Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011 Electronic Supplementary Information

Aerobic copper/TEMPO-catalyzed oxidation of primary alcohols to aldehydes using microbubble strategy to increase gas concentration in liquid phase reactions

Nobuyuki Mase,* Tomoya Mizumori and Yuji Tatemoto

Department of Molecular Science, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561, Japan

tnmase@ipc.shizuoka.ac.jp

General

Chemicals and solvents were either purchased from commercial suppliers or purified by standard techniques. For thin-layer chromatography (TLC), silica gel plates (Merck 60 F₂₅₄) were used and compounds were visualized by irradiation with UV light and/or by treatment with a solution of phosphomolybdic acid in ethanol followed by heating. Microbubble generator was used ASPU Co. Ltd. MA2FS (pumping rate 120-150 mL/min). Flash column chromatography was performed using KANTO silica gel 60N (particle size 63-210 μ m). ¹H NMR spectra were recorded on JEOL JNM-AL spectrometer at ambient temperature. Chemical shifts are given in δ relative to tetramethylsilane (TMS), the coupling constants *J* are given in Hz. The spectra were recorded in CDCl₃ as solvent at ambient temperature, TMS served as internal standard ($\delta = 0$ ppm) for ¹H NMR. GC was carried out using SHIMADZU GC-2010 with capillary column GL Sciences TC-17. Oxidation reactions of the primary alcohol were carried out using Microbubble generator (MA2-FS, pumping rate 120-150 mL/min, Figure 2, upper right), which was custom-ordered in cooperation with Asupu Company Limited. All stainless steel-components were replaced with Teflon[®].

Organic substrates

benzyl alcohol (**1a**, 100-51-6), 4-isopropylbenzyl alcohol (**1b**, 536-60-7), 4-methoxybenzyl alcohol (**1c**, 105-13-5), 4-hydroxybenzyl alcohol (**1d**, 623-05-2), 4-nitrobenzyl alcohol (**1e**, 619-73-8), 4-chlorobenzyl alcohol (**1f**, 873-76-7), 4-bromobenzyl alcohol (**1g**, 873-75-6), 1,10-phenanthroline (**4a**, 66-71-7), 2,2'-bipyridine (**4b**, 366-18-7), potassium *tert*-butoxide (**5a**, 865-47-4), sodium methoxide (**5b**, 124-41-4), copper bromide (II) (7789-45-9), 2,2,6,6-tetramethylpiperidine *N*-oxyl (TEMPO, 2564-83-2), acetonitrile (75-05-8), distilled water, 1-phenylethanol (**6**, 98-85-1), geraniol (**8**, 106-24-1), myrtenol (**10**, *rac*-515-00-4, 1*R*-19894-97-4, 1*S*-6712-78-3) and 1-octanol (111-87-5) were all commercially available and were used without any purification. benzaldehyde (**2a**, 100-52-7), 4-isopropylbenzaldehyde (**2b**, 122-03-2), 4-methoxybenzaldehyde (**2c**, 123-11-5), 4-hydroxybenzaldehyde (**2d**, 123-08-0), 4-nitrobenzaldehyde (**2e**, 555-16-8), 4-chlorobenzaldehyde (**2f**, 104-88-1), 4-bromobenzaldehyde (**2g**, 1122-91-4), benzoic acid (**3a**, 65-85-0), acetophenone (**7**, 98-86-2), citral (**9**, (*E*, *Z*)-5392-40-5, (*E*)-141-27-5 (*Z*)-106-26-3), myrtenal (**11**, *rac*-564-94-3, 1*S*-23727-16-4, 1*R*-18486-69-6) and octanal (124-13-0) were all commercially available and were used as an authentic sample without any purification.

Typical procedure for aerobic copper/TEMPO-catalyzed oxidation of primary alcohols to aldehydes using microbubble strategy

The oxidation was carried out in a 50 mL vial equipped with a microbubble generator. The alcohol (20 mmol) was dissolved in CH₃CN/H₂O (2:1, 30 mL), then warmed to 30 °C. To the solution NaOMe (**5b**, 81.0 mg, 1.5 mmol) and CuBr₂ (215.2 mg, 1.5 mmol) were added, resulting in a light blue suspension. After addition of 2,2-bipyridine (**4b**, 234.4 mg, 1.5 mmol) to the suspension, color was changed to blue-green. To the mixture TEMPO (312.5 mg, 2.0 mmol) was added, leading to a red-brown mixture. Air-Microbubble was introduced into the reaction mixture by microbubble generator at air-flow rate 3 mL/min. The red-brown mixture gradually turned dark-green. Sampling was carried out as follows: 1 mL sample of the reaction mixture was taken out and extracted with Et₂O (4 x 1 mL), washed with brine (1 mL). The combined organic extracts were filtrated through silica gel plug (SiO₂: 1 g, Na₂SO₄: 1 g) to give a sample, which were taken out to monitor the reaction by GC. The products were determined by comparison with the commercially available aldehydes as an external standard.

No.	Structure	T_{inj}	T_{det}	T_i	$T_{\rm f}$	Rate	GC: $t_{\rm R}$
1a	НО	250	250	100, 5	200, 0	10	9.183
1b	HO	250	250	100, 0	250, 0	10	9.150
1c	HO	260	260	100, 0	250, 5	5	14.647
1d	НОСОН	260	260	100, 5	250, 0	5	21.857
1e		250	250	100, 0	250, 10	10	14.120
1f	HOCI	250	250	100, 0	250, 5	10	9.007

GC (TC-17, He = 0.80 MPa, H₂ = 0.5 MPa, Air = 0.5 MPa)

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

	The j					1	1
No.	Structure	T _{inj} (°C)	T _{det} (°C)	T _i (°C, min)	T _f (°C, min)	Rate (°C/min)	GC: $t_{\rm R}$ (min)
1g	HOBr	250	250	100, 0	250, 5	10	10.663
2a	Н	250	250	100, 5	200, 0	10	7.623
2b	H	250	250	100, 0	250, 0	10	8.430
2c	H	260	260	100, 0	250, 5	5	14.130
2d	Н	260	260	100, 5	250, 0	5	22.300
2e	H N ⁺ O ⁻	250	250	100, 0	250, 10	10	11.487
2f	H CI	250	250	100, 0	250, 5	10	7.390
2g	H Br	250	250	100, 0	250, 5	10	9.020
3a	НОНО	250	250	100, 5	200, 0	10	11.805
6	OH Ph	250	250	100, 10	250, 0	10	12.440

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

		T::	T1		T _f	Rate	$GC \cdot t_{\rm P}$
No.	Structure	$(^{\circ}C)$	$(^{\circ}C)$	$(^{\circ}C min)$	$(^{\circ}C min)$	(°C/min)	(\min)
7	O Ph	250	250	100, 10	250, 0	10	13.330
8	но	250	250	100, 10	200, 0	5	17.530
9	H	250	250	100, 10	200, 0	5	18.930 (Z) 20.177 (E)
10	НО	250	250	100, 0	250, 0	10	7.300
11	H H	250	250	100, 0	250, 0	10	7.727
	но	250	250	100, 5	200, 0	10	7.507
	н	250	250	100, 5	200, 0	10	6.303

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Synthesis and isolation of geranial (9) using microbubble strategy

Geraniol (8, 20 mmol) was dissolved in CH₃CN/H₂O (2:1, 30 mL), then warmed to 30 °C. To the solution, sodium methoxide (5b, 81.0 mg, 1.5 mmol) and copper bromide (II) (215.2 mg, 1.5 mmol) were added, resulting in a light blue suspension. After addition of 2,2-bipyridyl (4b, 234.4 mg, 1.5 mmol) to the suspension, colour was changed to blue-green. To the mixture TEMPO (312.5 mg, 2.0 mmol) was added, leading to a red-brown mixture. Air-Microbubble was introduced into the reaction mixture by microbubble generator at air-flow rate 3 mL/min. The red-brown mixture gradually turned dark-green. After 1 h, reaction mixture was quenched by the addition of saturated NH₄Cl aq (12 mL). Aqueous layer was extracted with Et₂O (2 x 20 mL) and AcOEt (10 mL). The combined organic layers were washed with brine (1 x 50 mL), filtrated through silica gel plug (SiO₂: 15 g, Na₂SO₄: 20 g) and concentrated in vacuo. The resulting liquid product was purified by reduced-pressure distillation (bp. 68-69 °C/1.6 mmHg), giving geranial (9) (2544.4 mg, y. 84%, purity >97% (determined by GC), (*E*):(*Z*) = 99 : 1 (determined by GC and ¹H NMR): $R_f =$ 0.73 (hexane:AcOEt = 70:30); ¹H NMR (CDCl₃, 300 MHz); δ = 10.0 (d, J = 8.0 Hz, 1H, CHO), 5.90-5.87 (m, 1H C=CHCHO), 5.10-5.07 (m, 1H, C=CH), 2.26-2.19 (m, 4H, CH₂), 2.17 (d, J = 1.2 Hz, C<u>H</u>₃), 1.69 (s, C<u>H</u>₃) 1.61 (s, C<u>H</u>₃); GC (TC-17, $T_{inj} = 250 \text{ °C}$, $T_{det} = 250 \text{ °C}$, He = 0.8 MPa, H₂ = 0.5 MPa, Air = 0.5 MPa, $T_i = 100$ °C (10 min), $T_f = 250$ °C (5 °C /min, 10 min): $t_R = 20.177$ min (E), 18.903 min (Z).

¹H NMR

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011