ +29.3 (*c* 1.20, CHCl₃); IR (film): 3211, 3091, 3032, 2951, 2928, 2885, 2857, 1702, 1497, 1472, 1455, 1388, 1359, 1308, 1256, 1167, 1205, 1098, 1029, 1006 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 0.22 (s, 6H, (CH₃)₂Si), 1.06 (s, 9H, *t*-Bu), 1.65-1.90 (m, 4H, $2 \times CH_2$), 2.57 (dd, J = 3.8, 17.3 Hz, 1H, H-3), 2.79 (dd, J = 7.0, 17.3 Hz, 1H, H-3), 3.74-3.85 (m, 3H, CH₂OTBS and H-5), 4.05 (ddd, J = 3.6, 3.8, 7.0 Hz, 1H, H-4), 4.66 (d, J = 11.8 Hz, 1H, OCH₂Ph), 4.71 (d, J = 11.8 Hz, 1H, OCH₂Ph), 7.43-7.54 (m, 5H. ArH); ¹³C NMR (100 MHz, CDCl₃) δ -5.4 (2C), 18.2, 25.9, 29.0, 31.4, 37.1, 60.6, 62.5, 71.1, 79.0, 127.6, 127.8, 128.4, 137.5, 175.4; MS (ESI) *m/z* 386 (M+Na⁺, 100%); Anal. calcd for C₂₀H₃₃NO₃Si: C, 66.07; H, 9.15; N, 3.85. Found: C, 66.25; H, 9.13; N, 3.84.

tert-Butyl (2*R*,3*S*)-3-(benzyloxy)-2-(3-*tert*-butyldimethylsilyloxypropyl)-5oxopyrrolidine-1-carboxylate (11).

To a mixture of compound **10** (1.21 g, 3.33 mmol), Et₃N (1.4 mL, 10.1 mmol) and DMAP (50 mg, 0.38 mmol) in anhydrous CH_2Cl_2 (6.7 mL) was added dropwise $(Boc)_2O$ (1.9 mL, 8.3 mmol) under nitrogen atmosphere at 0 °C. After stirring at room temperature for 24 hours, the reaction was quenched with water (20 mL) at 0 °C. The aqueous phase was extracted with CH_2Cl_2 (3×30 mL). The combined organic layers were washed with brine (10 mL), dried over anhydrous Na₂SO₄. After filtration and

concentration in vacuo, the residue was purified by flash chromatography on silica gel (EtOAc: PE = 1: 7) to afford compound **11** (1.45 g, 3.13 mmol, 94%) as a colorless oil. $[\alpha]_D^{25}$ –34.5 (*c* 1.39, CHCl₃); IR (film): 3054, 3029, 2954, 2930, 2857, 1786, 1752, 1716, 1497, 1471, 1455, 1368, 1309, 1212, 1153, 1095, 1070, 1043, 1026 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 0.03 (s, 6H, 2×SiCH₃), 0.88 (s, 9H, *t*-BuSi), 1.37-1.60 (m, 3H), 1.53 (s, 9H, *t*-BuO), 1.74-1.86 (m, 1H), 2.59 (d, *J* = 18.1 Hz, 1H, H-3), 2.76 (dd, *J* = 5.6, 18.1 Hz, 1H, H-3), 3.61 (t, *J* = 6.1 Hz, 2H, TBSOC*H*₂), 3.83 (d, *J* = 5.6 Hz, 1H, H-4), 4.15 (dd, *J* = 3.5, 9.5 Hz, 1H, H-5), 4.51 (d, *J* = 12.1 Hz, 1H, OC*H*₂Ph), 4.54 (d, *J* = 12.1 Hz, 1H, OC*H*₂Ph), 7.26-7.38 (m, 5H, ArH); ¹³C NMR (100 MHz, CDCl₃) δ –5.4 (2C), 18.4, 26.1, 28.2, 28.9, 29.2, 38.5, 62.6, 64.4, 70.7, 74.2, 83.1, 127.8, 128.1, 128.7, 137.4, 149.9, 172.3; MS (ESI) *m/z* 486 (M+Na⁺, 100%); Anal. calcd for C₂₅H₄₁NO₅Si: C, 64.76; H, 8.91; N, 3.02. Found: C, 64.92; H, 8.93; N, 3.01.

tert-Butyl (2*R*,3*S*)-3-hydroxy-2-(3-*tert*-butyldimethylsilyloxypropyl)-5-oxopyrroli dine-1-carboxylate (5).

To a solution of compound **11** (1.449 g, 3.13 mmol) in 16 mL of ethanol was added 10% Pd/C (435 mg). The mixture was hydrogenated under 1 atm hydrogen pressure at room temperature for 36 h. The reaction mixture was filtered through celite and the filtrate was evaporated in vacuo. Flash chromatography (EtOAc: PE = 1: 2) of the residue afforded compound **5** (1.15 g, 3.09 mmol, 95%) as white crystals. M.p. = 96-97 °C (EtOAc/PE); $[\alpha]_D^{20}$ –44.1 (*c* 1.36, CHCl₃); IR (film) 3460, 2928, 2856, 1771, 1723, 1460, 1368, 1350, 1294, 1253, 1227, 1154, 1122, 1082, 1049, 1021 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.01 (s, 6H, 2×SiCH₃), 0.85 (s, 9H, *t*-BuSi), 1.36-1.47 (m, 1H), 1.49 (s, 9H, O*t*-Bu), 1.51-1.62 (m, 2H), 1.69-1.82 (m, 1H), 2.43 (d, *J* = 18.1 Hz, 1H, H-3), 2.78 (dd, *J* = 5.4, 18.1 Hz, 1H, H-3), 3.17 (d, *J* = 3.4 Hz, 1H, D₂O exchangeable, OH), 3.61 (t, *J* = 6.0 Hz, 2H, CH₂OTBS), 4.00 (dd, *J* = 3.5, 9.6 Hz, 1H, H-5), 4.14 (dd, *J* = 3.4, 5.4 Hz, 1H, H-4); ¹³C NMR (100 MHz, CDCl₃) δ -5.2 (2C), 18.5, 26.1, 28.2, 28.9, 29.3, 41.3, 62.8, 67.6, 67.7, 83.2, 150.1, 173.2; MS (ESI) *m/z* 396 (M+Na⁺, 100%); Anal. calcd for C₁₈H₃₅NO₅Si: C, 57.87; H, 9.44; N, 3.75. Found: C, 57.92; H, 9.43; N, 3.76.

tert-Butyl (2*R*,3*S*)-3-acetoxy-2-(3-hydroxypropyl)-5-methoxypyrrolidine-1carboxylate (12).

To a solution of compound 5 (800 mg, 2.20 mmol) in 20 mL of methanol was added NaBH₄ (324 mg, 8.60 mmol) at 0 °C. After stirring at the same temperature for 1 hour, the reaction was quenched with a saturated aqueous solution of NH₄Cl (5 mL). The solvent was evaporated in vacuo. To the residue was added water (20 mL) and the aqueous phase extracted with CH₂Cl₂ (3×30 mL). The combined organic layers were washed with brine (10 mL), dried over anhydrous Na₂SO₄. After filtration and concentration in vacuo, the residue and a catalytic amount of DMAP (40 mg, 0.33 mmol) were dissolved in anhydrous CH₂Cl₂ (10 mL). To this solution were added pyridine (520 mg, 0.5 mL, 6.58 mmol) and Ac₂O (890 mg, 0.80 mL, 8.72 mmol) at 0 °C. After stirring at room temperature for 2 hours, water (5 mL) was added at 0 °C. The aqueous phase was extracted with CH_2Cl_2 (3×30 mL). The combined organic layers were washed successfully with a 1 M solution of HCl (10 mL) and brine (5 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was dissolved in an I2-MeOH solution (50 mL, 1% g/mL) and stirred at room temperature for 8 hours. The reaction was quenched with a saturated aqueous solution of Na₂S₂O₃ (10 mL) at 0 °C. The solvent was evaporated in vacuo. To the resulting mixture was added water (20 mL) and the aqueous phase extracted with CH₂Cl₂ (3×40 mL). The combined organic layers were washed with brine (10 mL), dried over anhydrous Na₂SO₄, filtered and concentrated at reduced pressure. Flash chromatography (EtOAc: PE = 2: 1) of the residue afforded compound 12 as a inseparable diastereomeric mixture (474 mg, 1.50 mmol, 68%). colorless oil; $\left[\alpha\right]_{D}^{20}$ -31.1 (c 3.8, CHCl₃); IR (film) 3461, 2976, 2937, 1741, 1701, 1442, 1391, 1367, 1316, 1241, 1169, 1130, 1087 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) (1:1 diastereomeric mixture; a and b; determined by integration at δ 5.20-5.31 and 5.31-5.52) δ 1.49 (s, 9H_{a+b}, Ot-Bu), 1.55-1.85 (m, 4H_{a+b}), 2.03 (s, 3H_{a+b}, OAc), 2.06-2.18 (m, 1H_{a+b}, H-3), 2.22-2.41 (m, $1H_{a+b}$, H-3), 3.32 (m, $1.5H_a$, OMe), 3.35 (m, $1.5H_b$, OMe), 3.67 (t, J =5.9 Hz, 2H_{a+b}, CH₂OH), 3.82-3.95 (m, 0.5H, H_a), 3.95-4.09 (m, 0.5H, H_b), 5.06-5.15 $(m, 1H_{a+b}), 5.20-5.31 (m, 0.5H_{a}), 5.31-5.52 (m, 0.5H_{b}); {}^{13}C NMR (100 MHz, CDCl_{3})$

(1:1 diastereomeric mixture) δ 21.3, 28.5, 28.7, 29.0, 30.3, 38.3, 39.2, 55.9, 56.2, 62.6, 62.9, 63.5, 77.5, 77.9, 80.8, 88.9, 154.5, 153.4, 170.7; MS (ESI) *m/z* 340 (M+Na⁺, 100%); Anal. calcd for C₁₅H₂₇NO₆: C, 56.77; H, 8.57; N, 4.41. Found: C, 56.59; H, 8.59; N, 4.40.

tert-Butyl (2*R*,3*S*)-3-acetoxy-2-(2-formylethyl)-5-methoxypyrrolidine-1carboxylate (4).

To a solution of Dess-Martin periodinane (2.670 g, 6.30 mmol) in 20 mL of CH₂Cl₂ was added dropwise a 0.14 M CH₂Cl₂ solution of compound **12** (660 mg, 2.10 mmol) at 0 °C. The resulting solution was stirred at the room temperature for 0.5 hour and diluted with Et₂O (30 mL) at 0 °C. To the resulting mixture were added an aqueous solution (15 mL) of Na₂S₂O₃ (ca. 100-158 g/L) and NaHCO₃ (ca. 100 g/L), and the resulting mixture was stirred for 15 min. The aqueous phase was extracted with CH_2Cl_2 (3×30 mL). The combined organic layers were washed with brine (10 mL) and dried over anhydrous Na₂SO₄. After filtration and concentration in vacuo, the residue was purified by flash chromatography on silica gel (EtOAc: PE = 1 : 2) to afford compound 2 (484 mg, 1.54 mmol, 73%) as a inseparable diastereomeric mixture in 1:1 ratio. colorless oil; $[\alpha]_D^{25}$ –31.4 (*c* 2.06, CHCl₃); IR (film): 2977, 2936, 2825, 2716, 1739, 1700, 1444, 1389, 1367, 1314, 1241, 1167, 1131, 1089 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) (1:1 diastereomeric mixture; a and b; determined by integration at δ 5.20-5.32 and 5.32-5.44) δ 1.49 (s, 9H_{a+b}, Ot-Bu), 1.85-2.08 (m, $2H_{a+b}$), 2.03 (s, $3H_{a+b}$, OAc), 2.08-2.20 (m, $1H_{a+b}$), 2.25-2.40 (m, $1H_{a+b}$), 2.47-2.65 (m, 2H_{a+b}, CHOCH₂), 3.34 (s, 1.5H_a, OMe), 3.37(s, 1.5H_b, OMe), 3.86-3.95 (m, 0.5H_a), 3.95-4.04 (m, $0.5H_{\rm b}$), 5.05-5.12 (m, $1H_{\rm a+b}$), 5.20-5.32 (m, $0.5H_{\rm a}$), 5.32-5.44 (m, $0.5H_b$), 9.80 (s, $1H_{a+b}$, CHO); ¹³C NMR (100 MHz, CDCl₃) (1:1 diastereometric mixture) δ 21.2, 25.8, 26.4, 28.5, 28.7, 36.1, 38.9, 40.2, 55.9, 56.3, 62.9, 80.7, 88.9, 154.5, 155.3, 170.6, 201.5; MS (ESI) m/z 338 (M+Na⁺, 100%); Anal. calcd for C₁₅H₂₅NO₆: C, 57.13; H, 7.99; N, 4.44. Found: C, 57.37; H, 7.97; N, 4.46.

(1*R*,2*R*,5*R*,6*S*)-6-Acetyloxy-8-*tert*-butoxycarbonyl-8-azabicyclo[3.2.1]octan-2-ol (13).

To a cooled solution (-50 °C) of compound **4** (460 mg, 1.46 mmol) in THF (60 mL) were added dropwise BF₃·OEt₂ (0.52 mL, 4.20 mmol), and a 0.1 M solution of SmI₂ in THF (42 mL) containing *t*-BuOH (310 mg, 0.42 mL).^[2] After stirring at the same temperature for 0.5 h, the reaction was quenched with saturated aqueous NH₄Cl (20 mL). The aqueous phase was extracted with EtOAc (4×30 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc: PE = 1: 1) to afford compound **13** (233 mg, 0.82 mmol, yield: 56%) as white crystals, and an inseparable mixture, which was further purified by flash chromatography on silica gel (eluent: CH₂Cl₂: MeOH = 15: 1) to afford compound **14** (21 mg, 0.074 mmol, yield: 5%) as a colorless oil, and the reduced product **15** (46 mg, 0.16 mmol, yield: 11%).

Diastereomer **13**: M.p. = 113-114 °C (EtOAc/PE); $[\alpha]_D^{17}$ –51.2 (*c* 4.3, CHCl₃); IR (film): 3427, 2977, 2930, 2871, 1734, 1692, 1695, 1475, 1406, 1366, 1328, 1244, 1165, 1112, 1071, 1038 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) (a 63:37 mixture of two rotamers; determined by integration at δ 3.70-3.78 and 3.78-3.85) δ 1.25-1.37 (m, 1H), 1.45 (s, 5.7 H, *t*-Bu), 1.48 (s, 3.3 H, *t*-Bu), 1.53-1.78 (m, 2H), 1.78-1.87 (m, 1H), 1.87-1.97 (m, 1H), 2.03 (s, 1.1H, OAc), 2.05 (s, 1.9 H, OAc), 2.47 (dd, *J* = 7.6, 14.5 Hz, 1H, H-7), 2.77 (br s, 0.37H, OH, D₂O exchangeable), 3.48 (br s, 0.63H, OH, D₂O exchangeable), 3.70-3.78 (m, 0.37 H), 3.78-3.85 (m, 0.63H), 3.97-4.02 (m, 0.63 H), 4.07-4.12 (m, 0.37 H), 4.17-4.22 (m, 0.37 H), 4.32 (dd, *J* = 3.0, 7.1 Hz, 0.63 H), 4.97 (dd, *J* = 2.2, 7.6 Hz, 1H, H-6); ¹³C NMR (rotameric mixture) (125 MHz, CDCl₃) δ 21.3, 25.6, 26.1, 26.3, 26.8, 28.6, 31.5, 32.4, 58.7, 58.8, 59.2, 29.8, 66.9, 67.7, 76.6, 77.5, 80.1, 80.2, 153.8, 154.2, 171.1; MS (ESI) *m/z* 308 (M+Na⁺, 100%); HRMS calcd for C₁₄H₂₃NNaO₅ [M+Na⁺]: 308.1468; found: 308.1475.

Diastereomer 14: $[\alpha]_D^{20}$ –31.7 (*c* 1.18, CHCl₃); IR (film): 3444, 2976, 2926, 2864, 1737, 1684, 1420, 1366, 1245, 1171, 1115, 1007 cm⁻¹; ¹H NMR (a 65:35 mixture of two rotamers; determined by integration at δ 4.30-4.42 and 4.42-4.53) (400 MHz,

CDCl₃) δ 1.48 (s, 9H, *t*-Bu), 1.51-1.69 (m, 4H), 1.93 (ddd, J = 2.5, 7.9, 14.4 Hz, H-7), 2.04 (s, 3H), 2.12 (dd, J = 7.4, 14.4, Hz, H-7), 2.81 (br s, 1H, OH, D₂O exchangeable), 3.62-3.80 (m, 1H), 4.07-4.14 (m, 0.65H), 4.19-4.30 (m, 0.35H), 4.30-4.42 (m, 0.35H), 4.42-4.53 (m, 0.65H), 5.05 (dd, J = 2.5, 7.4 Hz, 1H, H-6); ¹³C NMR (rotameric mixture) (100 MHz, CDCl₃) δ 21.3, 23.7, 24.2, 24.9, 28.7, 35.2, 35.8, 58.5, 59,7, 60.8, 69.2, 69.8, 76.2, 77.5, 80.5, 156.4, 171.0; MS (ESI) *m/z* 308 (M+Na⁺, 100%); HRMS calcd for C₁₄H₂₃NNaO₅ [M+Na]⁺: 308.1468; found: 308.1482.

tert-Butyl (2R,3S)-3-acetoxy-2-(3-hydroxypropyl)pyrrolidine-1-carboxylate (15).

Colorless oil; $[\alpha]_D^{25}$ –34.4 (*c* 1.19, CHCl₃); IR (film): 3445, 2976, 2936, 1739, 1694, 1478, 1402, 1366, 1242, 1171, 1121, 1023 cm⁻¹; ¹H NMR (rotameric mixture) (400 MHz, CDCl₃) δ 1.47 (s, 9H, *t*-Bu), 1.58-1.85 (m, 4H), 1.92-2.00 (m, 1H), 2.05 (s, 3H), 2.08-2.20 (m, 1H), 3.40-3.55 (m, 2H, H-5), 3.61-3.76 (m, 2H, OCH₂), 3.64-3.89 (m, 1H, H-2), 4.98-5.05 (m, 1H); ¹³C NMR (rotameric mixture) (100 MHz, CDCl₃) 21.5, 28.7, 28.8, 28.9, 29.6, 29.7, 29.9, 44.3, 44.6, 62.3, 62.7, 63.1, 63.7, 78.0, 79.9, 154.9, 155.1, 170.8, 170.9; MS (ESI) *m/z* 310 (M+Na⁺, 100%); Anal. calcd for C₁₄H₂₅NO₅: C, 58.52; H, 8.77; N, 4.87. Found: C, 58.37; H, 8.75; N, 4.88.

(1*R*,5*R*,6*S*)-6-Acetyloxy-8-(*tert*-butoxycarbonyl)-8-azabicyclo[3.2.1]octan-2-one (16).

To a solution of Dess-Martin periodinane (445 mg, 1.05 mmol) in 8 mL of CH_2Cl_2 was added dropwise a CH_2Cl_2 (5 mL) solution of compound **13** (120 mg, 0.42 mmol) at 0 °C. The resulting solution was stirred at room temperature for 0.5 hour and diluted with Et_2O (15 mL) at 0 °C. An aqueous solution (10 mL) of $Na_2S_2O_3$ (*ca.* 100-158 g/L) and $NaHCO_3$ (*ca.* 100 g/L) was added and the resulting mixture was stirred for 15 min. The aqueous phase was extracted with CH_2Cl_2 (3×30 mL). The combined organic layers were washed with brine (10 mL), dried over anhydrous Na_2SO_4 ,

filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc: PE = 1 : 2) to afford compound **16** (102 mg, 0.36 mmol, 86%) as a colorless oil. $[\alpha]_D^{25}$ –43.4 (*c* 1.96, CHCl₃); IR (film): 2977, 2930, 1734, 1700, 1391, 1369, 1322, 1292, 1243, 1155, 1107, 1031, 1006 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) (a 60:40 mixture of two rotamers; determined by integration at δ 4.39-4.48 and 4.46-4.62) δ 1.46 (s, 9H, *t*-Bu), 1.92-2.00 (m, 1H), 2.08 (s, 3H, OAc), 2.18-2.35 (m, 3H), 2.37-2.45 (m, 2H, CH₂CO), 4.26-4.39 (m, 1H), 4.39-4.48 (m, 0.6H), 4.48-4.62 (m, 0.4H), 5.14 (dd, *J* = 2.9, 7.3 Hz, 1H, CHOAc); ¹³C NMR (100 MHz, CDCl₃)) (a 60:40 mixture of two rotamers) δ 21.2, 26.1, 28.5, 32.8, 36.4, 59.0, 64.5, 76.4, 81.1, 154.1, 170.9, 204.8; MS (ESI) *m/z* 306 (M+Na⁺, 100%); HRMS calcd for C₁₄H₂₁NNaO₅ [M+Na⁺]: 306.1312; found: 306.1324.

(1*R*,2*S*,5*R*,6*S*)-6-Acetyloxy-8-(*tert*-butoxycarbonyl)-8-azabicyclo[3.2.1]octan-2-ol (12).

To a cooled solution (-78 °C) of compound **14** (30 mg, 0.11 mmol) in THF (3 mL) was added dropwise a THF solution of L-selectride (0.15 mmol, 0.15 mL, 1.0 M). After stirring for 0.5 h, the reaction was quenched with saturated aqueous NH₄Cl (5 mL). The aqueous phase was extracted with CH₂Cl₂ (4×10 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc: PE = 1: 1) to afford compound **12** as a colorless oil (26 mg, 0.091 mmol, 84%).

(1*R*,2*S*,5*R*,6*S*)-6-Acetyloxy-8-azabicyclo[3.2.1]octan-2-ol (1).

To a cooled solution (0 °C) of compound **14** (35 mg, 0.12 mmol) in CH_2Cl_2 (0.4 mL) was added dropwise 2,6-lutidine (45 mg, 0.42 mmol, 0.05 mL) and TMSOTf (69 mg, 0.31 mmol, 0.06 mL). After stirring at room temperature for 0.5 h, the reaction was

quenched with saturated aqueous NH₄Cl (2 mL) at 0 °C. The aqueous phase was extracted with Et₂O (4×5 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was dissolved in THF (5 mL). To the resultant solution was added a solution of TBAF (0.15 mmol, 0.15 mL, 0.1 M in THF) at 0 °C. The resulting solution was stirred for 10 min and quenched with saturated aqueous NH₄Cl (2 mL) at 0 °C. The aqueous phase was extracted with $Et_2O(3 \times 5 \text{ mL})$ and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by flash chromatography on basic alumina (CH_2Cl_2 : PE = 1: 2) to afford compound 1 (16 mg, 72%) as a colorless crystalline solid. M.p. = 75-76 °C (CH_2Cl_2/PE) (lit.³ M.p. 76-78 °C). $[\alpha]_D^{24}$ -31.6 (c 0.59, EtOH) {lit.³ $[\alpha]_D^{25}$ -29.6 (c 0.97, EtOH); IR (film): 3360, 2942, 2867, 1731, 1650, 1441, 1376, 1243, 1180, 1094, 1025 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 1.48-1.59 (m, 3H), 1.78 (ddd, J = 2.1, 6.7, 14.7 Hz, 1H, H-7), 1.83-1.92 (m, 1H), 2.04 (s, 3H, OAc), 2.16 (dd, J = 7.0, 14.7 Hz, 1H, H-7), 2.65 (br s, 2H, D₂O exchangeable, NH and OH), 3.27-3.33 (m, 1H, H-2), 3.53-3.58 (m, 2H, H-1 and H-5), 5.13 (dd, J = 2.1, 7.0 Hz, 1H, H-6); ¹³C NMR (100 MHz, CDCl₃) δ21.5, 25.0, 25.3, 37.4, 60.8, 61.4, 67.7, 78.3, 170.9; MS (ESI) *m/z* 186 $(M+H^+, 100\%)$; HRMS calcd for C₉H₁₆NO₃ $[M+H^+]$: 186.1125; found: 186.1121.

Reference

- J. M. Luo, C. F. Dai, S. Y. Lin and P.-Q. Huang, Chem. Asian. J., 2009, 4, 328-335.
- Y. G. Xiang, X. W. Wang, X. Zeng, Y. P. Ruan and P.-Q. Huang, Chem. Commun., 2009, 45, 7045-7047.
- 3. Y. Q. Zhang and L. S. Liebeskind, J. Am. Chem. Soc., 2006, 128, 465-472.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

S21

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

S22

Supplementary Material (ESI) for Chemical Communications

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

S36

S37

