The Frustrated Lewis Pair Inducedd Formation of a Pentafulvene [6+4] Cycloaddition Product

Cornelia M. Mömming, Gerald Kehr, Roland Fröhlich⁸, Gerhard Erker*

Supporting Information

Synthesis of 6

General considerations

All manipulations were performed under Ar using Schlenktype glassware or in a glove box. Solvents were dried 10 according to the procedure by Grubbs or were distilled from appropriate drying agents and stored under an argon atmosphere.

Melting points were obtained with a DSC Q20 (TA Instruments). IR spectra were recorded on a Varian 3100 FT-

- ¹⁵ IR (Excalibur Series). Elemental analyses were performed on a *Elementar Vario El III*. NMR spectra were recorded on a *Varian* UnityPlus 600 (¹H: 599.9 MHz, ¹³C: 150.8 MHz, ¹⁹F: 564.4 MHz, ¹¹B: 192.4 MHz, ³¹P: 242.7 MHz). ¹H NMR and ¹³C NMR: chemical shifts δ are given relative to TMS and
- ²⁰ referenced to the solvent signal. ¹⁹F NMR: chemical shifts δ are given relative to CFCl₃ (external reference), ¹¹B NMR: chemical shifts δ are given relative to BF₃·Et₂O (external reference), ³¹P NMR: chemical shifts δ are given relative to H₃PO₄ (85% in H₂O) (external reference). NMR assignments
- ²⁵ were supported by additional 2D NMR experiments. X-ray crystal structure analysis: Data sets were collected with a Nonius KappaCCD diffractometer. Programs used: data collection COLLECT (Nonius B.V., 1998), data reduction Denzo-SMN (Z. Otwinowski, W. Minor, *Methods in Son Enzymology*, **1997**, *276*, 307-326), absorption correction
- ³⁰ Enzymology, 1997, 276, 307-326), absorption correction Denzo (Z. Otwinowski, D. Borek, W. Majewski, W. Minor, Acta Cryst. 2003, A59, 228-234), structure solution SHELXS-97 (G.M. Sheldrick, Acta Cryst. 1990, A46, 467-473), structure refinement SHELXL-97 (G.M. Sheldrick, Acta
- $_{35}$ Cryst. **2008**, A64, 112-122), graphics XP (BrukerAXS, 2000). R-value is given for the observed reflections, w R^2 -value for all refelctions. Thermal ellipsoids are shown with 50 % probability.

Materials

50

- ⁴⁰ Dimesitylvinylphosphine [P. Spies, G. Erker, G. Kehr, K. Bergander, R. Fröhlich, S. Grimme and D. W. Stephan, *Chem. Commun.*, 2007, 5072] and HB(C₆F₅)₂ [a) D. J. Parks, R. E. von H. Spence and W. E. Piers, *Angew. Chem. Int. Ed. Engl.*, 1995, **34**, 809; *Angew. Chem.*, 1995, **107**, 895; b) W. E. Piers,
- ⁴⁵ D. J. Parks and G. P. A. Yap, *Organometallics*, 1998, 17, 5492] were synthesized according to literature procedures. 6,6-Dimethylpentafulvene **3** was synthesized according to a procedure described by Stone and Little: K. J. Stone and R. D Little, *J. Org. Chem.*, 1984, **49**, 1849.

 $[P]_{9} \stackrel{H}{=} 7 \stackrel{f}{=} 7 \stackrel{f}{=} 12 \stackrel{f$

⁵⁵ Dimesitylvinylphosphine (100 mg, 0.34 mmol) and bis(pentafluorophenyl)borane were dissolved in pentane (10 mL) and stirred for 15 min and 6,6-dimethylfulvene (3) (358 mg, 3.4 mmol) was added to the solution. After the reaction mixture had been stirred for 2 d, a white powder started to ⁶⁰ precipitate. The reaction mixture was stirred for another 5 d, and then the precipitate was isolated *via* cannula filtration. After washing with pentane (2×3 mL), the white-yellow powder was dried *in vacuo* to afford **6** (126 mg, 43%). Crystals suitable for the X-ray crystal structure analysis were ⁶⁵ obtained by diffusion of heptane into a benzene solution of **6**.

Melting point (DSC): 131 °C.

IR (KBr): \tilde{v} /cm⁻¹ = 2970 (s), 2927 (s), 2853 (m), 2361 (m), 1641 (m), 1606 (s), 1558 (w), 1511 (s), 1446 (s), 1382 (m), 1292 (w), 1269 (s), 1203 (w), 1175 (w), 1111 (w), 1075 (s), 1025 (w), 70 966 (vs), 891 (m), 855 (vs), 806 (m), 777 (m), 740 (m), 691 (s), 652 (m), 631 (w), 553 (m).

Exact mass (ESI-HRMS): calc. for C48H46BF10PH: 855.3343. Found: 855.3359.

Found: C, 66.46; H, 4.64. Calc. for $C_{48}H_{46}BF_{10}P$ ⁷⁵ (854.65 g/mol): C, 67.46; H, 5.43.

¹**H** NMR (600 MHz, 253 K, $[d_2]$ -CH₂Cl₂): $\delta = 6.86$ (1H, br, *m*-Mes^A), 6.83 (1H, br, *m*'-Mes^A), 6.79 (1H, br, *m*-Mes^B), 6.77 (1H, br, *m*'-Mes^B), 5.98 (1H, dd, ${}^{3}J_{HH} = 6.1$ Hz, ${}^{3}J_{HH} = 2.8$ Hz, 4-H), 5.91 (1H, dd, ${}^{3}J_{HH} = 6.1$ Hz, ${}^{3}J_{HH} = 2.8$ Hz, 3-H), 4.65 (1H, m, 8-H), 4.64 (1H, m, 9-H), 3.00 (1H, dm, ${}^{3}J_{PH} = 41.7$ Hz, 10-H), 2.93, 2.77 (each 1H, each m, ${}^{P}CH_{2}$), 2.59 (1H, m, 1-H), 2.56 (1H, d, ${}^{3}J_{HH} = 2.8$ Hz, 5-H), 2.48 (1H, br, 2-H), 2.43 (6H, s, *o*-CH₃^{MesA}, *o*'-CH₃^{MesB}), 2.26 (3H, s, *p*-CH₃^{MesA}), 2.19 (3H, s, *p*-CH₃^{MesA}), 1.85 (3H, s, *o*-CH₃^{MesB}), 1.48 (3H, s, 12-CH₃), 1.03 (3H, s, 12'-CH₃), 0.71 (3H, s, 6-CH₃), 0.64 (3H, s, 6'-CH₃).

¹³C{¹H} NMR (151 MHz, 253 K, $[d_2]$ -CH₂Cl₂): $\delta = 159.0$ (d, ${}^{3}J_{PC} = 13.1$ Hz, C7), 143.4 (o'-Mes^B), 142.6 (o-Mes^A), ⁹⁰ 142.8 (d, ${}^{4}J_{PC} = 2.6$ Hz, p-Mes^A), 142.6 (p-Mes^B), 141.7 (C11), 140.8 (d, ${}^{2}J_{PC} = 7.5$ Hz, o-Mes^B), 140.4 (d, ${}^{2}J_{PC} = 7.5$ Hz, o'-Mes^A), 135.7 (C4), 133.2 (C3), 132.5 (d, ${}^{3}J_{PC} = 9.8$ Hz, m-Mes^B), 131.2 (d, ${}^{3}J_{PC} = 10.1$ Hz, m'-Mes^A), 131.1 (d, ${}^{3}J_{PC} = 10.9$ Hz, m-Mes^A), 131.0 (d, ${}^{3}J_{PC} = 10.9$ Hz, m'-⁹⁵ Mes^B), 123.4 (d, ${}^{2}J_{PC} = 8.7$ Hz, C8), 122.3 (d, ${}^{1}J_{PC} = 74.8$ Hz, *i*-Mes^A), 122.2 (d, ${}^{1}J_{PC} = 65.0$ Hz, *i*-Mes^B), 115.9 (C12), 54.4 (d, ${}^{3}J_{PC} = 4.3$ Hz, C1), 52.3 (C5), 46.5 (d, ${}^{4}J_{PC} = 6.8$ Hz, C2), 45.7 (d, ${}^{1}J_{PC} = 27.1$ Hz, C9), 41.4 (d, ${}^{4}J_{PC} = 3.3$ Hz, C6), 35.7 (br, C10), 26.3 (d, ${}^{5}J_{PC} = 4.4$ Hz, 6-CH₃), 26.2 (6'-CH₃), 25.4 s (br d, ${}^{1}J_{PC} \sim 36$ Hz, ${}^{P}CH_{2}$), 25.1 (d, ${}^{3}J_{PC} = 2.1$ Hz, *o*-CH₃^{MesA}), 24.6 (*o*'-CH₃^{MesB}), 22.5 (d, ${}^{3}J_{PC} = 6.2$ Hz, *o*'-CH₃^{MesA}), 22.3 (d, ${}^{3}J_{PC} = 4.2$ Hz, *o*-CH₃^{MesB}), 20.8 (*p*-CH₃^{MesA}), 20.6 (*p*-CH₃^{MesB}), 19.9 (12-CH₃), 17.7 (12'-CH₃), 15.8 (br, {}^{B}CH₂), n.o. (C₆F₅).

¹**H TOCSY** (600 MHz, 253 K, $[d_2]$ -CH₂Cl₂): δ ¹H_{irr} / δ 10 ${}^{1}\text{H}_{\text{res}} = 6.86 / 6.83, 2.43, 2.26, 1.88 (m-\text{Mes}^{\text{A}} / m'-\text{Mes}^{\text{A}}),$ o-CH3^{MesA}, p-CH3^{MesA}, o'-CH3^{MesA}), 6.79 / 6.77, 2.43, 2.19, 1.85 (*m*-Mes^B / *m*'-Mes^B, *o*'-CH₃^{MesB}, *p*-CH₃^{MesB}, *o*-CH₃^{MesB}), 5.98 / 5.91, 2.59, 2.56, 2.48 (4-H / 3-H, 1-H, 5-H, 2-H), 5.91 / 15 5.98, 2.59, 2.56, 2.48 (3-H / 4-H, 1-H, 5-H, 2-H), 3.00 / 4.64, 2.59, 2.48 (10-H / 9-H, 1-H, 2-H), 2.93, 2.77 / 2.14, 0.28 (^PCH₂ / ^BCH₂), 2.59 / 5.98, 5.91, 4.65, 3.00, 2.48 (1-H / 4-H, 3-H, 8-H, 10-H, 2-H), 2.48 / 5.98, 5.91, 3.00, 2.59, 2.56, (2-H / 4-H, 3-H, 10-H, 1-H, 5-H), 2.26 / 6.86, 6.83, 2.43, 1.88 ²⁰ (*p*-CH₃^{MesA} / *m*-Mes^A, *m*'-Mes^A, *o*-CH₃^{MesA}, *o*'-CH₃^{MesA}), 2.19 / 6.79, 6.77, 2.43, 1.85 (p-CH₃^{MesB} / m-Mes^B, m'-Mes^B,o'-CH3^{MesB}, o-CH3^{MesB}), 2.14, 0.28 / 2.93, 2.77 (^BCH2 / ^PCH2), 1.88 / 6.86, 6.83, 2.43, 2.26 (o'-CH₃^{MesA} / m-Mes^A, m'-Mes^A o-CH₃^{MesA}, p-CH₃^{MesA}), 1.85 / 6.79 / 6.77, 2.43, 2.19 $_{25}$ (o-CH₃^{MesB} / m-Mes^B, m'-Mes^B, o'-CH₃^{MesB}, p-CH₃^{MesB}), 1.48

/ 1.03 (12-CH₃ / 12'-CH₃), 1.03 / 1.48 (12'-CH₃ / 12-CH₃), 0.71 / 0.64 (12-CH₃ / 6'-CH₃), 0.64 / 0.71 (6'-CH₃ / 6-CH₃).

¹**H**, ¹**H GCOSY** (600 MHz / 600 MHz, 253 K, [*d*₂]-CH₂Cl₂): δ (¹H, ¹H) = 6.86 / 6.83, 2.43, 2.26, 1.88 (*m*-Mes^A / *m*'-Mes^A, ³⁰ *o*-CH₃^{MesA}, *p*-CH₃^{MesA}, *o*'-CH₃^{MesA}), 6.83 / 6.86, 2.43, 2.26, 1.88 (*m*'-Mes^A / *m*-Mes^A, *o*-CH₃^{MesA}), 6.83 / 6.86, 2.43, 2.26, 1.88 (*m*'-Mes^A / *m*-Mes^A, *o*-CH₃^{MesA}, *p*-CH₃^{MesA}, *o*'-CH₃^{MesA}), 6.79 / 6.77, 2.43, 2.19, 1.85 (*m*-Mes^B / *m*'-Mes^B, *o*'-CH₃^{MesA}), 6.79 / 6.77, 2.43, 2.19, 1.85 (*m*-Mes^B / *m*'-Mes^B, *o*'-CH₃^{MesB}, *p*-CH₃^{MesB}, *o*-CH₃^{MesB}), 6.77 / 6.79, 2.43, 2.19, 1.85 (*m*'-Mes^B / *m*-Mes^B, *o*'-CH₃^{MesB}, *p*-CH₃^{MesB}, *o*-CH₃^{MesB}), 5.98 / 5.91, ³⁵ 2.56 (4-H / 3-H, 1-H), 5.91 / 5.98, 2.48 (3-H / 4-H, 2-H), 4.65, 4.64 / 3.00, 2.59, 2.48 (8-H, 9-H / 10-H, 1-H, 2-H), 3.00 / 4.65, 4.64, 2.59 (10-H / 8-H, 5-H, 1-H), 2.93, 2.77 / 2.14, 0.28 (^PCH₂ / ^BCH₂), 2.59 / 4.65, 4.64, 3.00, 2.48 (1-H / 8-H, 9-H, 10-H, 2-H), 2.56 / 5.98, 1.03, 0.71 (5-H / 4-H, 12'-CH₃, ⁴⁰ 6-CH₃), 2.48 / 5.91, 4.65, 4.64, 1.48 (2-H / 3-H, 8-H, 9-H, 12-

CH₃), 2.43 / 6.86, 6.77 (o-CH₃^{MesA}, o'-CH₃^{MesB} / m-Mes^A, m'-Mes^B), 2.26 / 6.83 (p-CH₃^{MesA} / m'-Mes^A), 2.19 / 6.79, 6.77 (p-CH₃^{MesB} / m'-Mes^A, m-Mes^A), 2.14, 0.28 / 2.93, 2.77 (B CH₂ / P CH₂), 1.88 / 6.83 (o'-CH₃^{MesA} / m'-Mes^A), 1.85 / 6.79 45 (o-CH₃^{MesB} / m-Mes^B), 1.48 / 2.48 (12-CH₃ / 2-H), 1.03 / 2.56

(12'-CH₃ / 5-H).

¹H,¹³C GHSQC (600 MHz / 151 MHz, 253 K, [d_2]-CH₂Cl₂): δ (¹H) / δ (¹³C) = 6.86 / 131.1 (*m*-Mes^A), 6.83 / 131.2 (*m*²-Mes^A), 6.79 / 132.5 (*m*-Mes^B), 6.77 / 131.0

- ⁵⁰ (*m*[°]-Mes^B), 5.98 / 135.7 (4-H), 5.91 / 133.2 (3-H), 4.65 / 123.4 (8-H), 4.64 / 45.7 (9-H), 3.00 / 35.7 (10-H), 2.93, 2.77 / 25.4 (^PCH₂), 2.59 / 54.4 (1-H), 2.56 / 52.3 (5-H), 2.48 / 46.5 (2-H), 2.43 / 25.1, 24.6 (o-CH₃^{MesA}, o[°]-CH₃^{MesB}), 2.26 / 20.8 (p-CH₃^{MesA}), 2.19 / 20.6 (p-CH₃^{MesB}), 2.14, 0.28 / 15.8 (^BCH₂),
- ⁵⁵ 1.88 / 22.5 (o'-CH₃^{MesA}), 1.85 / 22.3 (o-CH₃^{MesB}), 1.48 / 19.9 (12-CH₃), 1.03 / 17.7 (12'-CH₃), 0.71 / 26.3 (6-CH₃), 0.64 / 26.2 (6'-CH₃).

¹H,¹³C GHMBC (600 MHz / 151 MHz, 253 K,

 $[d_2]$ -CH₂Cl₂): δ (¹H) / δ (¹³C) = 6.86 / 131.2, 122.3, 25.1, 20.8 60 (*m*-Mes^A / *m*'-Mes^A, *i*-Mes^A, *o*-CH₃^{MesA}, *p*-CH₃^{MesA}), 6.83 / 131.1, 122.3, 22.5, 20.8 $(m^{2}-Mes^{A} / m-Mes^{A}, i-Mes^{A})$ o'-CH3^{MesA}, p-CH3^{MesA}), 6.79 / 131.0, 122.2, 22.3, 20.6 $(m_{\rm Mes}^{\rm B} / m^2 \cdot {\rm Mes}^{\rm B}, i \cdot {\rm Mes}^{\rm B}, o \cdot {\rm CH}_3^{\rm MesB}, p \cdot {\rm CH}_3^{\rm MesB}), 6.77 / 132.5, 122.2, 24.6, 20.6 (m^2 \cdot {\rm Mes}^{\rm B} / m \cdot {\rm Mes}^{\rm B}, i \cdot {\rm Mes}^{\rm B})$ 65 o'-CH3^{MesB}, p-CH3^{MesB}), 5.98 / 141.7, 52.3, 46.5 (4-H / C11, C5, C2), 5.91 / 141.7, 52.3, 46.5 (3-H / C11, C5, C2), 4.65 / 159.0, 41.4 (8-H / C7, C6), 4.64 / 54.4 (9-H / C1), 2.56 / 159.0, 141.7, 133.2, 46.5, 41.4 (5-H / C7, C3, C2, C6), 2.43 / 143.4, 142.6, 131.1, 131.0, 122.2 (o-CH3^{MesA}, o'-CH3^{MesB} / 70 o-Mes^A, o'-Mes^B, p-Mes^B, m-Mes^A, m'-Mes^B, *i*-Mes^B), 2.26 / 140.4, 131.2, 122.3 (p-CH₃^{MesA} / o'-Mes^A, m'-Mes^A, i-Mes^A), 2.19 / 142.6, 132.5, 131.0, 122.2 (p-CH₃^{MesB} / p-Mes^B *m*-Mes^B, *m*'-Mes^B, *i*-Mes^B), 1.88 / 140.4, 131.2, 122.3 (o'-CH₃^{MesA} / o'-Mes^A, m'-Mes^A, *i*-Mes^A), 1.85 / 140.8, 132.5, ⁷⁵ 122.2 (*o*-CH₃^{MesB} / *o*-Mes^B, *m*-Mes^B, *i*-Mes^B), 1.48 / 141.7, 115.9, 17.7 (12-CH₃ / C11, C12, 12'-CH₃), 1.03 / 141.7, 115.9, 19.9 (12'-CH₃ / C11, C12, 12-CH₃), 0.71 / 159.0, 52.3, 41.4, 26.2 (6-CH₃ / C7, C5, C6, 6'-CH₃), 0.64 / 159.1, 52.3, 41.4, 26.3 (6'-CH₃ / C7, C5, C6, 6-CH₃).

¹¹**B**{¹**H**} **NMR** (192 MHz, 253 K, $[d_2]$ -CH₂Cl₂): $\delta = -14.0$ ($v_{1/2} = 160$ Hz).

¹¹**B NMR** (192 MHz, 253 K, $[d_2]$ -CH₂Cl₂): $\delta = -14.0$ ($v_{1/2} = 170$ Hz).

³¹P{¹H} NMR (242 MHz, 253 K, $[d_2]$ -CH₂Cl₂): δ = 33.2 ⁸⁵ ($v_{1/2}$ = 15 Hz).

³¹**P NMR** (242 MHz, 253 K, $[d_2]$ -CH₂Cl₂): $\delta = 33.2$ ($v_{1/2} = 110$ Hz).

¹⁹**F**{¹**H**} **NMR** (564 MHz, 253 K, $[d_2]$ -CH₂Cl₂): δ = -129.2 (1F, *o*), -134.1 (1F, *o'*), -163.3 (1F, *p*), -165.6 (1F, *m*), ⁹⁰ -166.0 (1F, *m'*) [Δδ_{m,p} = 2.3/2.7] (C₆F₅^A), -129.9 (1F, *o*), -138.6 (1F, *o'*), -163.5 (1F, *p*), -165.5 (1F, *m*), -166.9 (1F, *m'*) [Δδ_{m,p} = 2.0/3.4] (C₆F₅^B).

¹⁹**F**, ¹⁹**F GCOSY** (564 MHz / 564 MHz, 253 K, [d_2]-CH₂Cl₂): δ (¹⁹F) / δ (¹⁹F) = -129.2 /-165.6 (o-C₆F₅^A / ⁹⁵ m-C₆F₅^A), -129.9 / -165.5 (o-C₆F₅^B / m-C₆F₅^B, m-C₆F₅^B), -134.1 /-166.0 (o'-C₆F₅^A / m'-C₆F₅^A), -138.6 /, -166.9 (o'-C₆F₅^B / m'-C₆F₅^B), -163.3 / -165.6, -166.0 (p-C₆F₅^A / m-C₆F₅^A, m'-C₆F₅^A), -163.5 / -165.5, -166.9 (p-C₆F₅^B / m-C₆F₅^B, m'-C₆F₅^B), -165.5 / -129.9, -163.5 (m-C₆F₅^B / o-C₆F₅^A, p-C₆F₅^B), -165.6 / -129.2, -163.3 (m-C₆F₅^A / o-C₆F₅^A, p-C₆F₅^A), -166.0 / -134.1, -163.3 (m'-C₆F₅^A / o'-C₆F₅^A, p-C₆F₅^A), -166.9 / -138.6, -163.5 (m'-C₆F₅^B / o'-C₆F₅^B).

X-ray crystal structure analysis of 6: formula ¹⁰⁵ C₄₈H₄₆BF₁₀P * 1.5 C₆H₆, M = 971.79, colorless crystal 0.30 x 0.15 x 0.07 mm, a = 12.3700(4), b = 11.0380(3), c = 36.1547(9)Å, $\beta = 90.729(1)^{\circ}$, V = 4936.2(3)Å³, $\rho_{calc} = 1.308$ g cm⁻³, $\mu = 1.139$ mm⁻¹, empirical absorption correction (0.726 $\leq T \leq 0.925$), Z = 4, monoclinic, space group $P2_1/n$ (No. 14), $\lambda = 110$ 1.54178 Å, T = 223(2) K, ω and φ scans, 26710 reflections collected ($\pm h, \pm k, \pm l$), [(sin θ)/ λ] = 0.60 Å⁻¹, 8274 independent ($R_{int} = 0.055$) and 5776 observed reflections [$I \geq 2 \sigma(I)$], 632 refined parameters, R = 0.053, $wR^2 = 0.139$, max. (min.) residual electron density 0.29 (-0.28) e Å⁻³, hydrogen atoms ¹¹⁵ calculated and refined as riding atoms.

³¹P{¹H} NMR (242 MHz, 253 K, $[d_2]$ -CH₂Cl₂) and ¹¹B{¹H} NMR (192 MHz, 253 K, $[d_2]$ -CH₂Cl₂).

15 Synthesis of 7

Heating of a deuterated benzene (1 mL) solution of **6** (74 mg, 0.08 mmol) for 6 h at 85 °C yielded 7. After filtration through silica gel (eluent: pentane) and evaporation of pentane *in* 20 vacuo 7 could be isolated (6.6 mg, 36%) with pentane as impurity, since prolonged drying of the compound *in vacuo* led to the loss of the product due to its volatility.

Exact mass (GC-MS, t_R : 9.57 min, EI⁺): calc. for $C_{16}H_{20}$: 212.1565. Found: 212.1573; calc. for $[C_{16}H_{20}+H]^+$: 213.1599. 25 Found: 213.1519.

¹**H** NMR (600 MHz, 298 K, $[d_6]$ -benzene): δ = 6.13 (1H, dd, ${}^{3}J_{\text{HH}}$ = 5.9 Hz, 3.0 Hz, 3-H), 6.02 (1H, dd, ${}^{3}J_{\text{HH}}$ = 5.9 Hz, 3.0 Hz, 4-H), 5.96 (1H, m, 8-H), 5.76 (1H, m, 10-H), 3.97 (1H, d, ${}^{3}J_{\text{HH}}$ = 3.0 Hz, 2-H), 2.83 (1H, d, ${}^{3}J_{\text{HH}}$ = 3.0 Hz, 5-H), 30 2.69, 2.68 (each 1H, ABX₂, ${}^{2}J_{\text{HH}}$ = 23.8 Hz, ${}^{3}J_{\text{HH}}$ = 1.6 Hz, 9-H), 1.61 (3H, s, 12-CH₃), 1.60 (3H, s, 12'-CH₃), 1.25 (3H, s, 6-CH₃), 1.21 (3H, s, 6'-CH₃).

¹H{¹H}-HD (600 MHz, 298 K, [*d*₆]-benzene): δ ¹H_{irr} / δ ¹H_{res} = 5.96 / 2.69, 2.68 (8-H / 9-H (ABX, ²*J*_{HH} = 23.8 Hz, ${}^{3}J_{\text{HH}} = 1.6 \text{ Hz})$, 5.76 / 2.69, 2.68 (10-H / 9-H (ABX, ${}^{2}J_{\text{HH}} = 23.8 \text{ Hz}$, ${}^{3}J_{\text{HH}} = 1.6 \text{ Hz})$), 5.96, 5.76 / 2.69, 2.68 (8-H, 10-H / 9-H (AB, ${}^{2}J_{\text{HH}} = 23.8 \text{ Hz})$).

¹³C{¹H} NMR (151 MHz, 298 K, $[d_6]$ -benzene): δ = 154.1 5 (C7), 145.5 (C1), 141.4 (C11), 137.5 (C3), 134.2 (C4), 126.3 (C8), 119.4 (C10), 117.3 (C12), 52.7 (C5), 44.8 (C2), 40.7 (C6), 39.4 (C9), 32.4 (6-CH₃), 27.8 (6'-CH₃), 20.3 (12'-CH₃), 19.7 (12-CH₃).

¹H TOCSY (600 MHz, 298 K, $[d_6]$ -benzene): δ ¹H_{irr} / δ ¹⁰ ¹H_{res} = 6.13 / 6.02, 3.97, 2.83, 2.68 (3-H / 4-H, 2-H, 5-H, 9-H), 6.02 / 6.13, 3.97, 2.83, 2.68, 1.60 (4-H / 3-H, 2-H, 5-H, 9-H, 12'-CH₃), 5.96 / 5.76, 3.97, 2.83 (8-H / 10-H, 2-H, 5-H), 5.76 / 5.96, 3.97, 2.83 (10-H / 8-H, 2-H, 5-H), 3.97 / 6.13, 6.02, 2.83, 2.68 (2-H / 3-H, 4-H, 5-H, 9-H), 2.83 / 6.13, 6.02, ¹⁵ 3.97 (5-H / 3-H, 4-H, 2-H), 2.68 / 5.96, 5.76, 3.97 (9-H / 8-H, 10-H, 2-H).

NOE-DIFF (600 MHz, 298 K, $[d_6]$ -benzene): $\delta^{-1}H_{irr} / \delta^{-1}H_{res} = 6.13 / 6.02$, 3.97 (5-H / 4-H, 6-H), 6.02 / 6.13, 2.83, 1.21 (4-H / 5-H, 3-H, 2'-CH₃), 5.96 / 5.76, 2.69, 2.68, 1.25,

- ²⁰ 1.21 (8-H / 10-H, 9-H, 9-H, 6-CH₃, 6'-CH₃), 5.76 / 5.96, 3.97,
 2.69, 2.68 (10-H / 8-H, 2-H, 9-H, 9-H), 3.97 / 6.13, 5.76, 1.61
 (2-H / 3-H, 10-H, 12-CH₃), 2.83 / 6.02, 1.60, 1.25, 1.21 (5-H,
 4-H, 12'-CH₃, 6-CH₃, 6'-CH₃), 2.69, 2.68 / 5.96, 5.76 (9-H / 8-H, 10-H).
- ²⁵ ¹**H**, ¹**H GCOSY** (600 MHz / 600 MHz, 298 K, [*d*₆]-benzene): δ (¹H, ¹H) = 6.13 / 6.02, 3.97 (3-H / 4-H,2-H), 6.02 / 6.13, 3.97, 2.83 (4-H / 3-H, 2-H, 5-H), 5.96 / 5.76, 3.97, 2.69, 2.68, 1.25 (8-H / 10-H, 2-H, 9-H, 9-H, 6-CH₃), 5.76 / 5.96, 3.97, 2.69, 2.68 (10-H / 8-H, 2-H, 9-H, 9-H), 3.97 / 6.13,
- ³⁰ 6.02, 5.96, 5.76, 2.83, 2.69, 2.68, 1.60 (2-H / 3-H, 4-H, 8-H, 10-H, 5-H, 9-H, 9-H, 12'-CH₃), 2.83 / 6.13, 6.02, 3.97, 1.61, 1.21 (5-H / 3-H, 4-H, 2-H, 12-CH₃, 6'-CH₃), 2.69, 2.68 / 5.96, 5.76, 3.97, 1.60, 1.25 (9-H / 8-H, 10-H, 2-H, 12'-CH₃, 6-CH₃), 1.61 / 2.83 (12-CH₃ / 5-H), 1.60 / 3.97, 2.69, 2.68
 ³⁵ (12'-CH₃ / 2-H, 9-H, 9-H), 1.25 / 2.69, 2.68 (6-CH₃ / 9-H, 12'-CH₃)

9-H), 1.21 / 2.83 (6'-CH₃ / 5-H).

¹H,¹³C GHSQC (600 MHz / 151 MHz, 298 K, [*d*₆]-benzene): δ (¹H) / δ (¹³C) = 6.13 / 137.5 (3-H), 6.02 / 134.2 (4-H), 5.96 / 126.3 (8-H), 5.76 / 119.4 (10-H), 3.97 / 40 44.8 (2-H), 2.83 / 52.7 (5-H), 2.69, 2.68 / 39.4 (9-H), 1.61 /

19.7 (12-CH₃), 1.60 / 20.3 (12'-CH₃), 1.25 / 32.4 (6-CH₃), 1.21 / 27.8 (6'-CH₃).

¹**H**,¹³**C GHMBC** (600 MHz / 151 MHz, 298 K, [*d*₆]-benzene): δ (¹H) / δ (¹³C) = 6.13 / 141.4, 134.2, 52.7, 44.8 45 (3-H / C11, C4, C5, C2), 6.02 / 141.4, 137.5, 52.7, 44.8 (4-H / C11, C3, C5, C2), 5.96 / 154.1, 145.5, 119.4, 39.4 (8-H / C7, C1, C10, C9), 5.76 / 154.1, 145.5, 126.3, 39.4 (10-H / C7, C1, C8, C9), 3.97 / 154.1, 145.5, 137.5, 134.2, 119.4, 117.3, 52.7 (2-H / C7, C1, C3, C4, C10, C12, C5), 2.83 / 154.1, 141.4, 137.5, 134.2, 117.2, 44.8, 40.7, 32.4, 65.1, 142.4, 143.4, 143.4, 143.4, 143.4, 143.4, 143.4, 143.4, 144

- ⁵⁰ 137.5, 134.2, 117.3, 44.8, 40.7, 32.4 (5-H / C7, C11, C3, C4, C12, C2, C6, 6-CH₃), 2.68, 2.69 / 154.1, 145.5, 126.3, 119.4, 32.4 (9-H / C7, C1, C8, C10, 6-CH₃), 1.61 / 141.4, 117.3, 40.7, 20.3, 19.7 (12-CH₃ / C11, C12, C6, 12'-CH₃, 12-CH₃), 1.60 / 145.5, 141.4, 137.5, 117.3, 40.7, 20.3, 19.7 (12'-CH₃ / C11, C12, C6, 12'-CH₃ / C12'-CH₃ / C12'-C
- ⁵⁵ C1, C11, C3, C12, C6, 12'-CH₃, 12-CH₃), 1.25 / 154.1, 52.7, 40.7, 32.4, 27.8 (6-CH₃ / C7, C5, C6, 6-CH₃, 6'-CH₃), 1.21 / 154.1, 52.7, 40.7, 32.4, 27.8 (6'-CH₃ / C7, C5, C6, 6-CH₃, 6'-CH₃).

Notes

65 Organisch-Chemisches Institut der Universität Münster, Corrensstrasse 40, 48149 Münster, Germany. Fax: +49 251-83 36503; E-mail: erker@uni-muenster.de