Supporting Information

Highly Regio- and Stereoselective Synthesis of Alkenylboronic Esters by Copper-catalyzed Boron Additions to Disubstituted Alkynes

Hye Ryung Kim and Jaesook Yun^{*}

Department of Chemistry and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746, Korea jaesook@skku.edu

Contents:

General methods	S2
General procedure for the copper-catalyzed boron addition to disubstituted alkynes	
and NOE spectra	
Oxidation of the α -addition products	S10
Borylation of 2-(3,3-dimethylbut-1-ynyl)pyridine (eq. 1)	S11
Copper-catalyzed boron addition to 2-Hexyne	
Suzuki-Miyaura coupling of alkenylbronate with aryl bromide.	S12–S13
References	S13
NMR spectra	S14–S37

Experimental

General Methods. All reactions were performed in oven-dried Schlenk tubes under nitrogen. THF was distilled from sodium benzophenone ketyl under nitrogen. Cu(I)Cl, NaO*t*-Bu, bis(pinacolato)diboron and other commercial substrates were purchased and used as received. Flash chromatography was performed on silica gel from Fuji Silysia Chemical (75–200 mesh). All ¹H NMR spectra were obtained on Varian Mercury 300 systems and reported in parts per million (ppm) downfield from tetramethylsilane. ¹³C NMR spectra were reported in ppm referenced to deuteriochloroform (77.16 ppm). GC analysis was performed on a Younglin Acme 9000 series. Infrared spectra (IR) were obtained on Nicolet 205 FTIR and are recorded in cm⁻¹. High resolution mass spectra (HRMS) were obtained at Korea Basic Science Institute Daegu, Korea and reported in the form of m/z (intensity relative to base peak = 100).

Commercially unavailable alkynes were synthesized via Pd-catalyzed Negishi cross coupling of aryl halides with propynylmetals or Sonogashira coupling of terminal alkynes with aryl halides by following published procedures.^{1–3}

1. General procedure for the copper-catalyzed boron addition to disubstituted alkynes

To an oven dried schlenk tube equipped with a stir bar were added CuCl (2.5 mg, 0.025 mmol), NaOt-Bu (9.6 mg, 0.1 mmol), tri-*p*-tolylphosphine (9.3 mg, 0.05 mmol) and THF (0.4 mL) under nitrogen. After the mixture was stirred at room temperature for 30 min, bis(pinacolato)diboron (140 mg, 0.55 mmol) dissolved in THF (0.3 mL) was added. The reaction mixture was stirred for 10 min. Then, internal alkyne (0.5 mmol) was added followed by MeOH (0.04 mL, 1 mmol). The reaction was washed with THF (0.3 mL), sealed, and stirred until no starting material was detected by TLC. The reaction mixture was filtered through a pad of Celite and concentrated. The product was purified by silica gel chromatography.

(Z)-4,4,5,5-tetramethyl-2-(1-phenylbut-1-en-2-yl)-1,3,2-dioxaborolane (Table

1, entry 9): The title compound was isolated as a colorless oil in 90% yield (116.8 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.367.22 (m, 5H), 7.21 (br s, 1H),

2-3aB 2.40 (q, J = 7.5 Hz, 2H), 1.31 (s, 12H), 1.10 (t, J = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 141.5, 138.0, 129.1, 128.2, 127.2, 83.5, 25.0, 22.8, 14.8; IR (KBr) 2975, 1363, 1137 cm⁻¹; HRMS(EI) *m/z* calcd for C₁₆H₂₃BO₂: 258.1791, found: 258.1790.

colorless oil 90% yield (117.8 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.35 (td, J = 8.7 Hz, 2.2 Hz, 2H), 7.19 (br s, 1H), 7.02 (tt, J = 8.7Hz, 2.2 Hz, 2H), 1.97 (d, J = 1.8 Hz, 3H), 1.31 (s, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 163.5, 160.2, 141.3, 134.2, 131.2, 131.1, 115.2, 115.0, 83.7, 25.0, 16.0; IR (KBr) 2983, 1357, 1227, 1132 cm⁻¹; HRMS(EI) *m/z* calcd for C₁₅H₂₀BFO₂: 262.1540, found: 262.1541.

(Z)-2-(1-(4-bomophenyl)prop-1-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (Table 2, entry 2): The title compound was isolated as a white solid in 92% yield (147.6 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.45 (d, J = 8.3 Hz, 2H), 7.23 (d, J = 8.3 Hz, 2H), 7.15 (br s, 1H), 2.00 (d, J = 1.3

Hz, 3H), 1.30 (s, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 141.1, 136.8, 131.3, 131.0, 121.1, 83.7, 25.0, 16.0; IR (KBr) 2978, 1344, 1123 cm⁻¹; HRMS(EI) *m*/*z* calcd for C₁₅H₂₀BBrO₂: 322.0740, found: 322.0742.

(Z)-4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-enyl)-ben - zonitrile (Table 2, entry 3): The title compound was isolated as a white solid in 93% yield (125.2 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.63 (d, J = 8.2 Hz, 2H), 7.45 (d, J = 8.2 Hz, 2H), 7.20 (br s, 1H), 1.98 (d, J = 1.8 Hz,

3H), 1.32 (s, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 142.5, 140.3, 132.0, 129.9, 119.1, 110.5, 84.0, 25.0, 16.1; IR (KBr) 2976, 2225, 1349, 1132 cm⁻¹; HRMS(EI) *m/z* calcd for C₁₆H₂₀BNO₂: 269.1587, found: 269.1584.

(Z)-4,4,5,5-tetramethyl-2-(1-(naphthalen-2-yl)prop-1-en-2-yl)-1,3,2dioxaborolane (Table 2, entry 4): The title compound was isolated as a colorless oil in 92% yield (136.2 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.84 (br s, 1H), 7.817.76 (m, 4H), 7.547.41 (m, 3H), 2.14 (d, J = 1.8 Hz, 3H),

1.31 (s, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 142.5, 135.6, 133.3, 132.5, 128.7, 128.3, 127.66, 127.63, 127.59, 126.12, 126.10, 83.6, 25.0, 16.2; IR (KBr) 2981, 1369, 1148 cm⁻¹; HRMS(EI) *m/z* calcd for C₁₉H₂₃BO₂: 294.1791, found: 294.1794.

(*Z*)-2-(1-(2,6-dimethylphenyl)prop-1-en-2-yl)-4,4,5,5-tetramethyl-1,3,2di-oxaborolane (Table 2, entry 5): The title compound was isolated as a white solid in 89% yield (120.7 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.15 (br s, 1H), 7.096.99 (m, 3H), 2.16 (s, 6H), 1.51 (d, *J* = 1.6 Hz, 3H), 1.32 (s, 12H); ¹³C

NMR (75 MHz, CDCl₃) δ 142.6, 137.7, 135.5, 127.0, 126.6, 83.5, 25.0, 20.3, 15.6; IR (KBr) 2981, 1712, 1371, 1121 cm⁻¹; HRMS(EI) *m/z* calcd for C₁₇H₂₅BO₂: 272.1948, found: 272.1944.

(Z)-2-(1-(4-methoxyphenyl)but-1-en-2-yl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane (Table 2, entry 6): The title compound was isolated as a colorless oil in 90% yield (129.6 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.30 (d, J = 8.8 Hz, 2H), 7.15 (br s, 1H), 6.86 (d, J = 8.8 Hz, 2H), 3.80 (s, 3H), 2.42 (q, J = 7.5 Hz, 2H), 1.30 (s, 12H), 1.11 (t, J = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 158.8, 141.1, 134.5(C-B), 130.6, 130.5, 113.6, 83.4, 55.3, 24.9, 22.7, 14.7; IR (KBr) 2976, 1511, 1361, 1133

cm⁻¹; HRMS(EI) m/z calcd for C₁₇H₂₅BO₃: 288.1897, found: 288.1898.

Irradiation of the allylic hydrogens at 2.42 ppm resulted in a 1.59% enhancement of the methyl hydrogens signal at 1.11 ppm, 0.23% enhancement of the boronic ester hydrogens signal at 1.30 ppm and 1.06% enhancement of the aryl proton signal at 7.15 ppm.

Figure 1-1. NOE spectrum of (Z)- 3gB

Irradiation of the boronic ester hydrogens at 1.30 ppm resulted in a 0.04% enhancement of the vinyl proton signal at 7.15 ppm, 0.02% enhancement of the allylic hydrogenes at 2.42 ppm and 0.04% enhancement of the methyl hydrogenes signal at 1.30 ppm.

Figure 1-2. NOE spectrum of (Z)- 3gB

(Z)-4,4,5,5-tetramethyl-2-(4-methyl-1-phenylpent-1-en-2-yl)-1,3,2-dioxaborolane (Table 2, entry 7): The title compound was isolated as a colorless oil in 90% yield (129.2 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.347.18 (m,5H), 7.27 (br s, 1H), 2.31 (br d, J = 7.2 Hz, 2H), 1.921.78 (m, 1H), 1.30 (s, 12H), 0.86 (d, J

= 6.6 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 142.5, 138.2, 134.8 (C–B), 129.2, 128.1, 127.0, 83.4, 38.1, 28.9, 24.8, 22.8; IR (KBr) 2963, 1366, 1138 cm⁻¹; HRMS(EI) *m/z* calcd for C₁₈H₂₇BO₂: 286.2104, found: 286.2102.

(Z)-2-(1,2-diphenylvinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (Table 2, Bpin entry 8): The title compound was isolated as a white solid in 91% yield (138.7 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.37 (s, 1H), 7.347.03 (m, 10H), 1.30 (s, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 143.4, 140.7, 137.2, 130.2, 129.1, 128.5, 128.1, 127.8, 126.5, 84.0, 25.0; IR (KBr) 2984, 1332, 1144 cm⁻¹; HRMS(EI) *m/z* calcd for C₂₀H₂₃BO₂;

306.1791, found: 306.1792.

Bpin

Z-3hB

Z-3i

(Z)-2-(1-cyclohexyl-2-phenylvinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (Table 2, entry 9): The crude reaction mixture contained a 86:14 ratio of Z-3jB and Z-3jA as measured by GC analysis. The isomers were inseparable and obtained in 88% yield (137.3 mg). (major isomer, Z-3jB) ¹H NMR (300 MHz, CDCl₃) δ 7.34–7.19 (m, 5H), 7.14 (br s, 1H), 2.70–2.63 (m, 1H), 1.72–1.46 (m,

10H), 1.29 (s, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 140.3, 138.4, 129.0, 128.1, 126.9, 83.1, 39.5, 32.1,

26.5, 26.2, 24.9; IR (KBr) 2928, 1355, 1139 cm⁻¹; HRMS(EI) m/z calcd for C₂₀H₂₉BO₂: 312.2261, found: 312.2263.

(Z)-4,4,5,5-tetramethyl-2-(3-methyl-1-phenylbut-1-en-2-yl)-1,3,2-dioxaborolane (Table 2, entry 10): The crude reaction mixture contained a 80:20 ratio of Z-3kB and Z-3kA as measured by GC analysis. The isomers were inseparable and obtained in 82% yield (111.7 mg). (major isomer, Z-3kB) ¹H

NMR (300 MHz, CDCl₃) δ 7.34–7.20 (m, 5H), 7.15 (s, 1H), 3.00 (sept, J = 6.8 Hz, 1H), 1.30 (s, 12H), 1.13 (d, J = 6.8 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 140.1, 138.4, 128.9, 128.1, 126.9. 83.1, 28.8, 24.9, 22.4; IR (KBr) 2973, 1366, 1143 cm⁻¹; HRMS(EI) *m/z* calcd for C₁₇H₂₅BO₂: 272.1948, found: 272.1947.

(*Z*)-4,4,5,5-tetramethyl-2-(1-(thiophen-2-yl)prop-1-en-2-yl)-1,3,2-dioxaborolane (Table 2, entry 11): The title compound was isolated as a light yellow oil in 93% yield (117 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.42 (br s, 1H), 7.35 (d, *J* = 5.0 Hz, 1H), 7.15 (d, *J* = 3.2 Hz, 1H), 7.04 (dd, *J* = 5.0 Hz, 3.6 Hz, 1H), 2.05

(d, J = 1.5 Hz, 3H), 1.29 (s, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 141.6, 135.1, 129.4, 127.2, 126.9, 83.6, 25.0, 16.4; IR (KBr) 2984, 1367, 1143 cm⁻¹; HRMS(EI) *m/z* calcd for C₁₃H₁₉BO₂S: 250.1199, found: 250.1199.

(Z)-2-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-enyl)benzo[d]oxazole (Table 2, entry 12): The title compound was isolated as a light yellow soild in 90% yield (128.3 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.80–7.72 (m, 1H), 7.55–7.48 (m, 1H), 7.34–7.30 (m, 2H), 7.14 (d, J = 1.6

Hz, 1H), 2.42 (d, J = 1.6 Hz, 3H), 1.31 (s, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 162.4, 150.0, 142.0, 126.2, 125.3, 124.4, 120.3, 110.6, 84.2, 24.9, 17.3; IR (KBr) 2985, 1358, 1137 cm⁻¹; HRMS(EI) *m/z* calcd for C₁₆H₂₀BNO₃: 285.1536, found: 285.1533.

(*Z*)-2-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-1-enyl)pyridine (Table2, entry 13): The title compound was isolated as a colorless oil in 89% yield (127.8 mg). ¹H NMR (300 MHz, CDCl₃) δ 8.61 (d, *J* = 3.9 Hz, 1H) 7.62 (td, *J* = 7.7 Hz, *J* = 1.8 Hz, 1H), 7.28 (d, *J* = 7.9 Hz, 1H), 7.22 (s,

1H), 7.10 (ddd, J = 7.5 Hz, J = 4.8 Hz, J = 1.0 Hz, 1H), 2.64 (t, J = 7.4 Hz, 2H), 1.60-1.32 (m, 4H), 1.30 (s, 12H), 0.88 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 157.0, 149.4, 140.4, 135.9, 124.4, 121.6, 83.6, 32.1, 29.1, 24.9, 22.9, 14.2; IR (KBr) 2973, 1350, 1140 cm⁻¹; HRMS(EI) *m/z* calcd for C₁₇H₂₆BNO₂: 287.2057, found: 287.2056.

(*E*)-2-(3,3-dimethyl-1-phenylbut-1-enyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane (Table 3, entry 1): The title compound was isolated as a white solid in 91% yield (130.3 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.347.04 (m, 5H), 6.48 (s, 1H), 1.22 (s, 12H), 0.91(s, 9H); ¹³C NMR (75 MHz, CDCl₃)

δ 156.1, 141.8, 128.8, 127.4, 125.6, 83.5, 35.7, 31.1, 24.8; IR (KBr) 2971, 1329, 1146 cm⁻¹; HRMS(EI) *m/z* calcd for C₁₈H₂₇BO₂: 286.2104, found: 286.2106.

2H), 6.53 (s, 1H), 1.23 (s, 12H), 0.90 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 157.1, 146.0, 129.2, 127.9 (q, *J* = 32 Hz), 124.7 (q, *J* = 272 Hz), 124.4 (q, *J* = 3.9 Hz), 83.8, 35.9, 31.0, 24.8; IR (KBr) 2969, 1325, 1256, 1121 cm⁻¹; HRMS(EI) *m/z* calcd for C₁₉H₂₆BF₃O₂: 354.1978, found: 354.1980.

Irradiation of the aryl proton at 7.17 ppm resulted in a 6.40% enhancement of the aryl proton signal at 7.50 ppm and 1.84% enhancement of the vinyl proton signal at 6.53 ppm.

Irradiation of the vinyl proton at 6.53 ppm resulted in a 6.24% enhancement of the aryl proton signal at 7.17 ppm and 3.45% enhancement of the tert-butyl signal at 0.90 ppm.

Figure 2-2. NOE spectrum of (E)- 5bA

(*E*)-4-(3,3-dimethyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-1-enyl)benzonitrile (Table 3, entry3): The title compound was isolated as a white solid in 92% yield (143.2 mg). ¹H NMR (300 MHz,

CDCl₃) δ 7.55 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 8.3 Hz, 2H), 6.53 (s, 1H), 1.22 (s, 12H), 0.90 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 157.2, 147.5, 131.2, 129.5, 119.4, 109.4, 83.7, 35.8, 30.8, 24.7; IR (KBr) 2973, 2224, 1328, 1143 cm⁻¹; HRMS(EI) *m/z* calcd for C₁₉H₂₆BNO₂: 311.2057, found: 311.2058.

(*E*)-2-(1-(4-methoxyphenyl)-3,3-dimethylbut-1-enyl)-4,4,5,5tetra-methyl-1,3,2-dioxaborolane (Table 3, entry4): The title compound was isolated as a white solid in 62% yield (98.7 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.146.90 (m, 2H), 6.846.74 (m, 2H), 6.46

(s, 1H), 3.79 (s, 3H), 1.22 (s, 12H), 0.91 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 157.6, 156.4, 133.9, 129.8, 112.9, 83.4, 55.2, 35.6, 31.1, 24.8; IR (KBr) 2957, 2113, 1337, 1145 cm⁻¹; HRMS(EI) *m/z* calcd for C₁₉H₂₉BO₃: 316.2210, found: 316.2210.

(Z)-2-(2,2-dimethyldec-3-en-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (Table 3, entry 5): The title compound was isolated as a colorless oil in 37% yield (55 mg). ¹H NMR (300 MHz, CDCl₃) δ 6.21 (s, 1H), 2.24 (t, *J* = 6.3 Hz, 2H), 1.38–1.26 (m, 8H), 1.25 (s, 12H), 1.14 (s, 9H), 0.88 (t, *J* = 6.7 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 153.7, 83.1, 34.3, 32.0, 31.2, 30.8, 29.9, 29.7, 24.9, 22.8, 14.2; IR (KBr) 1353, 1142 cm⁻¹; HRMS(EI) *m/z* calcd for C₁₈H₃₅BO₂: 294.2730, found: 294.2732.

Irradiation of the *t*-butyl hydrogens at 1.14 ppm resulted in a 0.18% enhancement of the allylic hydrogens at 2.24 ppm and 0.47% enhancement of the vinyl proton signal at 6.21 ppm.

Figure 3-1. NOE spectrum of (Z)- 5eA

Irradiation of the vinyl proton at 6.21 ppm resulted in a 0.61% enhancement of the pinacol boronate signal at 1.25 ppm and 1.62% enhancement of the tert-butyl hydrogens signal at 1.14 ppm.

Figure 3-2. NOE spectrum of (Z)- 5eA

Oxidation of the -addition products (5aA-5dA) in Table 3 for the determination of regioselectivity:

To the α -addition product (**5aA-5dA**) in THF (2.5 mL) and H₂O (2.5 mL) was added sodium perborate⁴ (1.5 mmol, 102.3 mg). The reaction mixture was stirred vigorously for 0.5–1 h at room temperature. The reaction mixture was quenched with H₂O and then extracted with ethyl acetate (20 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄ and concentrated. The corresponding aryl ketone product was purified by silica gel chromatography.

3,3-dimethyl-1-phenylbutan-1-one: The title compound was isolated as a colorless oil in 90% yield (47.4 mg). ¹H NMR (300 MHz, CDCl₃) δ 8.04–7.88 (m, 2H), 7.60–7.38 (m, 3H), 2.86 (s, 2H), 1.06 (s, 9H); ¹³C NMR (75 28.6, 132.8, 128.6, 128.2, 50.1, 21.5, 21.2)

 $\text{MHz, CDCl}_3) \ \delta \ 200.5, \ 138.6, \ 132.8, \ 128.6, \ 128.3, \ 50.1, \ 31.5, \ 31.2.$

3,3-dimethyl-1-(4-(trifluoromethyl)phenyl)butan-1-one: The title compound was isolated as a colorless oil in 88% yield (64.2 mg). ¹H NMR (300 MHz, CDCl₃) δ 8.04 (d, *J* = 8.8 Hz, 2H), 7.72 (d, *J* = 8.7 Hz,

2H), 2.89 (s, 2H), 1.07 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 199.5, 141.3, 128.6, 125.7 (q, *J* = 3.4 Hz), 50.5, 31.6, 31.0, 30.1, 26.4.

4-(3,3-dimethylbutanoyl)benzonitrile: The title compound was isolated as a colorless oil in 89% yield (53.7 mg). ¹H NMR (300 MHz, CDCl₃) δ 8.02 (d, *J* = 8.7 Hz, 2H), 7.76 (d, *J* = 8.6 Hz, 2H), 2.88 (s,

2H), 1.07 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 198.9, 141.4, 132.4, 128.6, 118.0, 116.0, 50.3, 31.5, 29.9

1-(4-methoxyphenyl)-3,3-dimethylbutan-1-one: The title compound was isolated as a colorless oil in 89% yield (55.0mg). ¹H NMR (300 MHz, CDCl₃) δ 7.93 (d, *J* = 8.9 Hz, 2H), 6.92 (d, *J* = 8.9 Hz, 2H), 3.86 (s, 3H), 2.80 (s, 2H), 1.06 (s, 9H); ¹³C NMR (75 MHz, 2H), 3.86 (s, 3H), 2.80 (s, 2H), 1.06 (s, 9H); ¹³C NMR (75 MHz, 2H), 3.86 (s, 3H), 2.80 (s, 2H), 3.86 (s, 9H); ¹³C NMR (75 MHz, 2H), 3.86 (s, 3H), 2.80 (s, 2H), 3.86 (s, 9H); ¹³C NMR (75 MHz, 2H), 3.86 (s, 3H), 2.80 (s, 2H), 3.86 (s, 9H); ¹³C NMR (75 MHz, 2H), 3.86 (s, 2H), 3.86 (s, 2H), 3.86 (s, 9H); ¹³C NMR (75 MHz, 2H), 3.86 (s, 2H), 3.86 (s, 2H), 3.86 (s, 9H); ¹³C NMR (75 MHz, 2H), 3.86 (s, 2H), 3.86 (s, 2H), 3.86 (s, 2H), 3.86 (s, 9H); ¹³C NMR (75 MHz), 3.86 (s, 2H), 3.86 (s, 2H), 3.86 (s, 2H), 3.86 (s, 9H); ¹³C NMR (75 MHz), 3.86 (s, 2H), 3.86

CDCl₃) & 199.1, 163.3, 131.8, 130.7, 113.7, 55.6, 49.8, 31.6, 30.3.

2. Borylation of 2-(3,3-dimethylbut-1-ynyl)pyridine (eq. 1).

 $(E)-2-(3,3-dimethylbut-1-enyl)pyridine (6): The title compound was isolated as a colorless oil in 34% yield (27.1 mg). ¹H NMR (300 MHz, CDCl₃) <math>\delta$ 8.53 (d, J = 3.9 Hz, 1H), 7.57 (td, J = 7.7 Hz, J = 1.9 Hz, 1H), 7.26 (d, J = 6.0 Hz, 1H), 7.15-7.0 (m, 1H), 6.78 (d, J = 16 Hz, 1H), 6.41 (d, J = 16 Hz, 1H), 1.15 (s, 9H);

¹³C NMR (75 MHz, CDCl₃) δ 149.5, 146.4, 136.5, 125.1, 121.6, 121.3, 113.6, 33.6, 29.5; HRMS(EI) *m/z* calcd for C₁₆H₁₅N: 161.1204, found: 161.1204.

C(CH₃)₃ 2-(3,3-dimethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)pyridine (7): The title compound was isolated as a colorless oil in 15% yield (21.3 mg). ¹H NMR (300 MHz, CDCl₃) δ 8.48 (d, J = 4.3 Hz, 1H), 7.54 (td, J

= 7.6 Hz, J = 1.8 Hz, 1H), 7.19 (d, J = 7.8 Hz, 1H), 7.06 (dd, J = 5.0 Hz, J = 2.2 Hz, 1H), 2.99 (dd, J = 14.4 Hz, J = 5.0 Hz, 1H), 2.90 (dd, J = 14.4 Hz, J = 11.3 Hz, 1H), 1.40 (dd, J = 11.3 Hz, J = 5.0 Hz, 1H), 1.12 (s, 12H), 1.03 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 162.9, 148.0, 136.2, 123.2, 120.8, 82.5, 36.8 (C–B), 35.5, 32.2, 29.7, 25.2; IR (KBr) 2962, 1369, 1145 cm⁻¹; HRMS(EI) *m/z* calcd for C₁₇H₂₃BNO₂: 289.2213, found: 289.2214.

3. Copper-catalyzed boron addition to 2-Hexyne.

Bpin

Scheme						
$CH_3CH_2CH_2$ ——— CH_3 +		B ₂ Pin ₂ -	CuCl/NaO <i>t-</i> Bu Ligand	Bpin	n	_ <> Bpin
			2 equiv. MeOH THF_rt	Pr + CH ₃		Pr Y ' CH ₃
	4g		,	Z-5g/	4	Z-5gB
Entry	Ligand	Time (h)	Convn (%)	Produc Z-5gA	t ratio Z-5gB	Yield(%)
1	P(p-tolyl) ₃	24	58	23	77	-
2 ^a	P(OEt) ₃	24	69	19	81	-
3 ^{a,b}	P(OEt) ₃	24	82	18	82	70

^a Cu(I)CI : Ligand : NaOt-Bu = 10 : 10 : 20 mol% ^b Reaction was conducted at 60 °C.

Bpin (*Z*)-2-(hex-2-en-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (*Z*-5gB): The crude reaction mixture contained a 82:18 ratio of *Z*-5gB and *Z*-5gA as measured by GC analysis. The isomers were inseparable and obtained in 70% yield (73.5 mg). (major isomer, *Z*-5gB) ¹H NMR (300 MHz, CDCl₃) δ 6.32 (td, *J* = 7.0 Hz, 1.6 Hz, 1H), 2.10 (quartet, *J* = 7.1 Hz, 2H), 1.68 (d, *J* = 1.6 Hz, 3H), 1.50–1.32 (m 2H), 1.26 (s, 12H), 0.92 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 146.4, 140.4, 83.1, 30.9, 25.0, 23.1, 14.1; IR (KBr)1360, 1141 cm⁻¹; HRMS(EI) *m/z* calcd for C₁₂H₂₃BO₂: 210.1791, found: 210.1791.

4. Synthetic application of the alkenyl boronate products (Scheme 2).

Suzuki-Miyaura coupling of alkenylbronate with aryl bromide⁵: To an oven dried schlenk tube equipped with a stir bar were added $Pd_2(dba)_3$ (13.8 mg, 0.015 mmol), PPh₃ (15.7 mg, 0.06 mmol), K₃PO₄ (191 mg, 0.9 mmol) and distilled DMF (1.5 mL) under nitrogen. After the mixture was stirred at room temperature for 10 min, alkenylboronate (0.3 mmol) and aryl bromide (0.42 mmol) were added. The reaction was washed with distilled DMF (0.3 mL), sealed. The reaction mixture was heated 80 °C for 10 h. The reaction mixture was cooled to room temperature, filtered through Celite, washed with Et₂O and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated. The crude material was purified via silica gel chromatography.

(*E*)-1-fluoro-4-(2-phenylprop-1-enyl)benzene (8)⁶: Compound 8 was synthesized from (3bB) and bromobenzene as a white solid in 90% yield by following the Suzuki-Miyaura coupling procedure; ¹H NMR (300 MHz,

CDCl₃) δ 7.51–7.47 (m, 2H), 7.40–7.27 (m, 5H), 7.08–7.01 (m, 2H), 6.77 (br s, 1H), 2.23 (d, J = 1.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 163.2, 160.0, 143.9, 137.5, 134.48, 134.43, 130.9, 130.8, 128.5, 127.4, 126.7, 126.1, 115.3, 115.0, 17.5.; HRMS(EI) *m/z* calcd for C₁₅H₁₃F: 212.1001, found: 212.1003.

(*E*)-1-fluoro-4-(1-phenylprop-1-en-2-yl)benzene (10): Compound 10 was synthesized from (9)⁷ and 1-bromo-4-fluorobenzene as a white solid in 87% yield by following the Suzuki-Miyaura coupling procedure; ¹H NMR (300 MHz, CDCl₃) δ 7.60–6.90 (m, 9H), 6.77 (br s, 1H), 2.24 (d, *J* = 1.2 Hz,

3H); ¹³C NMR (75 MHz, CDCl₃) δ 163.9, 160.7, 140.1, 138.3, 136.5, 129.2, 128.3, 127.76, 127.74, 127.72, 127.6, 126.7, 115.4, 115.1, 17.7; IR (KBr) 3049, 1332, 1235 cm⁻¹; HRMS(EI) *m/z* calcd for

C₁₅H₁₃F: 212.1001, found: 212.1002.

(*E*)-1,1,4,4-tetramethyl-6-(1-phenylprop-1-en-2-yl)-1,2,3,4-tetrahydronaphthalene (12)⁹: Compound 12 was synthesized from (9)⁷ and 6-bromo-2,2,3,3,-tetrahydro-1,1,4,4,-tetramethylnaphthalene (11)⁸ as a white solid in 86% yield by following the Suzuki-Miyaura coupling

procedure; ¹H NMR (300 MHz, CDCl₃) δ 7.51–7.27 (m, 5H), 7.08 (s, 1H), 7.01 (m, 2H), 6.77 (br s, 1H), 2.05 (d, *J* = 1.8 Hz, 3H), 1.53 (s, 4H), 1.41 (s, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 163.2, 160.0, 143.9, 137.5, 134.48, 134.43, 130.9, 130.8, 128.5, 127.4, 126.7, 126.1, 115.3, 115.0, 33.0, 29.1, 17.5.; HRMS(EI) *m/z* calcd for C₂₃H₂₃: 304.2191, found: 304.2190.

References

1. (a) E. -I. Negishi, M. Kotora and C. Xu, J. Org. Chem., 1997, 62, 8957-8960; (b) F. Y. Kwong, Y.

M. Li, W. H. Lam, L. Qiu, H. W. Lee, C. H. Yeung, K. S. Chan and A. S. C. Chan, *Chem. Eur. J.*, 2005, **11**, 3872–3880.

- 2. N. J. Fitzmaurice, W. R. Jackson and P. Perlmutter, J. Organomet. Chem., 1985, 285, 375-381.
- 3. E. C. McLaughlin and M. P. Doyle, J. Org. Chem., 2008, 73, 4317-4319.
- 4. J. -E. Lee and J. Yun, Angew. Chem. Int. Ed. 2008, 72, 4953-4960.
- 5. D. W. Robbins, T. A. Boebel and J. F. Hartwig, J. Am. Chem. Soc., 2010, 132, 4068-4069.
- 6. M. Beller and T. H. Riermeier, Eur. J. Inorg. Chem., 1998, 1, 29-35.
- 7. Using the general procedure for the copper-catalyzed boron addition to 1-phenyl-1-propyne, the title compound was isolated as a colorless oil in 93% (113.8 mg) yield. : H. R. Kim, I. G. Jung, K. Yoo,
- K. Jang, E. S. Lee, J. Yun and S. U. Son, Chem. Commun., 2010, 46, 758-760.
- 8. G. Garipova, A. Gautier and S. R. Piettre, Tetrahedron, 2005, 61, 4755-4759.
- 9. L. Deloux, M. Srebnik and M. Sabat, J. Org. Chem., 1995, 60, 3276-3277.

3

ppm (f1)

