Colorimetric response to anions by a "robust" copper(II) complex of a [9]aneN₃ pendant arm derivative: CN^{-} and I^{-} selective sensing

M. Aguado Tetilla, M. C. Aragoni, M. Arca, C. Caltagirone, C. Bazzicalupi, A. Bencini, A. Garau, F. Isaia, A. Laguna, V. Lippolis, V. Meli

Electronic Supplementary Information

Experimental details

All melting points are uncorrected. Microanalytical data were obtained using a Fisons EA CHNS-O instrument (T = 1000°C). UV-Vis spectra were recorded on a Thermo Nicolet Evolution 300 spectrophotometer. Spectrophotometric titrations in MeCN and H₂O of the complex [CuL](BF₄)₂·MeCN (1) with anions were performed by adding to a solution of 1 (2.5 mL) increasing volumes (μ L) of a solution the anion (0.14 M) in the same solvent as a ⁿBu₄N⁺ salt (F⁻, Cl⁻, Br⁻, I⁻, MeCO₂⁻, PhCO₂⁻, H₂PO₄⁻, HSO₄⁻, NO₃⁻, N₃⁻, CN⁻ and SCN⁻) or a Et₄N⁺ salt (HCO₃⁻). All solvents and starting materials were purchased from commercial sources where available. 1-(2-quinolinylmethyl)-1,4,7-triazacyclononane (L) was prepared following a literature procedure¹. Solvents and starting materials where purchased from commercial sources where available.

¹ M. Mameli, M. C. Aragoni, M. Arca, M. Atzori, A. Bencini, C. Bazzicalupi, A. J. Blake, C. Caltagirone, F. A. Devillanova, A. Garau, M. B. Hursthouse, F. Isaia, V. Lippolis and B. Valtancoli, *Inorg. Chem.*, 2009, **48**, 9236

Synthesis of [CuL](BF₄)₂·MeCN (1)

A solution of Cu(BF₄)₂·xH₂O (3.40 mg, 0.014 mmol) in MeCN (5 mL) was added to a solution of 1-(2-quinolinylmethyl)-1,4,7-triazacyclononane (L) (3.87 mg, 0.014 mmol) in MeCN (5 mL). The resulting blue solution was stirred at room temperature for one hour. The solvent volume was then reduced to 3 mL under reduced pressure. The product was isolated as a blue powder after Et₂O vapours diffusion into the concentrated MeCN solution (5 mg, 9.11 × 10⁻³ mmol, 35% yield). Mp. 155°C (decomp.). Elemental analysis: found (calculated for C₁₈H₂₅B₂CuF₈N₅): C 39.37 (39.41); H 4.63 (4.59); N 12.78 (12.77). UV-Vis: λ /nm (ϵ /M⁻¹cm⁻¹): 600 (106) in MeCN; 634 (78) in H₂O.

Synthesis of [Cu(L)CN]BF4·1/2H2O

To a solution of $[CuL](BF_4)_2$ ·MeCN (1) (5.00 mg, 9.11×10^{-3} mmol) in MeCN (5mL) ⁿBu₄NCN was added (2.44 mg , 9.11×10^{-3} mmol) as a solid. The solution turned dark blue immediately after the addition. Dark blue crystals were obtained by slow evaporation of the solution (1.87 mg, 4.10×10^{-3} mg)

 10^{-3} mmol, 54% yield). Mp. 187°C (decomp.). Elemental analysis found (calculated for C₁₇H₂₃BCuF₄N₅O_{0.5}): C 44.86 (44.80); H 5.13 (5.09); N 15.39 (15.37). UV-Vis: λ /nm (ϵ /M⁻¹cm⁻¹): 585 (144) in MeCN; 595 (97) in H₂O.

Synthesis of [Cu(L)I]I

To a solution of $[CuL](BF_4)_2$ ·MeCN (1) (5.00 mg, 9.11×10^{-3} mmol) in MeCN (5mL) ⁿBu₄NI was added (6.74 mg ,0.019 mmol) as a solid. The solution turned green immediately after the addition. Green crystals were obtained by diffusion of Et₂O vapours in the solution (3.10 mg, 5.28×10^{-3} mmol, 58% yield) Mp. 178 (decomp.). Elemental analysis found (calculated for C₁₆H₂₂CuI₂N₄): C 32.74 (32.70); H 3.79 (3.77); N 9.51 (9.53). UV-Vis: λ /nm (ϵ /M⁻¹cm⁻¹): 630 (330), 420 (1330) in MeCN; 627 (85), 390 (156) in H₂O.

Figure S1. ORTEP view of the complex cation [CuL(I)]⁺ in [Cu(L)I]I. Hydrogen atoms have been omitted for clarity. Displacement ellipsoids are draw at a 30% probability level. Cu(1)-I(1) 2.583(2), Cu(1)-N(2A) 2.008(14), Cu(1)-N(7A) 2.013(15), Cu(1)-N(1A) 2.120(13), Cu(1)-N(4A) 2.156(13) Å, N(2A)-Cu(1)-N(7A) 164.6(6), N(2A)-Cu(1)-N(1A) 79.6(6), N(7A)-Cu(1)-N(1A) 85.0(6), N(2A)-Cu(1)-N(4A) 93.6(6), N(7A)-Cu(1)-N(4A) 83.7(6), N(1A)-Cu(1)-N(4A) 84.7(6), N(2A)-Cu(1)-I(1) 97.8(4), N(7A)-Cu(1)-I(1) 93.6(4), N(1A)-Cu(1)-I(1) 133.4(5), N(4A)-Cu(1)-I(1) 141.6(4)°.

Figure S2. ORTEP view of two independent $[Cu(L)I]^+$ cations interacting *via* a soft-soft I···I contact Hydrogen atoms are omitted for clarity. Displacement ellipsoids are draw at a 30% probability level. I(1)-(I2), 4.140(2), Cu(2)-I(2) 2.584(2), Cu(2)-N(7B) 1.974(14), Cu(2)-N(2B) 1.999(14), Cu(2)-N(1B) 2.095(14), Cu(2)-N(4B) 2.118(14) Å, N(7B)-Cu(2)-N(2B) 165.3(6), N(7B)-Cu(2)-N(1B) 84.1(6), N(2B)-Cu(2)-N(1B) 81.2(6), N(7B)-Cu(2)-N(4B) 83.7(6), N(2B)-Cu(2)-N(4B) 95.2(6), N(1B)-Cu(2)-N(4B) 85.2(6), N(7B)-Cu(2)-I(2) 93.5(4), N(2B)-Cu(2)-I(2) 97.1(4), N(1B)-Cu(2)-I(2) 136.8(4), N(4B)-Cu(2)-I(2) 137.5(4)°. I(2)-I(1)-Cu(1) 146.25, I(1)-I(2)-Cu(2) 144.66.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Figure S3. Absorption changes of $1 (1.72 \times 10^{-3} \text{ M})$ in H₂O upon addition of increasing amounts of ⁿBu₄NI (0.14 M). Inset: titration curve at 390 nm.

Figure S4. Absorption changes of $1 (1.00 \times 10^{-3} \text{ M})$ in MeCN upon addition of increasing amounts of ⁿBu₄NCN (0.14 M). Inset: titration curve at 585 nm.

Figure S5. Colour change of 1 $(1.00 \times 10^{-3} \text{ M})$ after addition of different anions in MeCN. From left to right: 1, 1 + 1 eq. of F⁻, 1 + 1 eq. of Cl⁻, 1 + 1 eq. of Br⁻, 1 + 1 eq. of MeCO₂⁻, 1 + 1 eq. of H2O₂⁻, 1 + 1 eq. of HSO₄⁻, 1 + 1 eq. of HCO₃⁻, 1 + 1 eq. of NO₃⁻, 1 + 1 eq. of CN⁻, 1 + 1 eq. of CN⁻, 1 + 1 eq. of CN⁻, 1 + 1 eq. of T⁻.

Figure S6. Absorption changes of **1** (1.00×10^{-3} M) in MeCN upon addition 1 equiv. of all ions considered except I⁻ and CN⁻.

Figure S7. Absorption changes of **1** (1.00×10^{-3} M) in H₂O upon addition of 1 equiv. of all ions considered except I⁻ and CN⁻.

A Dual sensor is normally defined as a supramolecular system which uses two different transducer approaches for identifying the targeted species. Borrowing from this, we have defined **1** as a "solvent-based dual sensor" because it can identify the target species in two different solvents. Alternatively, adopting the Boolean logic language, we can say that **1** performs the logical OR operation if the nature of the sensed anions (Γ , CN^{-}) and the solvents (MeCN, H₂O) are considered as inputs and what ever colour change as output (see truth below).

Truth table of the OR operation performed by 1 on solvents (H₂O, MeCN) and anions (I^{-} ; CN⁻) inputs

Outputs	Inputs	
	Solvent ^a	anion ^b
0 (no colour change of 1)	0	0
1 (colour change to green of 1)	1	0
1 (colour change to blue of 1)	0	1
1 (colour change to blue or pink of 1)	1	1

^a H₂O (0); MeCN (1)

^b I⁻ (0); CN⁻ (1)