SUPPORTING INFORMATION

A Silver-Promoted Auto-Tandem Catalysis for the Synthesis of Multiply Substituted Tetrahydrocarbazoles

Ming-Zhong Wang, Cong-Ying Zhou, Chi-Ming Che*

Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong, China Fax: (852) 2857-1586

E-mail: cmche@hku.hk

1. Catalyst Screening for Tandem Reaction in Table S1	S2
2. Experimental Section	S3
3. Literature references of acetylentic aldehydes in Table S2	S6
4. NOESY spectrum of <i>trans</i> - 3a in Figure S1 and S2	S7
5. ORTEP plot of <i>cis</i> - 3e in Figure S3	S 8
6. Crystal data for <i>trans</i> -3a, <i>cis</i> -3e, <i>cis</i> -3j and 4a	S9
7. Characterization data of compounds 3a-3n	S13
8. ¹ H NMR spectra of compound 1d, 1e, 3a-3n and 4a	S27

 Table S1 Catalyst Screening for Tandem Reaction of Acetylenic Aldehyde 1a with Indole

 2a [a]

Me Me Me Me catalysts Ν CHCl₃, 25 °C Мe Ŵе Мe 2a 1a Мe Me cis**-3a** trans-3a $conv.[\%]^{[b]}$ yield[%]^[c] catalyst entry 10 mol% AgOTf 82% (trans: cis = 2.5:1)^[d] 100 1 75% (*trans:cis* = 2.4:1)^[d] 10 mol% AgSbF₆ 100 2 100 trace 3 5 mol% AuCl₃ 100 4 5 mol% PPh₃AuCl/AgOTf trace 75% (trans: cis = 2.0:1)^[e] 5 10 mol% AgOTf 100 80% (*trans:cis* = 2.3:1)^[f] 6 10 mol% AgOTf 100 7 No catalyst 0 0

[a]Reactions were conducted with 2 mmol of **1a**, 7 mmol of **2a** and 5-10 mol % of catalysts in 5 mL of CHCl₃ at 25 °C for 6 h. [b]Conversion based on acetylenic aldehyde. [c]Isolated yield. [d]*dr* values (*trans/cis*) were determined by 'H NMR analysis of the crude reaction mixture. [e]Toluene was used as solvent. [f]THF was used as solvent.

Experimental Section

(I) General Methods.

All manipulations with air-sensitive reagents were carried out under a dry nitrogen atmosphere. NMR spectra were recorded on Bruker AMX-300/400 spectrometer for ¹H NMR and 75/100 MHz for ¹³C NMR in CDCl₃. The chemical shifts are expressed in ppm and coupling constants are given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet; d, doublet; t, triplet; m, multiplet), coupling constant (Hz), integration. Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). Low resolution mass spectra and high-resolution mass spectra (HRMS) were obtained on a Finnigan GC-MS 4021 or a Finnigan MAT-8430 instrument using the electron impact ionization technique (70 eV), respectively.

(II) Procedure

General procedure for synthesis of 1-(prop-2-ynyl)cyclopentanecarbaldehyde 1c, 1-(prop-2-ynyl)cyclohexanecarbaldehyde 1d and tetrahydro-4-(prop-2-ynyl)-2*H*-pyran-4-carbaldehyde 1e¹

(1) Propargylation: To diisopropylamine (2.7 mL, 19.4 mmol) in THF was added dropwise *n*-butyllithium (1.6 M in hexanes, 12.1 mL, 19.4 mmol) at -78 °C with stirring. Subsequently, the reaction mixture was stirred for 15 min. A solution of corresponding methyl ester (17.6 mmol) in dry THF (5 ml) was added dropwise to this solution of LDA in 30 min at -78 °C. After stirring for 1 h, propargyl bromide (80% in toluene, 2.1 mL, 18.5 mmol) was added dropwise to the above solution. The reaction system was kept at -78 °C for 1 h and warmed to 25 °C over 1 h. The resulting reaction mixture was quenched with saturated aqueous NH₄Cl solution, and extracted three times with diethyl ether. The combined organic layers were separated, washed with 2 M aqueous HCl, saturated aqueous NaHCO₃ solution and brine; dried over MgSO₄, filtered, and concentrated *in vacuo* to afford practically pure propargyl substituted methyl ester as an orange liquid.

(2) *Reduction:* A solution of the above methyl ester in diethyl ether (25 mL) was added to a stirred suspension of lithium aluminium hydride (0.52 g, 13.9 mmol) in diethyl ether (20 mL) at 0 °C. After stirring for 12 h at room temperature, the reaction mixture was quenched with saturated aqueous NH₄Cl solution, treated with 2 M NaOH solution to dissolve the aluminum precipitate, and extracted with diethyl ether. The combined organic layers were washed with saturated aqueous NaHCO₃ solution and brine; dried over MgSO₄, filtered, and concentrated *in vacuo* to give the crude alcohol product.

(3) Oxidation: A solution of the above crude alcohol (1 equiv.) in dichloromethane was added pyridinium chlorochromate (PCC, 1.6 equiv.) at room temperature. After stirring for 6 h at room temperature, the reaction mixture was filtered and concentrated *in vacuo* to give

the crude aldehyde. Flash chromatography (5% EtOAc/hexanes) afforded the titled aldehydes 1c, 1d, 1e as a yellow liquid.

1-(Prop-2-ynyl)cyclopentanecarbaldehyde (1d), the yield is 55% for three steps.

¹H NMR (300 MHz, CDCl₃) δ 1.56-1.75 (m, 6H), 1.94-1.97 (m, 3H), 2.43 (s, 2H), 9.53 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 24.30, 25.75, 32.56, 37.36, 69.96, 80.92, 203.22; IR (KBr, neat, cm⁻¹) 3302, 2955, 2870, 1705; EIMS *m/z* 136 (M⁺); HRMS (EI) for C₉H₁₂O, calcd 136.0888, found 136.0885.

Tetrahydro-4-(prop-2-ynyl)-2*H*-pyran-4-carbaldehyde (1e), the yield is 65% for three steps.

¹H NMR (300 MHz, CDCl₃) δ 1.62 (t, J = 9.0 Hz, 2H), 1.95-2.04 (m, 3H), 2.35 (s, 2H), 3.46 (t, J = 9.9 Hz, 2H), 3.72 (t, J = 9.8 Hz, 2H), 9.56 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 25.84, 30.20, 45.82, 64.26, 71.98, 78.34, 204.01; IR (KBr, neat, cm⁻¹) 3287, 2955, 2862, 1720, 1103, 1026, 841; EIMS *m/z* 152 (M⁺); HRMS (EI) for C₉H₁₂O₂, calcd 152.0837, found 152.0839.
 Table S2 Literature references of acetylentic aldehydes

compound	structure	reference
1a	O H	J. Med. Chem. 1991 , 34, 1585-1593
1b	H O Ph	J. Org. Chem. 1990 , 55, 4853-4859
1c	H O	J. Am. Chem. Soc. 2006 , 128, 15598-15599

Figure S1¹H-¹H NOESY spectrum of *trans*-3a

Figure S2¹H-¹H NOESY spectrum of *trans*-3a

Figure S3 ORTEP plot of *cis*-3e (ellipsoids at 30% probability)

Compound code	trans-3a
Empirical formula	C _{32.50} H ₃₂ Cl N ₃
Formula weight	500.06
Temperature	301(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P -1(#2)
Unit cell dimensions	$a = 9.4790(6) \text{ Å} = 72.34(2)^{\circ}$
	$b = 12.1347(8) \text{ Å} = 80.30(2)^{\circ}$
	$c = 12.4926(8) \text{ Å} = 84.57(2)^{\circ}$
Volume	1348.24(15) Å ³
Z	2
Density (calculated)	1.232 Mg/m ³
Absorption coefficient	0.168 mm ⁻¹
F(000)	530
Crystal size	0.44 x 0.13 x 0.09 mm ³
Theta range for data collection	1.73 to 25.68°
Index ranges	-11<=h<=11, -14<=k<=14, -15<=l<=15
Reflections collected	14078
Independent reflections	5118 [R(int) = 0.0167]
Completeness to theta = 25.68°	99.7 %
Absorption correction	Empirical
Max. and min. transmission	1.000000 and 0.888932
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	5118 / 2 / 338
Goodness-of-fit on F ²	1.046
Final R indices [I>2sigma(I)]	R1 = 0.0607, wR2 = 0.1742
R indices (all data)	R1 = 0.0805, WR2 = 0.1913
Largest diff. peak and hole	0.542 and -0.633 e.Å ⁻³

 Table S3 Crystal data and structure refinement for compound *trans-3a*.

Compound code	cis-3e
Empirical formula	C ₃₂ H ₂₈ Br ₃ N ₃
Formula weight	694.30
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	P 21 21 21
Unit cell dimensions	$a = 10.4882(7) \text{ Å} = 90^{\circ}$
	$b = 15.1646(10) \text{ Å} = 90.89(2)^{\circ}$
	$c = 17.8633(10) \text{ Å} = 90^{\circ}$
Volume	2841.1(3) Å ³
Z	4
Density (calculated)	1.623 Mg/m ³
Absorption coefficient	5.465 mm ⁻¹
F(000)	1384
Crystal size	0.04 x 0.01 x 0.01 mm ³
Theta range for data collection	3.82 to 65.96°
Index ranges	-12<=h<=11, -17<=k<=17, -16<=l<=21
Reflections collected	13199
Independent reflections	4362 [R(int) = 0.0735]
Completeness to theta = 65.96°	95.0 %
Absorption correction	Empirical
Max. and min. transmission	0.95 and 0.93
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4362 / 0 / 347
Goodness-of-fit on F ²	1.026
Final R indices [I>2sigma(I)]	R1 = 0.0709, WR2 = 0.1924
R indices (all data)	R1 = 0.0779, wR2 = 0.1971
Largest diff. peak and hole	1.539 and -0.870 e.Å ⁻³

Table S4 Crystal data and structure refinement for compound cis-3e

Compound code	3ј
Empirical formula	C ₇₅ H ₇₄ N ₆
Formula weight	1059.40
Temperature	296(2) K
Wavelength	1.54178 Å
Crystal system	Monoclinic
Space group	$P 2_1/c$
Unit cell dimensions	$a = 12.6510 \text{ Å} = 72^{\circ}$
	$b = 13.2655 \text{ Å} = 82^{\circ}$
	$c = 19.6439 \text{ Å} = 78^{\circ}$
Volume	3067.1(2) Å ³
Z	2
Density (calculated)	1.147 Mg/m ³
Absorption coefficient	0.511 mm ⁻¹
F(000)	1132
Crystal size	0.42 x 0.30 x 0.25 mm ³
Theta range for data collection	2.37 to 66.22°
Index ranges	-14<=h<=14, -14<=k<=15, -23<=l<=23
Reflections collected	66128
Independent reflections	10240 [R(int) = 0.0409]
Completeness to theta = 66.22°	95.4 %
Absorption correction	Empirical
Max. and min. transmission	1.000000 and 0.87682
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	10240 / 0 / 737
Goodness-of-fit on F ²	1.043
Final R indices [I>2sigma(I)]	R1 = 0.0800, wR2 = 0.2570
R indices (all data)	R1 = 0.0912, $wR2 = 0.2752$
Largest diff. peak and hole	1.242 and -0.201 e.Å ⁻³

Table S5 Crystal data and structure refinement for compound cis-3j

Figure S4 ORTEP plot of 4a (ellipsoids at 30% probability)

Table S6 Crystal data and structure refinement for compound 4a

Compound code	4a
Empirical formula	C ₂₃ H ₂₂ N ₂
Formula weight	326.43
Temperature	301(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	$P 2_1/c$
Unit cell dimensions	$a = 8.1814(9) \text{ Å} = 90^{\circ}$
	$b = 8.5337(9) \text{ Å} = 90.89(2)^{\circ}$
	$c = 26.531(3) \text{ Å} = 90^{\circ}$
Volume	1852.1(3) Å ³
Z	4
Density (calculated)	1.171 Mg/m ³
Absorption coefficient	0.069 mm ⁻¹
F(000)	696
Crystal size	0.43 x 0.32 x 0.28 mm ³
Theta range for data collection	2.49 to 25.68°
Index ranges	-9<=h<=9, -10<=k<=10, -32<=l<=29
Reflections collected	10612
Independent reflections	3495 [R(int) = 0.0173]
Completeness to theta = 25.68°	99.5 %
Absorption correction	Empirical
Max. and min. transmission	1.000000 and 0.811581
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3495 / 0 / 228
Goodness-of-fit on F ²	1.029
Final R indices [I>2sigma(I)]	R1 = 0.0420, WR2 = 0.1104
R indices (all data)	R1 = 0.0518, $wR2 = 0.1173$
Largest diff. peak and hole	0.188 and -0.225 e.Å ⁻³

General procedure for silver-catalyzed tandem reaction of acetylenic aldehydes and indoles (Table 2):

To a mixture of acetylenic aldehyde **1** (2 mmol) and indole **2** (7 mmol) in CHCl₃ (5 mL) was added silver triflate (51 mg, 0.2 mmol). The reaction mixture was stirred at room temperature for 6-12 h. When the reaction was complete, the reaction mixture was concentrated and the residue was loaded directly onto a silica gel column; elution with ethyl acetate/hexane afforded the products.

(III) Characterization Data of Compound 3

4,9-Dimethyl-1,4-bis(1-methyl-1*H*-indol-3-yl)-2,3,4,9-tetrahydro-1*H*-carbazole (3a)

trans-Diastereomer (major): Yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 1.95-1.99 (m, 1H), 2.01-2.13 (m, 2H), 2.22 (s, 3H), 2.41-2.45 (m, 1H), 3.51 (s, 3H), 3.62 (s, 3H), 3.73 (s, 3H), 4.51-4.53 (m, 1H), 6.30 (s, 1H), 6.42 (s, 1H), 7.01 (t, *J* = 7.7 Hz, 1H), 7.06 (t, *J* = 7.7 Hz, 1H), 7.12 (t, *J* = 7.5 Hz, 1H), 7.17-7.23 (m, 2H), 7.27 (t, *J* = 8.0 Hz, 2H), 7.30-7.33 (m, 2H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.62 (d, *J* = 7.9 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 27.42, 29.41, 29.71, 29.97, 32.51, 32.69, 34.72, 36.67, 108.72, 109.41, 109.44, 117.18, 117.81, 118.21, 118.38, 118.62, 118.82, 118.95, 120.39, 120.83, 121.20, 121.41, 121.69, 122.46, 125.98, 126.53, 126.75, 128.14, 129.09, 137.21, 137.42, 138.11; IR (KBr, neat, cm⁻¹) 3441, 2930, 1720, 1643, 1556, 1458, 1320, 1096, 741; EIMS *m/z* 457 (M⁺); HRMS (EI) for C₃₃H₃₁N₃, calcd 457.2518, found 457.2510.

cis-Diastereomer (minor): Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 1.93-1.97 (m, 4H), 1.99-2.02 (m, 1H), 2.39 (d, J = 7.1 Hz, 2H), 3.46 (s, 3H), 3.66 (s, 3H), 3.72 (s, 3H), 4.57 (m, 1H), 6.60 (s, 1H), 6.86-6.90 (m, 3H), 7.05-7.12 (m, 4H), 7.25-7.29 (m, 4H), 7.55 (d, J = 6.8 Hz, 1H), 7.60 (d, J = 7.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 27.51, 29.58, 29.68, 30.27, 32.60, 32.64, 35.95, 36.48, 108.49, 109.11, 109.33, 117.33, 117.82, 118.15, 118.20, 118.40, 120.32, 120.65, 120.77, 120.84, 121.15, 121.36, 121.58, 123.90, 126.29, 126.35, 126.69, 127.00, 127.87, 136.87, 137.31, 137.81; IR (KBr, neat, cm⁻¹) 3450, 2931, 1716, 1624, 1558, 1506, 1456, 1323, 1097, 1010, 739; EIMS *m/z* 457 (M⁺); HRMS (EI) for C₃₃H₃₁N₃, calcd 457.2518, found 457.2512.

9-Butyl-1,4-bis(1-butyl-1*H*-indol-3-yl)-4-methyl-2,3,4,9-tetrahydro-1*H*-carbazole (3b)

trans-Diastereomer (major): Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 0.74-0.94 (m, 9H), 1.11-1.32 (m, 6H), 1.60-1.77 (m, 6H), 1.87-2.09 (m, 3H), 2.17 (s, 3H), 2.31-2.35 (m, 1H), 3.84-4.02 (m, 6H), 4.52 (brs, 1H), 6.34 (s, 1H), 6.48 (s, 1H), 6.95-7.13 (m, 2H), 7.15-7.22 (m, 3H), 7.25-7.27 (m, 2H), 7.30-7.35 (m, 2H), 7.52 (d, *J* = 7.9 Hz, 1H), 7.62 (d, *J* = 7.6 Hz, 1H), 7.76 (d, *J* = 7.9 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 17.04, 17.35, 17.40, 23.48, 23.95, 24.77, 33.36, 33.68, 34.91, 35.84, 36.00, 36.24, 38.50, 46.56, 47.39, 49.63, 49.78, 112.62, 113.07, 113.21, 120.76, 121.16, 121.64, 121.73, 122.43, 122.79, 123.19, 123.74, 123.93, 124.08, 124.58, 124.93, 125.04, 125.47, 126.29, 128.45, 130.24, 130.96, 131.43, 131.79, 136.08; IR (KBr, neat, cm⁻¹) 3057, 2951, 2856, 2353, 1606, 1555, 1456, 1362, 1208, 739; EIMS *m/z* 583 (M⁺); HRMS (EI) for C₄₁H₄₉N₃, calcd 583.3926, found 583.3922. *cis*-Diastereomer (minor): Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 0.72 (t, *J* = 7.3 Hz, 3H), 0.86 (t, *J* = 7.4 Hz, 3H), 0.89 (t, *J* = 7.3 Hz, 3H), 1.06-1.33 (m, 6H), 1.58-1.82 (m, 6H), 1.91-2.01 (m, 4H), 2.09-2.11 (m, 1H), 2.38-2.41 (m, 2H), 3.84-4.06 (m, 6H), 4.56 (brs, 1H), 6.64 (s, 1H), 6.77-6.95 (m, 3H), 7.03-7.12 (m, 3H), 7.16-7.34 (m, 5H), 7.58 (d, *J* = 8.2 Hz, 1H), 7.67 (d, *J* = 7.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 13.58, 13.71, 20.13, 20.23, 27.66, 28.45, 29.66, 31.20, 32.28, 32.43, 32.54, 36.03, 36.48, 43.09, 45.84, 45.92, 46.07, 108.95, 109.27, 109.45, 117.30, 117.48, 117.74, 117.90, 118.62, 118.72, 120.03, 120.38, 120.52, 120.98, 121.32, 123.10, 123.65, 126.15, 126.43, 126.54, 126.81, 128.52, 136.71, 137.05, 137.28; IR (KBr, neat, cm⁻¹) 3057, 2961, 2866, 2361, 1606, 1560, 1463, 1365, 1196, 739; EIMS *m/z* 583 (M⁺); HRMS (EI) for C₄₁H₄₉N₃, calcd 583.3926, found 583.3918.

Dimethyl 3,3'-(7-(methoxycarbonyl)-4,9-dimethyl-2,3,4,9-tetrahydro-*1H*-carbazole-1,4-divl)bis(1-methyl-1*H*-indole-6-carboxylate) (3c)

trans-Diastereomer (major): Yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 1.89-2.04 (m, 3H), 2.17 (s, 3H), 2.32-2.36 (m, 1H), 3.48 (s, 3H), 3.65 (s, 3H), 3.77 (s, 3H), 3.81-3.93 (m, 9H), 4.57 (brs, 1H), 6.45 (s, 1H), 6.61 (s, 1H), 7.51-7.66 (m, 2H), 7.69-7.72 (m, 3H), 7.79 (d, *J* = 8.3 Hz, 1H), 8.04 (s, 1H), 8.09 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 27.52, 29.46, 29.64, 29.97, 30.09, 32.73, 32.96, 34.87, 36.39, 51.88, 51.98, 111.17, 111.88, 112.01,

117.01, 118.20, 119.40, 119.83, 120.24, 120.38, 120.45, 122.30, 122.56, 122.68, 123.57, 129.22, 129.80, 129.89, 130.75, 130.88, 131.90, 136.73, 136.79, 137.41, 140.54, 168.06, 168.18, 168.31; IR (KBr, neat, cm⁻¹) 3456, 2947, 1712, 1653, 1616, 1558, 1473, 1377, 1263, 1085, 987, 827, 771, 737, 702; EIMS *m*/*z* 631 (M⁺); HRMS (EI) for C₃₈H₃₇N₃O₆, calcd 631.2682, found 631.2665.

Only *trans*-diastereomer was obtained as a pure product by chromatography. *cis*-Diastereomer contains inseparable *trans*-diastereomer.

6-Bromo-1,4-bis(5-bromo-1-methyl-1*H*-indol-3-yl)-2,3,4,9-tetrahydro-4,9-dimethyl-1*H*-carbazole (3d)

The inseparable mixture of two diastereomers: Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 1.81-1.88 (m, 3H), 1.95-1.97 (m, 2H), 2.04 (s, 3H), 2.19-2.27 (m, 1.8H), 2.38-2.41 (m, 1.4H), 3.42 (s, 3H), 3.44 (s, 2H), 3.58 (s, 3H), 3.68 (s, 3H), 3.75 (s, 2H), 3.78 (s, 2H), 4.42-4.45 (m, 1H), 4.48-4.50 (m, 0.6H), 6.24 (s, 1H), 6.36 (s, 1H), 6.71 (s, 0.6H), 6.99 (s, 1H), 7.12-7.20 (m, 6.8H), 7.28-7.34 (m, 3H), 7.50 (s, 0.6H), 7.64 (s, 1H), 7.73 (s, 1H), 7.50 (s, 0.6H), 7.84 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 27.00, 27.19, 27.89, 29.48, 29.52, 29.66, 29.77, 30.19, 32.74, 32.90, 32.97, 33.19, 34.49, 35.37, 35.89, 36.30, 110.16, 110.22, 110.83, 110.90, 111.01, 111.05, 111.42, 111.82, 111.95, 112.38, 112.51, 116.31, 116.44, 117.29, 121.18, 121.54, 121.66, 122.34, 122.98, 123.19, 123.38, 123.48, 123.76, 124.64, 127.31, 127.80, 128.14, 128.68, 128.95, 129.96, 136.05, 136.56, 136.72, 138.07; IR (KBr, neat, cm⁻)

¹) 3056, 2923, 2852, 1635, 1559, 1485, 1451, 1215, 778, 735; EIMS *m/z* 690 (M⁺); HRMS (EI) for C₃₂H₂₈Br₃N₃, calcd 690.9833, found 690.9826.

8-Bromo-1,4-bis(7-bromo-1-methyl-1*H*-indol-3-yl)-4,9-dimethyl-2,3,4,9-tetrahydro-1*H*-carbazole (3e)

trans-Diastereomer (major): Yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 1.83-1.97 (m, 3H), 2.04 (s, 3H), 2.26-2.30 (m, 1H), 3.80 (s, 3H), 3.95 (s, 3H), 4.06 (s, 3H), 4.44 (m, 1H), 6.19 (s, 1H), 6.35 (s, 1H), 6.78-6.93 (m, 2H), 6.95 (t, J = 7.7 Hz, 1H), 7.29-7.36 (m, 2H), 7.38 (d, J = 7.5 Hz, 1H), 7.41 (d, J = 7.9 Hz, 1H), 7.56 (d, J = 8.5 Hz, 1H), 7.62 (d, J = 8.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 27.10, 29.30, 29.68, 29.99, 32.53, 34.76, 36.26, 36.70, 103.61, 104.12, 104.20, 116.45, 117.35, 117.93, 119.60, 119.72, 120.28, 120.32, 120.52, 121.50, 126.08, 126.22, 126.86, 129.04, 129.45, 129.56, 130.98, 132.04, 133.73, 133.77, 134.28, 138.56; IR (KBr, neat, cm⁻¹) 3057, 2941, 2856, 2360, 1606, 1558, 1485, 1456, 1208, 1089, 777, 735; EIMS *m*/*z* 690 (M⁺); HRMS (EI) for C₃₂H₂₈Br₃N₃ calcd 690.9833, found 690.9845.

cis-Diastereomer (minor): Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 1.75-1.78 (m, 1H), 1.85 (s, 3H), 2.13-2.16 (m, 1H), 2.24-2.31 (m, 1H), 2.41-2.47 (m, 1H), 3.84 (s, 3H), 4.05 (s, 3H), 4.13 (s, 3H), 4.49 (m, 1H), 6.55 (s, 1H), 6.62-6.67 (m, 2H), 6.81 (s, 1H), 6.96 (t, J = 7.7 Hz, 1H), 7.06 (d, J = 7.8 Hz, 1H), 7.21 (d, J = 7.6 Hz, 2H), 7.31 (d, J = 7.8 Hz, 1H), 7.38 (d, J = 7.6 Hz, 1H), 7.61 (d, J = 7.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 27.38, 28.04, 30.18, 30.35, 33.08, 35.92, 36.57, 37.23, 37.30, 103.87, 104.38, 104.71, 117.09,

118.40, 118.59, 119.53, 120.05, 120.19, 120.69, 120.85, 123.75, 126.62, 126.75, 127.37, 129.78, 129.91, 130.07, 130.24, 131.44, 134.09, 134.20, 134.52, 138.53; IR (KBr, neat, cm⁻¹) 3056, 2940, 2852, 2365, 1605, 1558, 1482, 1455, 1206, 1092, 778, 735; EIMS *m/z* 690 (M⁺); HRMS (EI) for C₃₂H₂₈Br₃N₃ calcd 690.9833, found 690.9842.

8-Chloro-1,4-bis(7-chloro-1-methyl-1H-indol-3-yl)-4,9-dimethyl-2,3,4,9-tetrahydro-

1H-carbazole (3f)

trans-Diastereomer (major): Yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 1.88-1.98 (m, 3H), 2.04 (s, 3H), 2.26-2.29 (m, 1H), 3.77 (s, 3H), 3.94 (s, 3H), 4.05 (s, 3H), 4.44 (m, 1H), 6.23 (s, 1H), 6.39 (s, 1H), 6.85-6.94 (m, 2H), 6.97 (t, J = 7.8 Hz, 1H), 7.09-7.12 (m, 2H), 7.16 (s, 1H), 7.37 (d, J = 7.8 Hz, 1H), 7.48 (d, J = 7.8 Hz, 1H), 7.56 (d, J = 7.9 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 27.12, 29.31, 29.68, 29.95, 32.49, 34.70, 36.28, 36.55, 116.62, 116.69, 117.13, 117.36, 117.94, 119.58, 119.73, 119.88, 119.93, 121.79, 122.53, 122.64, 123.33, 129.02, 129.34, 129.58, 130.69, 130.96, 131.74, 132.02, 132.66, 132.73, 133.25, 138.44; IR (KBr, neat, cm⁻¹) 3057, 2931, 2846, 1635, 1558, 1488, 1456, 1209, 1091, 779, 733; EIMS *m*/*z* 559 (M⁺); HRMS (EI) for C₃₂H₂₈Cl₃N₃ calcd 559.1349, found 559.1343.

cis-Diastereomer (minor): Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 1.74-1.77 (m, 1H), 1.85 (s, 3H), 2.14-2.16 (m, 1H), 2.24-2.30 (m, 1H), 2.41-2.44 (m, 1H), 3.85 (s, 3H), 4.11 (s, 3H), 4.14 (s, 3H), 4.50 (m, 1H), 6.55 (s, 1H), 6.68-6.73 (m, 2H), 6.86 (s, 1H), 7.00-7.04 (m, 4H), 7.16 (d, *J* = 7.6 Hz, 1H), 7.25 (d, *J* = 7.8 Hz, 1H), 7.58 (d, *J* = 7.8 Hz, 1H); ¹³C NMR

S18

(75 MHz, CDCl₃) δ 27.41, 28.06, 30.32, 33.05, 35.96, 36.51, 37.09, 37.17, 116.83, 117.33, 117.37, 117.77, 118.02, 118.54, 119.12, 119.57, 119.63, 120.29, 122.35, 123.07, 123.18, 123.85, 124.01, 128.92, 129.67, 129.97, 130.08, 131.16, 132.99, 133.13, 133.48, 137.96; IR (KBr, neat, cm⁻¹) 3066, 2931, 2847, 1652, 1558, 1488, 1456, 1362, 1209, 1101, 779, 733; EIMS *m/z* 559 (M⁺); HRMS (EI) for C₃₂H₂₈Cl₃N₃ calcd 559.1349, found 559.1343.

9-Allyl-1,4-bis(1-allyl-7-bromo-1*H*-indol-3-yl)-8-bromo-2,3,4,9-tetrahydro-4-methyl-

trans-Diastereomer (major): Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 1.83-1.99 (m, 3H), 2.16 (s, 3H), 2.27-2.30 (m, 1H), 4.34-4.39 (m, 2H), 4.49 (d, J = 17 Hz, 1H), 4.67-4.83 (m, 2H), 4.87-4.96 (m, 1H), 5.01-5.16 (m, 6H), 5.45-5.50 (m, 1H), 5.90-6.07 (m, 3H), 6.32 (s, 1H), 6.51 (s, 1H), 6.78-6.88 (m, 2H), 6.97 (t, J = 13.7 Hz, 1H), 7.29 (d, J = 7.6 Hz, 2H), 7.39 (t, J = 7.1 Hz, 2H), 7.52 (d, J = 7.3 Hz, 1H), 7.60 (d, J = 8.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 27.35, 29.32, 29.82, 35.12, 36.32, 46.05, 50.06, 50.16, 103.70, 104.06, 104.15, 114.64, 115.88, 116.15, 117.48, 118.18, 119.80, 119.97, 120.52, 120.61, 126.68, 126.81, 127.44, 129.53, 129.81, 129.98, 130.21, 131.05, 133.26, 133.33, 133.79, 135.25, 135.34, 136.02, 138.77; IR (KBr, neat, cm⁻¹) 3055, 2936, 2852, 2358, 1655, 1552, 1485, 1452, 1205, 985, 915, 775, 738; EIMS *m*/*z* 769 (M⁺); HRMS (EI) for C₃₈H₃₄Br₃N₃ calcd 769.0303, found 769.0325.

Only *trans*-diastereomer was obtained as a pure product by chromatography. *cis*-Diastereomer contains inseparable *trans*-diastereomer.

4,9-Dimethyl-1,4-bis(1-methyl-1*H*-indol-3-yl)-2-phenyl-2,3,4,9-tetrahydro-1*H*-

carbazole (3h)

The inseparable mixture of two diastereomers: Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 2.12-2.17 (m, 5H), 2.49 (t, J = 12.8 Hz, 1H), 2.93-2.98 (m, 1.5H), 3.09 (t, J = 10.4 Hz, 1H), 3.22 (s, 3H), 3.24 (s, 1.3H), 3.56 (s, 3.6H), 3.64 (s, 1.8H), 3.66 (s, 1H), 4.46 (d, J = 10.0 Hz, 1H), 4.62 (brs, 0.42H), 6.29 (s, 1H), 6.32 (brs, 0.42H), 6.74-6.77 (m, 2.8H), 6.78-6.85 (m, 4.4H), 6.93-6.95 (m, 1.3H), 6.98-7.05 (m, 2H), 7.06-7.12 (m, 7.2H), 7.13-7.20 (m, 5.8H), 7.24-7.28 (m, 4H), 7.69 (d, J = 8.0 Hz, 1H), 7.75 (d, J = 8.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 29.72, 30.11, 30.63, 32.55, 32.58, 35.98, 37.74, 40.64, 46.44, 46.99, 47.11, 108.53, 108.89, 108.95, 108.97, 109.29, 118.11, 118.26, 118.40, 118.52, 118.95, 119.64, 120.27, 120.47, 120.75, 120.88, 121.15, 121.23, 121.26, 121.31, 122.34, 125.66, 125.80, 125.94, 126.12, 126.54, 126.74, 127.42, 127.63, 127.78, 128.05, 128.09, 129.31, 136.91, 137.73, 137.76, 137.91, 138.17, 145.46; IR (KBr, neat, cm⁻¹) 3457, 2926, 1715, 1640, 1552, 1458, 1321, 1102, 739; EIMS *m*/*z* 533 (M⁺); HRMS (EI) for C₃₈H₃₅N₃, calcd 533.2831, found 533.2825.

4,9-Dimethyl-1,4-bis(1-methyl-1*H*-indol-3-yl)-1,3,4,9-tetrahydrospiro[carbazole-2,1'-

cyclohexane] (3i)

cis-Diastereomer (major): Yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 1.25-1.47 (m, 4H), 1.52-1.73 (m, 6H), 2.00-2.16 (m, 4H), 2.74 (d, *J* = 14.8 Hz, 1H) 3.42 (s, 6H), 3.67 (s, 3H), 4.17 (s, 1H), 6.40 (s, 1H), 6.63 (s, 1H), 6.99 (t, *J* = 7.6 Hz, 1H), 7.10-7.21 (m, 7H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.50 (d, *J* = 7.8 Hz, 1H), 7.80 (d, *J* = 7.5 Hz, 1H), 7.91 (d, *J* = 7.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 22.09, 22.59, 26.64, 28.31, 29.05, 29.68, 32.47, 32.68, 36.13, 37.15, 37.31, 39.00, 42.96, 108.58, 109.19, 109.34, 113.02, 113.95, 118.14, 118.20, 118.77, 118.83, 119.99, 121.06, 121.14, 121.67, 121.97, 125.89, 126.35, 126.83, 127.85, 128.63, 129.22, 136.45, 137.57, 138.10, 139.89; IR (KBr, neat, cm⁻¹) 3046, 2925, 2865, 1699, 1610, 1538, 1470, 1369, 1260, 1008, 806, 738, 702; EIMS *m*/*z* 525 (M⁺); HRMS (EI) for C₃₇H₃₉N₃ calcd 525.3144, found 525.3139.

4,9-Dimethyl-1,4-bis(1-methyl-1*H*-indol-3-yl)-1,3,4,9-tetrahydrospiro[carbazole-2,1'cyclopentane] (3j)

cis-Diastereomer (major): Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 1.45-1.67 (m, 3H), 1.75-1.84 (m, 2H), 1.87-1.94 (m, 3H), 2.10 (s, 3H), 2.26 (d, *J* = 14.4 Hz, 1H), 2.57 (d, *J* = 14.2 Hz, 1H), 3.40 (s, 3H), 3.46 (s, 3H), 3.72 (s, 3H), 4.21 (s, 1H), 6.45 (s, 1H), 6.67 (s, 1H), 6.95 (t, *J* = 7.5 Hz, 1H), 7.06-7.15 (m, 3H), 7.18-7.25 (m, 4H), 7.31 (d, *J* = 8.2 Hz, 1H), 7.48 (d, *J* = 8.0 Hz, 1H), 7.75 (d, *J* = 7.5 Hz, 1H), 7.81 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 23.39, 25.16, 28.90, 29.24, 32.67, 32.86, 36.60, 37.52, 37.67, 39.12, 48.66, 48.78, 108.73, 109.40, 109.47, 115.17, 118.26, 118.31, 118.41, 119.07, 120.28, 121.20, 121.39, 121.89, 122.03, 126.06, 126.45, 126.51, 128.88, 129.22, 136.52, 137.71, 138.17, 140.10; IR (KBr, neat, cm⁻¹) 3047, 2923, 2866, 1697, 1612, 1539, 1471, 1371, 1261, 1010, 808, 739, 701; EIMS *m*/*z* 511 (M⁺); HRMS (EI) for C₃₆H₃₇N₃ calcd 511.2987, found 511.2968.

4,9-Dimethyl-1,4-bis(1-methyl-1*H*-indol-3-yl)-1,2',3,3',4,5',6',9-

octahydrospiro[carbazole-2,4'-pyran] (3k)

cis-Diastereomer (major): Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 1.56-1.69 (m, 3H), 2.02 (t, *J* = 13.5 Hz, 2H), 2.12 (s, 3H), 2.55 (t, *J* = 10.7 Hz, 1H), 3.04-3.07 (m, 1H), 3.22 (d, *J* = 14.2 Hz, 1H), 3.32 (s, 3H), 3.42 (t, *J* = 11.9 Hz, 1H), 3.52-3.57 (m, 4H), 3.67 (s, 3H), 4.14 (s, 1H), 6.41 (s, 1H), 6.43 (s, 1H), 7.04 (t, *J* = 7.3 Hz, 1H), 7.10-7.32 (m, 8H), 7.61 (d, *J* = 7.8 Hz, 1H), 7.82 (d, *J* = 7.5 Hz, 1H), 8.00 (d, *J* = 7.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 29.09, 29.69, 32.33, 32.53, 32.82, 35.64, 36.15, 37.08, 37.40, 42.03, 63.89, 63.94, 108.73, 109.36, 109.54, 115.10, 118.32, 118.60, 119.13, 120.38, 120.66, 120.95, 121.35, 121.55, 122.06, 123.18, 126.09, 128.33, 129.05, 130.06, 132.17, 133.15, 134.56, 136.79,

137.76, 137.98; IR (KBr, neat, cm⁻¹) 3046, 2928, 2867, 1695, 1610, 1534, 1459, 1365, 1262, 1010, 739, 702; EIMS *m/z* 527 (M⁺); HRMS (EI) for C₃₆H₃₃₇N₃O, calcd 527.2937, found 527.2932.

8-Bromo-4,9-dimethyl-1,4-bis(7-bromo-1-methyl-1H-indol-3-yl)-1,3,4,9-

tetrahydrospiro[carbazole-2,1'-cyclopentane] (3l)

cis-Diastereomer (major): Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 1.23-1.38 (m, 3H), 1.68-1.72 (m, 2H), 1.79-1.89 (m, 3H), 2.03 (s, 3H), 2.16 (d, *J* = 13.8 Hz, 1H), 2.57 (d, *J* = 14.2 Hz, 1H), 3.70 (s, 3H), 3.79 (s, 3H), 4.08 (s, 3H), 4.15 (s, 1H), 6.40 (s, 1H), 6.59 (s, 1H), 6.77 (t, *J* = 7.8 Hz, 1H), 6.85 (t, *J* = 7.8 Hz, 2H), 6.95 (t, *J* = 7.8 Hz, 1H), 7.31-7.34 (m, 3H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.66 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.12, 24.98, 28.37, 32.00, 36.09, 36.68, 36.88, 37.30, 37.42, 38.88, 48.53, 48.68, 103.43, 104.13, 114.52, 117.42, 119.36, 119.44, 120.32, 120.37, 120.85, 121.04, 124.85, 126.07, 126.11, 126.33, 126.54, 129.08, 129.28, 129.32, 131.52, 131.95, 132.15, 133.85, 134.20, 141.31; IR (KBr, neat, cm⁻¹) 3051, 2938, 2852, 2321, 1595, 1556, 1482, 1211, 1092, 775, 736; EIMS *m*/*z* 745 (M⁺); HRMS (EI) for C₃₆H₃₄Br₃N₃ calcd 745.0303, found 745.0285.

4-(7-Bromo-1-methyl-1*H*-indol-3-yl)-2,3,4,9-tetrahydro-4,9-dimethyl-1-(1-methyl-1*H*-

The inseparable mixture of two diastereomers: Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 1.91-1.99 (m, 4H), 2.08 (s, 3H), 2.16-2.19 (m, 0.3H), 2.26-2.35 (m, 1.7H), 3.47 (s, 3H), 3.48 (s, 1H), 3.68 (s, 4H), 3.95 (s, 3H), 4.12 (s, 1H), 4.54-4.55 (m, 1H), 4.56-4.57 (m, 0.3H), 6.28 (s, 1H), 6.43 (s, 1H), 6.59 (s, 0.3H), 6.67 (t, *J* = 7.8 Hz, 0.3H), 6.84-6.91 (m, 1.3H), 7.04 (t, *J* = 7.8 Hz, 1H), 7.14-7.35 (m, 9H), 7.45 (d, *J* = 7.2 Hz, 0.2H), 7.56 (d, *J* = 7.8 Hz, 1H), 7.62 (d, *J* = 7.6 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 1.3H); ¹³C NMR (100 MHz, CDCl₃) δ 27.35, 28.09, 29.43, 29.59, 29.70, 29.90, 30.11, 30.73, 32.68, 34.48, 35.72, 36.07, 36.43, 36.69, 36.77, 108.57, 108.73, 109.39, 112.24, 112.69, 116.98, 117.21, 117.40, 118.36, 118.43, 118.75, 118.83, 118.92, 119.34, 120.43, 120.54, 120.66, 121.18, 121.66, 122.13, 122.38, 123.66, 125.92, 126.28, 126.64, 127.81, 128.04, 129.14, 129.58, 130.13, 132.22, 134.28, 136.77, 137.15, 137.36; IR (KBr, neat, cm⁻¹) 3052, 2930, 2851, 1629, 1557, 1482, 1459, 1211, 1092, 736; EIMS *m/z* 536 (M⁺); HRMS (EI) for C₃₃H₃₀BrN₃, calcd 535.1623, found 535.1619.

4-(7-Chloro-1-methyl-1*H*-indol-3-yl)-2,3,4,9-tetrahydro-4,9-dimethyl-1-(1-methyl-1*H*-

trans-Diastereomer (major): Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 1.90-1.98 (m, 3H), 2.07 (s, 3H), 2.29-2.31 (m, 1H), 3.46 (s, 3H), 3.67 (s, 3H), 3.93 (s, 3H), 4.52-4.53 (m, 1H), 6.26 (s, 1H), 6.41 (s, 1H), 6.91 (t, J = 7.8 Hz, 1H), 7.05 (t, J = 7.7 Hz, 1H), 7.08-7.14 (m, 2H), 7.19 (t, J = 7.2 Hz, 1H), 7.13-7.27 (m, 1H), 7.31-7.34 (m, 2H), 7.53 (d, J = 7.9 Hz, 1H), 7.60-7.64 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 27.50, 29.55, 29.59, 30.05, 32.82, 34.66, 36.58, 36.69, 108.87, 109.55, 117.14, 117.16, 117.51, 118.57, 118.89, 119.07, 119.09, 120.01, 120.56, 121.32, 121.51, 121.81, 122.53, 125.78, 126.78, 126.91, 128.19, 130.02, 132.08, 133.50, 137.30, 137.51; IR (KBr, neat, cm⁻¹) 3055, 2931, 2850, 1632, 1553, 1480, 1458, 1210, 1091, 736; EIMS *m*/*z* 491 (M⁺); HRMS (EI) for C₃₃H₃₀ClN₃, calcd 491.2128, found 491.2126.

Only *trans*-diastereomer was obtained as a pure product by chromatography. *cis*-Diastereomer contains inseparable *trans*-diastereomer.

General procedure for the synthesis of 4a

To a mixture of acetylenic aldehyde **1a** (205 mg, 2.5 mmol) and *N*-methyl indole **2a** (820 mg, 6.25 mmol) in CHCl₃ (10 mL) was added 10 mol% of BF₃·OEt (0.25 mmol). The reaction mixture was stirred at room temperature for 6 h and was concentrated and loaded directly onto a silica gel column; elution with ethyl acetate/hexane (50:1) afforded the product **4a** (610 mg) as a white solid in 75% yield.

1-Methyl-3-(1-(1-methyl-1*H*-indol-3-yl)pent-4-ynyl)-1*H*-indole

(4a)

¹H NMR (300 MHz, CDCl₃) δ 1.97-2.01 (m, 1H), 2.22-2.30 (m, 2H), 2.39-2.46 (m, 2H), 3.71 (s, 6H), 4.65 (t, *J* = 7.4 Hz, 1H), 6.87 (s, 2H), 7.04 (t, *J* = 6.8 Hz, 2H), 7.16 (t, *J* = 8.2 Hz, 2H), 7.21-7.38 (m, 2H), 7.62 (d, *J* = 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 17.78, 33.16, 33.37, 35.34, 69.07, 85.32, 109.64, 118.45, 119.06, 120.26, 121.90, 126.87, 127.91, 137.82; IR (KBr, neat, cm⁻¹) 3441, 1643, 1471, 741; EIMS *m*/*z* 326 (M⁺); HRMS (EI) for C₂₃H₂₂N₂, calcd 326.1783, found 326.1781.

Reference:

1. Y. Chen and C. Lee, J. Am. Chem. Soc., 2006, 128, 15598.

¹H NMR Spectrum

