
ELECTRONIC SUPPLEMENTARY INFORMATION

BELONGING TO THE PAPER

Hydrogen bond induced enantioselectivity in Mn(salen)catalysed sulfoxidation reactions Felix Voss, Eberhardt Herdtweck and Thorsten Bach

1. General Procedures	SI-2
2. Synthesis of catalyst 5	SI-3
3. Synthesis of new substrates	SI-6
4. Catalytic sulfoxidations	SI-8
5. Proof of the absolute configuration of sulfoxide 7	SI-14
6. HPLC traces of chiral sulfoxides	SI-18
7. NMR spectra of new compounds	SI-24

1. General Procedures

All reactions involving moisture-sensitive chemicals were carried out in flame-dried glassware with magnetic stirring under argon. TLC was performed on silica coated glass plates (silica gel 60 F_{254}) with detection by UV (254 nm) or KMnO₄ (0.5% in water) with subsequent heating. Flash chromatography was performed on silica gel 60 (Merck, 230-400 mesh) with the indicated eluent. All solvents for chromatography were distilled prior to use. HPLC analyses were performed using a chiral stationary phase [ChiralPak AD-H (250 × 4.6 mm), ChiralCell OD (250 × 4.6 mm), Chiralpak AS-H (250 x 4.6 mm, 5 µm), ChiralCell OJ-H (250 × 4.6 mm), Daicel Chemical Industries] employing *n*-hexane/*i*-propanol as eluents and UV-detection at 20 °C. Semi-preparative HPLC separation was performed using a chiral stationary phase [Chiralpak AS-H (250 x 20 mm, 5 µm), Daicel Chemical Industries] employing *n*-hexane/*i*-propanol (70/30) as eluent (flow rate: 19 mL/min) and UV-detection. IR-spectra were recorded on a JASCO IR-4100 (ATR), MS/HRMS-measurements were

performed on a Finnigan MAT 8200 (EI), a Finnigan MAT 95S (HR-EI), a Finnigan LCQ classic (ESI) and a Thermo Finnigan LTQ FT (HRMS-ESI). ¹H and ¹³C NMR-spectra were recorded at 303 K either on a Bruker AV-250, a Bruker AV-360 or a Bruker AV-500 spectrometer. The chemical shifts are reported relative to the solvent used (CHCl₃, DMSO, MeOH).¹ The multiplicities of the ¹³C NMR signals were determined by DEPT experiments. Optical rotations were measured using a Perkin-Elmer 241 MC Polarimeter. Elemental analyses were carried out on a Elementar Vario EL in the chemistry department at the Technische Universität München. UV-Vis spectra were recorded on a Perkin-Elmer Lambda 35 UV-Vis-spektrometer. Melting points were measured on a Koffler Thermopan and are uncorrected.

¹ V. Kotlyar and A. Nudelmann, J. Org. Chem., 1997, **62**, 7512-7515.

2. Synthesis of catalyst 5

2.1. Synthesis of 3-(*tert*-butyl)-2-hydroxy-5-{[(1*R*,5*S*,7*R*)-1,5,7-trimethyl-2-oxo-3-azabicyclo[3.3.1]nonan-7-yl]ethynyl}benzaldehyde (3):

In a Schlenk flask a solution of alkyne 1^2 (40.0 mg, 195 µmol, 1.00 eq.), aldehyde 2^3 (77.2 mg, 254 µmol, 1.30 eq.) and triethylamine (514 µL, 375 mg, 3.71 mmol, 19.0 eq.) in dry tetrahydrofuran (2.7 mL) was degassed through three freeze-pump-thaw cycles. After addition of copper(I)iodide (3.7 mg, 19.5 µmol, 0.10 eq.) bis(triphenylphosphine)and palladium(II)chloride (6.8 mg, 9.75 µmol, 0.05 eq.) the solution was degassed by another three freeze-pump-thaw cycles and heated to 60 °C for 15 hours. After cooling to ambient temperature, water (20 mL) was added and the mixture was extracted with ethyl acetate $(3 \times 25 \text{ mL})$. The combined organic layers were washed with brine (15 mL), dried over sodium sulfate, filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (eluent: pentane/ethyl acetate = $2/1 \rightarrow 1/1$) to afford 66.6 mg (90%) of aldehyde **3** as light-yellow solid; $R_f = 0.46$ (pentane/ethyl acetate = 1/1); m.p.: 165 °C; $[\alpha]_{D}^{20} = -1.4$ (c = 0.7, CHCl₃); IR (ATR): $\tilde{v} = 2963$ cm⁻¹ (w), 2357 (w), 1654 (vs), 1498 (w), 1455 (m), 1140 (m), 912 (w), 767 (m), 723 (w); ¹H-NMR (360 MHz, CDCl₃): δ [ppm] = 11.83 (d, ⁴J = 0.5 Hz, 1 H), 9.83 (s, 1 H), 7.53 (d, ⁴J = 2.1 Hz, 1 H), 7.52 (dd, ${}^{4}J = 2.1$ Hz, ${}^{4}J = 0.5$ Hz, 1 H), 5.46 (br s, 1 H), 3.43 (ddd, ${}^{2}J = 11.8$ Hz, ${}^{3}J = 3.1$ Hz, ${}^{4}J = 1.5$ Hz, 1 H), 3.17 (d, ${}^{2}J = 11.8$ Hz, 1 H), 2.22 (dt, ${}^{2}J = 13.7$ Hz, ${}^{4}J = 2.1$ Hz, 1 H), 1.97 (d, ${}^{2}J = 13.7$ Hz, 1 H), 1.82 (dt, ${}^{2}J = 12.6$ Hz, ${}^{4}J = 2.0$ Hz, 1 H), 1.41-1.39 (m, 10 H), 1.34-1.33 (m, 4 H), 1.21 (s, 3 H), 1.17 (dd, ${}^{2}J = 13.7$ Hz, ${}^{4}J = 1.4$ Hz, 1 H), 1.04 (s, 3 H); 13 C-NMR $(90.6 \text{ MHz}, \text{CDCl}_3)$: δ [ppm] = 197.0 (d), 176.6 (s), 160.6 (s), 138.6 (s), 136.8 (d), 135.2 (d), 120.4 (s), 114.9 (s), 94.4 (s), 78.6 (s), 52.6 (t), 51.4 (t), 48.6 (t), 44.3 (t), 38.5 (s), 34.9 (s), 33.6 (q), 30.9 (s), 30.7 (s), 29.9 (q), 29.1 (q), 25.6 (q); MS (EI, 70 eV): m/z (%) = 381 (68)

² F. Voss and T. Bach, Synlett, 2010, 1493-1496.

³ M. Nielsen and K. V. Gothelf, J. Chem. Soc., Perkin Trans. 1, 2001, 2440-2444.

 $[M^+]$, 366 (39) $[(M-CH_3)^+]$, 313 (15), 298 (10), 257 (23), 133 (16), 124 (49), 71 (60), 57 (100) $[C_4H_9^+]$, 43 (57); HRMS (EI) *m/z*: calcd. for $C_{24}H_{31}NO_3$: 381.2304 $[M^+]$, found: 381.2304.

2.2. Synthesis of salen ligand 4:⁴ (1*R*,1'*R*,5*S*,5'*S*,7*R*,7'*R*)-7,7'-{[((1*E*,1'*E*)-(ethane-1,2diylbis(azanylylidene))bis(methanylylidene))bis(3-(*tert*-butyl)-4-hydroxy-5,1phenylene)]bis(ethyne-2,1-diyl)}bis(1,5,7-trimethyl-3-azabicyclo[3.3.1]nonan-2-one)

A solution of aldehyde 3 (65.0 mg, 170 µmol, 2.04 eq.) in dry tetrahydrofuran (1.4 mL) was added to a solution of freshly distilled ethylene diamine (5.0 mg, 83.5 µmol, 1.00 eq.) in dry tetrahydrofuran (0.7 mL) and the mixture was stirred at room temperature for 14 hours. The solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel (eluent: ethyl acetate/methanol = 95/5) to afford 54.4 mg (83%) of salen 4 as pale yellow solid; $R_{\rm f} = 0.44$ (ethyl acetate/methanol = 95/5); m.p.: 201 °C; $[\alpha]_{\rm D}^{20} = -5.0$ (c = 1.0, CHCl₃); IR (ATR): $\tilde{v} = 2962 \text{ cm}^{-1}$ (w), 2924 (w), 2347 (w), 1659 (vs), 1625 (s), 1441 (s), 1271 (m), 1212 (m), 1164 (w), 1120 (w), 1033 (w), 849 (m); ¹H-NMR (360 MHz, CDCl₃): δ [ppm] = 13.95 (s, 2 H), 8.33 (s, 2 H), 7.31 (d, ⁴J = 2.0 Hz, 2 H), 7.24 (d, ⁴J = 2.0 Hz, 2 H), 5.49 (m, 2 H), 3.93-3.86 (m, 4 H), 3.43 (ddd, ${}^{2}J = 11.7$ Hz, ${}^{3}J = 3.0$ Hz, ${}^{4}J = 1.3$ Hz, 2 H), 3.13 (d, ${}^{2}J = 11.7$ Hz, 2 H), 2.20 (d, ${}^{2}J = 13.3$ Hz, 2 H), 1.95 (dt, ${}^{2}J = 13.5$ Hz, ${}^{4}J = 1.7$ Hz, 2 H), 1.81 (dt, ${}^{2}J = 12.9$ Hz, ${}^{4}J = 2.0$ Hz, 2 H), 1.40 (s, 18 H), 1.32 (s, 6 H), 1.28-1.23 (m, 4 H), 1.20 (s, 6 H), 1.16 (d, ${}^{2}J = 13.5$ Hz, 2 H), 1.02 (s, 6 H); 13 C-NMR (90.6 MHz, CDCl₃): δ [ppm] = 176.5 (s), 166.9 (d), 160.2 (s), 137.6 (s), 133.3 (d), 132.5 (d), 118.4 (s), 113.1 (s), 93.2 (s), 79.5 (s), 59.4 (t), 52.4 (t), 51.5 (t), 48.6 (t), 44.4 (t), 38.5 (s), 34.8 (s), 33.7 (q), 30.8 (s), 30.7 (s), 30.0 (q), 29.2 (q), 25.7 (q); MS (EI, 70 eV): m/z (%) = 786 (83) [M⁺], 758 (13) $[(M-CO)^{+}], 423 (14) [(M-C_{24}H_{29}NO_{2})^{+}], 393 (16) [(M-C_{25}H_{33}N_{2}O_{2})^{+}], 379 (18)$ $[C_{24}H_{31}N_2O_2^+]$, 109 (10), 71 (54), 44 (100); HRMS (+ESI) m/z: calcd. for $C_{50}H_{67}N_4O_4$: 787.5162 [(M+H)⁺], found: 787.5161.

⁴ Prepared according to the procedure of: J. Park, K. Lang, K. Abboud and S. Hong, *J. Am. Chem. Soc.*, 2008, **130**, 16484-16485.

2.3. Synthesis of catalyst 5:⁵ (1R,1'R,5S,5'S,7R,7'R)-7,7'-{[((1E,1'E)-(ethane-1,2-diylbis(azanylylidene))bis(methanylylidene))bis(3-(*tert*-butyl)-4-hydroxy-5,1-phenylene)]bis(ethyne-2,1-diyl)}bis(1,5,7-trimethyl-3-azabicyclo[3.3.1]nonan-2-one) manganese(III)chloride

A suspension of salen ligand **4** (52.1 mg, 66.2 µmol, 1.00 eq.) in toluene (2.5 mL) was added to a boiling suspension of manganese(II)acetate tetrahydrate (48.7 mg, 199 µmol, 3.00 eq.) in ethanol (3.5 mL) over 20 minutes and the mixture was stirred under reflux for two hours. Mechanical stirring was stopped and the mixture was purged with oxygen until, according to TLC analysis, all of salen **4** had been consumed. Brine (3 mL) was added, the reaction mixture was allowed to cool to ambient temperature and toluene (10 mL) and water (10 mL) were added. The layers were separated and the organic layer was washed with water (10 mL) and brine (10 mL), dried over sodium sulfate, filtered and concentrated *in vacuo* to yield a brown solid. The solid was triturated under sonication in hexane (5 mL) and after decantation of the solvent and drying *in vacuo* 47.6 mg (81%) of the manganese(salen) catalyst **5** were obtained; UV-VIS (CH₂Cl₂): λ_{max} . [nm] (ϵ) = 276 (35 714), 256 (34 921); [α] $_{D}^{20}$ = -10.9 (*c* = 0.1, CHCl₃); IR (ATR): \tilde{v} = 2957 cm⁻¹ (w), 2919 (w), 2360 (m), 2077 (w), 1650 (s), 1615 (vs), 1537 (m), 1493 (m), 1437 (m), 1405 (m), 1387 (m), 1304 (m), 1202 (w), 1166 (m), 1109 (w), 825 (s); MS (+ESI): *m/z* (%) = 880 (42) [(M–Cl+NaOH)⁺], 840 (100) [(M–Cl)⁺]; HRMS (+ESI) *m/z*: cacld. for C₅₀H₆₄MnN₄O₄: 839.4308 [(M–Cl)⁺], found: 839.4310.

⁵ Prepared according to the procedure of: J. F. Larrow and E. N. Jacobsen, Org. Synth., 1997, 75, 1-6.

3. Synthesis of new substrates

3.1. Synthesis of 2H-benzo[e][1,3]thiazin-4(3H)-one⁶

A solution of methyl 2-mercaptobenzoate (300 mg, 1.78 mmol, 1.00 eq.), paraformaldehyde (80.0 mg, 2.68 mmol, 1.50 eq.) and ammonium acetate (274 mg, 3.56 mmol, 2.00 eq.) in toluene (15 mL) was heated to reflux for 15 hours. After cooling to ambient temperature the solvent was removed *in vacuo* and the residue was purified by flash chromatography on silica gel (eluent: pentane/ethyl acetate = 1/1) to afford 148 mg (50%) of lactam **12** as a colourless solid; $R_f = 0.43$ (pentane/ethyl acetate = 1/1); m.p.: 94 °C; IR (ATR): $\tilde{v} = 3186 \text{ cm}^{-1}$ (w), 3050 (w), 2909 (w), 1654 (s), 1591 (m), 1470 (m), 1450 (m), 1382 (m), 1145 (m), 1052 (m), 927 (w), 776 (m), 738 (vs); ¹H-NMR (360 MHz, CDCl₃): δ [ppm] = 8.03 (dd, ³*J* = 7.8 Hz, ⁴*J* = 1.6 Hz, 1 H), 7.84 (br s, 1 H), 7.35-7.30 (m, 1 H), 7.27-7.19 (m, 2 H), 4.51 (d, ³*J* = 4.4 Hz, 2 H); ¹³C-NMR (90.6 MHz, CDCl₃): δ [ppm] = 166.0 (s), 137.7 (s), 132.1 (d), 130.2 (d), 128.6 (s), 127.4 (d), 126.1 (d), 42.6 (t); MS (EI, 70 eV): *m/z* (%) = 165 (57) [M⁺], 136 (100) [(M–CHO)⁺], 108 (39) [(M–C₂H₃NO)⁺], 82 (9), 69 (17); HRMS (EI) *m/z*: calcd. for C₈H₇NOS: 165.0243 [M⁺], found: 165.0240.

3.2. Synthesis of 4-(phenethylthio)quinolin-2(1H)-one (20)

2.2.1. Triflate 227

Triethylamine (258 µL, 188 mg, 1.86 mmol, 3.00 eq.) was added to a suspension of quinoline-2,4-diol (100 mg, 621 µmol, 1.00 eq.) in N,N-dimethylformamide (6.2 mL) and after stirring at room temperature for five minutes N-phenyl-bis(trifluoromethanesulfonimide) (266 mg, 745 µmol, 1.20 eq.) was added and the reaction mixture was stirred at room temperature for 15 hours. After addition of water (10 mL) and ethyl acetate (20 mL) the layers were separated and the organic layer was washed with brine (10 mL), dried over sodium sulfate, filtered and the solvent was removed *in vacuo*. The residue was purified by flash chromatography on silica gel (eluent: ethyl acetate/methanol = $100/0 \rightarrow 95/5$) to afford 167 mg (92%) of triflate 22 as colourless solid; $R_{\rm f} = 0.62$ (ethyl acetate/methanol = 95/5); m.p.: 182 °C; IR (ATR): $\tilde{v} =$ 3002 cm⁻¹ (w), 2851 (w), 1654 (s), 1606 (m), 1436 (s), 1381 (m), 1212 (s), 1140 (s), 1042 (s), 898 (m), 853 (m), 757 (vs); ¹H-NMR (360 MHz, CDCl₃): δ [ppm] = 12.50 (br s, 1 H), 7.79 $(dd, {}^{3}J = 8.3 Hz, {}^{4}J = 1.4 Hz, 1 H), 7.68 (ddd, {}^{3}J = 8.4 Hz, {}^{3}J = 7.1 Hz, {}^{4}J = 1.4 Hz, 1 H), 7.50$ $(ddd, {}^{3}J = 8.3 \text{ Hz}, {}^{4}J = 1.1 \text{ Hz}, {}^{5}J = 0.5 \text{ Hz}, 1 \text{ H}), 7.37 (ddd, {}^{3}J = 8.3 \text{ Hz}, {}^{4}J = 7.1 \text{ Hz},$ ${}^{4}J = 1.1$ Hz, 1 H), 6.77 (s, 1 H); 13 C-NMR (90.6 MHz, CDCl₃): δ [ppm] = 163.8 (s), 155.6 (s), 138.5 (s), 132.9 (d), 123.9 (d), 122.2 (d), 116.6 (d), 114.3 (d), 111.5 (s); MS (EI, 70 eV): m/z (%) = 293 (94) [M⁺], 160 (14) [(M-CF₃O₂S)⁺], 132 (100) [(M-C₂F₃O₃S)⁺], 104 (17), 77 (26); HRMS (EI) *m/z*: calcd. for C₁₀H₆F₃NO₄S: 292.9964 [M⁺], found: 292.9960.

2.2.1 Sulfide 20

Sodium (14.0 mg, 598 µmol, 2.50 eq.) was dissolved in ethanol (1.2 mL), then 2-phenylethanethiol (48 µL, 49.0 mg, 359 µmol, 1.50 eq.) and triflate 22 (70.0 mg, 239 µmol, 1.00 eq.) were added and the reaction mixture was heated to reflux for 16 hours. After cooling to ambient temperature the solvent was removed in vacuo and the residue was purified by flash chromatography gel (eluent: pentane/ethyl on silica acetate/ methanol = $100/100/0 \rightarrow 0/100/0 \rightarrow 0/95/5$) to afford 64.0 mg (95%) of sulfide **20** as colourless solid; $R_f = 0.74$ (ethyl acetate/methanol = 95/5); m.p.: 163 °C; IR (ATR): $\tilde{v} = 3089 \text{ cm}^{-1}$ (w), 2860 (w), 1649 (s), 1592 (m), 1498 (w), 1441 (w), 1372 (w), 1252 (vs), 1231 (m), 1169 (s), 1038 (s), 965 (w), 917 (m), 747 (m), 698 (m); ¹H-NMR (360 MHz,

⁶ In analogy to: V. R. Solomon, W. Haq, K. Srivastava, S. K. Puri and S. B. Katti, *J. Med. Chem.*, 2006, **50**, 394-398.

⁷ In analogy to: M. S. Tremblay, M. Halim and D. Sames, J. Am. Chem. Soc., 2007, **129**, 7570-7577.

DMSO-d₆): δ [ppm] = 11.59 (br s, 1 H), 7.69 (dd, ${}^{3}J$ = 8.2 Hz, ${}^{4}J$ = 1.3 Hz, 1 H), 7.52 (ddd, ${}^{3}J$ = 8.2 Hz, ${}^{3}J$ = 7.2 Hz, ${}^{4}J$ = 1.4 Hz, 1 H), 7.34-7.30 (m, 5 H), 7.26-7.20 (m, 1 H), 7.20-7.15 (m, 1 H), 6.39 (s, 1 H), 3.39 (t, ${}^{3}J$ = 7.5 Hz, 2 H), 3.02 (t, ${}^{3}J$ = 7.5 Hz, 2 H); 13 C-NMR (90.6 MHz, DMSO-d₆): δ [ppm] = 160.2 (s), 149.5 (s), 139.5 (s), 137.8 (s), 130.8 (d), 128.5 (d), 128.3 (d), 126.4 (d), 123.3 (d), 121.7 (d), 117.4 (s), 115.7 (d), 114.2 (d), 33.2 (t), 31.0 (t); MS (EI, 70 eV): m/z (%) = 281 (35) [M⁺], 177 (100) [(M–C₈H₈)⁺], 149 (18), 116 (7), 104 (23), 91 (20) [C₇H₇⁺], 44 (27); HRMS (EI) m/z: calcd. for C₁₇H₁₅NOS: 281.0874 [M⁺], found: 281.0870.

4. Catalytic sulfoxidations

4.1. General Procedure for the synthesis of 2*H*-benzo[b][1,4]thiazin-3(4*H*)-one-1-oxide(7)

Manganese(salen) catalyst **5** (1.1 mg, 1.20 µmol, 0.01 eq.) and iodosobenzene⁸ (34.3 mg, 156 µmol, 1.30 eq.) were consecutively added to a solution of sulfide **6** (19.8 mg, 120 µmol, 1.00 eq.) in iodobenzene (6.0 mL) and the resulting brown suspension was stirred at room temperature for 72 hours. The reaction mixture was purified directly by flash chromatography on silica gel (eluent: pentane/ethyl acetate/methanol = 100/100/0 \rightarrow 0/100/0 \rightarrow 0/95/5) to afford 10.2 mg (47%, 67% *ee*) of chiral sulfoxide **7**, 2.9 mg (12%) of sulfone **23** and 7.6 mg (38%) of recovered starting material **6** as colourless solids. Analytical data for sulfoxide **7**: $R_f = 0.29$ (ethyl acetate/methanol = 95/5); HPLC (AD-H, 250 × 4.6 mm, ^{*n*}Hex/^{*i*}PrOH = 70/30, 1 mL/min.): $t_R = 7.2$ min (*S*), 13.3 min (*R*); $[\alpha]_D^{20} = +77.5$ (*c* = 1.0, MeOH, 90% *ee*); m.p.: 182 °C; IR (ATR): $\tilde{v} = 3040$ cm⁻¹ (w), 2982 (w), 1668 (s), 1591 (m), 1479 (s), 1426 (w), 1372 (m), 1252 (w), 1013 (s), 927 (w), 853 (m), 762 (s); ¹H-NMR (360 MHz, DMSO-d_6): δ [ppm] = 11.02 (br s, 1 H), 7.79 (dd, ³J = 7.6 Hz, ⁴J = 1.4 Hz, 1 H), 7.58 (*virt.* td, ³J = 7.8 Hz,

⁸ H. Saltzman and J. G. Sharefkin, Org. Synth., 1973, 5, 658.

⁴*J* = 1.5 Hz, 1 H), 7.23-7.15 (m, 2 H), 4.20 (d, ²*J* = 15.7 Hz, 1 H), 4.02 (dd, ²*J* = 15.7 Hz, ⁴*J* = 0.8 Hz, 1 H); ¹³C-NMR (90.6 MHz, DMSO-d₆): δ [ppm] = 162.1 (s), 137.1 (s), 133.6 (d), 130.0 (d), 123.8 (s), 123.0 (d), 117.8 (d), 51.1 (t); MS (EI, 70 eV): m/z (%) = 181 (100) [M⁺], 165 (20) [(M–O)⁺], 152 (27), 136 (26), 122 (24), 106 (32), 91 (16), 78 (14), 63 (17), 52 (10), 45 (12); CHN: calcd. for C₈H₇NO₂S: C: 53.02; H: 3.89; N: 7.73; found: C: 52.96; H: 4.01; N: 7.66.

Analytical data for sulfone **23**: $R_f = 0.60$ (pentane/ethyl acetate = 1/1); IR (ATR): $\tilde{v} = 3220 \text{ cm}^{-1}$ (w), 3088 (w), 2987 (w), 1697 (vs), 1676 (s), 1492 (m), 1474 (m), 1377 (m), 1334 (vs), 1212 (vs), 1154 (s), 1106 (s), 1057 (m), 1028 (w), 917 (w), 868 (m), 762 (vs), 728 (vs), 689 (m); ¹H-NMR (360 MHz, CDCl₃): δ [ppm] = 8.38 (br s, 1 H), 7.95 (dd, ³*J* = 7.9 Hz, ⁴*J* = 1.6 Hz, 1 H), 7.65-7.60 (m, 1 H), 7.33 (*virt.* td, ³*J* \approx 7.7 Hz, ⁴*J* = 1.0 Hz, 1 H), 7.06 (dd, ³*J* = 8.1 Hz, ⁴*J* = 0.7 Hz, 1 H), 4.24 (s, 2 H); ¹³C-NMR (90.6 MHz, CDCl₃): δ [ppm] = 161.7 (s), 146.1 (s), 135.1 (d), 134.7 (s), 124.8 (d), 124.3 (d), 118.4 (d), 56.7 (t); MS (EI, 70 eV): *m/z* (%) = 197 (27) [M⁺], 185 (3), 123 (9), 113 (49), 104 (15), 71 (76), 57 (100), 43 (59); HRMS (EI) *m/z*: calcd. for C₈H₇NO₃S: 197.0147 [M⁺], found: 197.0144.

4.2. Synthesis of 2*H*-benzo[e][1,3]thiazin-4(3*H*)-one-1-oxide (13)

Following the general procedure, sulfide **12** (19.8 mg, 120 µmol, 1.00 eq.) was reacted with iodosobenzene (34.3 mg, 156 µmol, 1.30 eq.) in iodobenzene (6.0 mL) in the presence of catalyst **5** (1.1 mg, 1.20 µmol, 0.01 Äq.) and after purification by flash chromatography on silica gel (eluent: pentane/ethyl acetate/methanol = $500/100/0 \rightarrow 0/100/0 \rightarrow 0/95/5$) 11.5 mg (53%, 13% *ee*) of chiral sulfoxide **13** and 8.1 mg (41%) of recovered starting material **12** were obtained as colourless solids; $R_{\rm f} = 0.28$ (ethyl acetate/methanol = 95/5); HPLC (OJ-H, $250 \times 4.6 \text{ mm}$, ^{*n*}Hex/^{*i*}PrOH = 80/20, 1 mL/min.): $t_{\rm R} = 18.9 \text{ min}$, 21.5 min; IR (ATR): $\tilde{v} = 3224 \text{ cm}^{-1}$ (br), 3103 (w), 2992 (w), 1659 (s), 1571 (m), 1465 (w), 1164 (s), 1038 (m), 1013 (m), 936 (w), 800 (m), 747 (s); ¹H-NMR (360 MHz, CD₃OD): δ [ppm] = 8.18 (*virt.* dt, ³*J* = 5.6 Hz, $J \approx 3.3 \text{ Hz}$, 1 H), 7.91-7.88 (m, 1 H), 7.85-7.79 (m, 2 H), 4.77 (d, ²*J* = 13.9 Hz, 1 H), 4.62 (d, ²*J* = 13.9 Hz, 1 H)*; ¹³C-NMR (90.6 MHz, CD₃OD): δ [ppm] = 165.2 (s), 141.7

(s), 134.8 (d), 134.6 (d), 131.0 (d), 129.7 (d), 128.7 (s), 60.9 (t); MS (EI, 70 eV): m/z (%) = 181 (4) [M⁺], 152 (100) [(M–CH₂NH)⁺], 104 (8), 96 (19), 45 (19); HRMS (EI) m/z: calcd. for C₇H₄O₂S: 151.9932 [(M–CH₂NH)⁺], found: 151.9931.

* the signal for the NH-proton is missing, probably due to fast exchange with the solvent CD_3OD .

4.3. Synthesis of 3,4-dihydrobenzo[f][1,4]thiazepin-5(2H)-one-1-oxide (15)

Following the general procedure, sulfide 149 (21.5 mg, 120 µmol, 1.00 eq.) was reacted with iodosobenzene (34.3 mg, 156 µmol, 1.30 eq.) in iodobenzene (6.0 mL) in the presence of catalyst 5 (1.1 mg, 1.20 µmol, 0.01 eq.) and after purification by flash chromatography on silica gel (eluent: pentane/ethyl acetate/methanol = $100/100/0 \rightarrow 0/95/5 \rightarrow 0/70/30$) 10.3 mg (44%, 20% ee) of chiral sulfoxide 15, 0.6 mg (2%) of sulfone 24 and 11.1 mg (52%) of recovered starting material 14 were obtained as colourless solids. Analytical data for sulfoxide 15: $R_{\rm f} = 0.44$ acetate/methanol = 70/20); (ethyl HPLC (OJ-H. 250×4.6 mm, ^{*n*}Hex/^{*i*}PrOH = 70/30, 1 mL/min.): $t_{\rm R} = 9.2 \text{ min } (-)$, 13.6 min (+); $[\alpha]_{\rm D}^{20} = -0.7 (c = 0.7, \text{MeOH}, \text{meOH})$ 20% ee); m.p.: 221 °C; IR (ATR): $\tilde{v} = 3200 \text{ cm}^{-1}$ (br), 3069 (w), 1659 (vs), 1591 (m), 1436 (w), 1396 (m), 1353 (m), 1281 (w), 1227 (m), 1062 (s), 1042 (s), 994 (s), 858 (w), 747 (s); ¹H-NMR (360 MHz, DMSO-d₆): δ [ppm] = 8.50 (br t, ³J = 6.2 Hz, 1 H), 7.86-7.77 (m, 2 H), 7.73-7.67 (m, 2 H), 4.16 (ddd, ${}^{2}J = 12.3$ Hz, ${}^{3}J = 10.7$ Hz, ${}^{3}J = 6.9$ Hz, 1 H), 3.39-3.38 (m, 1 H), 3.19 (ddd, ${}^{2}J = 16.5$ Hz, ${}^{3}J = 11.2$ Hz, ${}^{3}J = 5.8$ Hz, 1 H), 2.72 (ddd, ${}^{2}J = 12.3$ Hz, ${}^{3}J = 5.8$ Hz, ${}^{3}J = 2.2$ Hz, 1 H); 13 C-NMR (90.6 MHz, DMSO-d₆): δ [ppm] = 168.3 (s), 139.3 (s), 131.9 (s), 131.8 (d), 131.1 (d), 128.2 (d), 123.2 (d), 56.8 (t), 36.6 (t); MS (EI, 70 eV): *m/z* $(\%) = 195 (12) [M^+], 152 (55) [(M-CHNO)^+], 121 (11), 104 (9), 96 (14), 76 (13), 43 (100)$ $[CHNO^+]$; HRMS (EI) *m/z*: calcd. for C₉H₉NO₂S: 195.0354 [M⁺], found: 195.0345.

⁹ H. Ishibashi, M. Uegaki, M. Sakai and Y. Takeda, *Tetrahedron*, 2001, 57, 2115-2120.

Analytical data for sulfone **24**: $R_f = 0.23$ (ethyl acetate/methanol = 95/5); m.p.: 237 °C; IR (ATR): $\tilde{v} = 3263 \text{ cm}^{-1}$ (br), 3069 (w), 2084 (w), 1673 (m), 1634 (s), 1571 (m), 1450 (m), 1391 (m), 1353 (m), 1319 (vs), 1300 (vs), 1145 (vs), 1116 (vs), 1013 (m), 776 (m), 728 (s); ¹H-NMR (360 MHz, DMSO-d₆): δ [ppm] = 8.46 (br t, ³J = 6.5 Hz, 1 H), 7.93 (dt, ³J = 7.6 Hz, ⁴J = 1.5 Hz, 1 H), 7.87 (dt, ³J = 7.5 Hz, ⁴J = 1.5 Hz, 1 H), 7.81 (dt, ³J = 7.6 Hz, ⁴J = 1.5 Hz, 1 H), 7.76 (dt, ³J = 7.5 Hz, ⁴J = 1.5 Hz, 1 H), 3.65 (t, ³J = 6.2 Hz, 2 H), 3.37 (t, ³J = 6.2 Hz, 2 H); ¹³C-NMR (90.6 MHz, DMSO-d₆): δ [ppm] = 168.6 (s), 134.9 (s), 134.5 (d), 134.0 (s), 131.3 (d), 130.0 (d), 125.9 (d), 59.1 (t), 36.9 (t); MS (EI, 70 eV): *m/z* (%) = 211 (6) [M⁺], 193 (28) [(M-H₂O)⁺], 169 (30) [(M-CNO)⁺], 147 (22), 118 (13), 105 (47) [C₇H₅O⁺], 90 (18), 76 (32), 43 (100); HRMS (EI) *m/z*: calcd. for C₉H₉NO₃S: 211.0303 [M⁺], found: 211.0319.

4.4. Synthesis of 3,5-dihydrothieno-[3,4-c]quinoline-4(1*H*)-one-2-oxide (17)

Following the general procedure, sulfide **16**¹⁰ (24.4 mg, 120 µmol, 1.00 Äq.) was reacted with iodosobenzene (34.3 mg, 156 µmol, 1.30 eq.) in iodobenzene (6.0 mL) in the presence of catalyst **5** (1.1 mg, 1.20 µmol, 0.01 eq.) and after purification by flash chromatography on silica gel (eluent: pentane/ethyl acetate/methanol = 100/100/0 \rightarrow 0/95/5 \rightarrow 0/70/30) 8.6 mg (33%, 66% *ee*) of chiral sulfoxide **17** and 15.0 mg (61%) of recovered starting material **16** were obtained as cream solids; $R_f = 0.29$ (ethyl acetate/methanol = 95/5); HPLC (AD-H, 250 × 4.6 mm, ^{*n*}Hex/^{*i*}PrOH = 70/30, 1 mL/min.): $t_R = 9.9 \text{ min}$ (–), 17.3 min (+); $[\alpha]_D^{20} = +6.3$ (c = 0.6, MeOH, 66% *ee*); m.p.: 154 °C; IR (ATR): $\tilde{v} = 3010 \text{ cm}^{-1}$ (w), 2913 (w), 1640 (vs), 1573 (m), 1500 (m), 1429 (m), 1390 (w), 1342 (w), 1231 (w), 1126 (m), 1015 (s), 865 (w), 751 (m), 717 (w), 674 (m); ¹H-NMR (360 MHz, DMSO-d_6): δ [ppm] = 12.01 (br s, 1 H), 7.68 (d, ³*J* = 7.9 Hz, 1 H), 7.56 (*virt.* t, ³*J* = 7.7 Hz, 1 H), 7.41 (d, ³*J* = 8.1 Hz, 1 H), 7.25 (*virt.* t, ³*J* = 7.6 Hz, 1 H), 4.67 (d, ²*J* = 17.4 Hz, 1 H), 4.44 (d, ²*J* = 17.4 Hz, 1 H), 4.35 (d, ²*J* = 17.4 Hz, 1 H), 3.86 (d, ²*J* = 17.4 Hz, 1 H); ¹³C-NMR (90.6 MHz, DMSO-d_6): δ [ppm] = 160.0 (s), 145.0 (s), 139.0 (s), 130.5 (d), 127.0 (s), 125.3 (d), 122.1 (d), 117.4 (s),

¹⁰ L. A. White and R. C. Storr, *Tetrahedron*, 1996, **52**, 3117-3134.

115.4 (d), 59.2 (t), 59.0 (t); MS (EI, 70 eV): m/z (%) = 219 (32) [M⁺], 201 [(M–H₂O)⁺], 184 (22), 171 (92) [(M–SO)⁺], 143 (19) [(M–C₂H₄OS)⁺], 128 (26), 115 (22), 105 (12), 87 (25), 73 (18), 57 (100), 43 (80); HRMS (EI) m/z: calcd. for C₁₁H₇NOS: 201.0248 [(M–H₂O)⁺], found: 201.0243.

4.5. Synthesis of thiomorpholine-3-one-1-oxide (19)¹¹

Following the general procedure, sulfide **18**° (14.1 mg, 120 µmol, 1.00 eq.) was reacted with iodosobenzene (34.3 mg, 156 µmol, 1.30 eq.) in iodobenzene (6.0 mL) in the presence of catalyst **5** (1.1 mg, 1.20 µmol, 0.01 eq.) and after purification by flash chromatography on silica gel (eluent: pentane/ethyl acetate/methanol = 100/100/0 \rightarrow 0/100/0 \rightarrow 0/70/30) 10.0 mg (63%, 59% *ee*) of chiral sulfoxide **19** and 1.9 mg (13%) of recovered starting material **18** were obtained as colourless solids; $R_{\rm f} = 0.25$ (ethyl acetate/methanol = 70/30); HPLC (OJ-H, 250 × 4.6 mm, "Hex/ⁱPrOH = 80/20, 0.8 mL/min.): $t_{\rm R} = 17.9$ min (-), 23.3 min (+); $\left[\alpha\right]_{\rm D}^{20}$ = -1.6 (*c* = 0.7, CHCl₃, 59% *ee*); IR (ATR): $\tilde{v} = 3273$ cm⁻¹ (w), 33089 (br), 2933 (w), 1633 (m), 1624 (s), 1406 (m), 1334 (m), 1236 (w), 1120 (m), 1023 (vs), 1009 (vs), 936 (m), 728 (vs); ¹H-NMR (360 MHz, DMSO-d_6): δ [ppm] = 8.02 (br s, 1 H), 3.79-3.66 (m, 1 H), 3.67 (d, ²*J* = 16.6 Hz, 1 H), 3.46-3.30 (m, 1 H), 3.33 (d, ²*J* = 16.6 Hz, 1 H), 3.08-2.92 (m, 2 H); ¹³C-NMR (90.6 MHz, DMSO-d_6): δ [ppm] = 162.9 (s), 50.1 (t), 42.6 (t), 33.6 (t); MS (EI, 70 eV): m/z (%) = 133 (52) [M⁺], 117 (8), 84 (47) [(M–SO)⁺], 70 (11), 63 (22), 44 (100).

4.6. Synthesis of 4-(phenethylsulfinyl)quinoline-2(1H)-one (21)

¹¹ H. Lehr, S. Karlan and M. W. Goldberg, J. Med. Chem., 1963, 6, 136-141.

Following the general procedure, sulfide 20 (33.8 mg, 120 µmol, 1.00 eq.) was reacted with iodosobenzene (34.3 mg, 156 µmol, 1.30 eq.) in iodobenzene (6.0 mL) in the presence of catalyst 5 (1.1 mg, 1.20 μ mol, 0.01 eq.) and after purification by flash chromatography on silica gel (eluent: pentane/ethyl acetate/methanol = $100/100/0 \rightarrow 0/100/0 \rightarrow 0/95/5$) 14.9 mg (42%, 64% ee) of chiral sulfoxide 21 and 11.5 mg (34%) of recovered starting material 20 were obtained as cream solids; $R_f = 0.50$ (ethyl acetate/methanol = 95/5); HPLC (AD-H, $250 \times 4.6 \text{ mm}, \ ^{n}\text{Hex}/^{i}\text{PrOH} = 70/30, \ 1 \text{ mL/min.}): t_{\text{R}} = 7.9 \text{ min (+)}, \ 12.9 \text{ min (-)}; \ [\alpha]_{\text{D}}^{20} = -17.7$ $(c = 0.4, \text{ MeOH}, 64\% \ ee); \text{ m.p.: } 150 \ ^{\circ}\text{C}; \text{ IR (ATR): } \tilde{v} = 3069 \ \text{cm}^{-1} \ \text{(w)}, 3040 \ \text{(w)}, 2856 \ \text{(w)},$ 1644 (vs), 1566 (m), 1498 (m), 1367 (m), 1276 (w), 1057 (s), 965 (w), 873 (m), 829 (w), 757 (s), 698 (s); ¹H-NMR (360 MHz, DMSO-d₆): δ [ppm] = 12.07 (br s, 1 H), 7.59 (*virt.* t, ${}^{3}J = 7.7$ Hz, 1 H), 7.49 (d, ${}^{3}J = 8.0$ Hz, 1 H), 7.41 (d, ${}^{3}J = 8.2$ Hz, 1 H), 7.33-7.16 (m, 6 H), 6.88 (s, 1 H), 3.52-3.33 (m, 1 H), 3.17-3.04 (m, 2 H), 2.92-2.83 (m, 1 H); 13 C-NMR (90.6 MHz, DMSO-d₆): δ [ppm] = 160.1 (s), 154.5 (s), 138.7 (s), 138.6 (s), 131.3 (d), 128.4 (d), 128.4 (d), 126.4 (d), 122.5 (d), 122.2 (d), 118.3 (d), 116.9 (d), 114.3 (s), 54.3 (t), 27.1 (t); MS (EI, 70 eV): m/z (%) = 297 (8) [M⁺], 281 (17) [(M–O)⁺], 193 (34) [(M–C₈H₈)⁺], 177 (48) $[(M-C_8H_8O)^+]$, 149 (10), 105 (100) $[C_8H_9^+]$, 77 (30) $[C_6H_5^+]$, 51 (20), 44 (21); HRMS (EI) *m/z*: calcd. for C₁₇H₁₅NO₂S: 297.0823 [M⁺], found: 297.0823.

4.7. Synthesis of 4-methyl-2H-benzo[b][1,4]thiazin-3(4H)-one-1-oxide (9)¹²

Manganese(salen) catalyst **5** (1.1 mg, 1.20 µmol, 0.01 eq.) and iodosobenzene (34.3 mg, 156 µmol, 1.30 eq.) were consecutively added to a solution of sulfide **8**¹³ (21.5 mg, 120 µmol, 1.00 eq.) in benzene (6.0 mL) and the resulting brown suspension was stirred at room temperature for 24 hours. The reaction mixture was purified directly by flash chromatography on silica gel (eluent: pentane/ethyl acetate = $1/1 \rightarrow 1/0$) to afford 13.8 mg (59%, <1% ee) of chiral sulfoxide **9** and 5.8 mg (23%) of sulfone **25** as colourless solids. Analytical data for

¹² F. Eiden and F. Meinel, Arch. Pharm., 1979, **312**, 302-312.

sulfoxide **9**¹¹: $R_f = 0.24$ (ethyl acetate); HPLC (AS-H, 250 × 4.6 mm, ^{*n*}Hex/^{*i*}PrOH = 50/50, 1 mL/min.): $t_R = 29.4$ min, 39.7 min; ¹H-NMR (360 MHz, CDCl₃): δ [ppm] = 7.76 (d, ³J = 7.5 Hz, 1 H), 7.63 (*virt.* td, ³J = 7.9 Hz, ⁴J = 1.5 Hz, 1 H), 7.30-7.26 (m, 2 H), 4.21 (d, ²J = 15.0 Hz, 1 H), 3.74 (d, ²J = 15.0 Hz, 1 H), 3.54 (s, 3 H); ¹³C-NMR (90.6 MHz, CDCl₃): δ [ppm] = 160.6 (s), 139.1 (s), 133.9 (d), 129.8 (d), 127.0 (s), 124.0 (d), 117.7 (d), 52.4 (t), 31.5 (q).

Analytical data for sulfone **25**: $R_f = 0.69$ (EtOAc); ¹H-NMR (360 MHz, CDCl₃): δ [ppm] = 7.98 (dd, ³J = 7.6 Hz, ⁴J = 1.6 Hz, 1 H), 7.69 (ddd, ³J = 8.4 Hz, ³J = 5.5 Hz, ⁴J = 1.6 Hz, 1 H), 7.37-7.30 (m, 2 H), 4.24 (s, 2 H), 3.53 (s, 3 H); ¹³C-NMR (90.6 MHz, CDCl₃): δ [ppm] = 160.8 (s), 139.0 (s), 135.0 (d), 128.0 (s), 124.5 (d), 124.3 (d), 118.0 (d), 56.7 (t), 32.1 (q).

5. Proof of the absolute configuration of sulfoxide 7

5.1. Synthesis of 4-[(1*R*,2*S*,5*R*)-2-*iso*-propyl-5-methylcyclohexyl]-2*H*benzo[e][1,4]thiazin-3-one-1-oxide (10)

^{*n*}BuLi (2.5 M in Hexan, 59.0 µL, 146 µmol, 1.10 eq.) was added over a period of 10 minutes to a solution of the sulfoxide **7** (enriched to 90% *ee* by semi-preparative HPLC, 24.1 mg, 133 µmol, 1.00 eq.) in tetrahydrofuran (3.5 mL) at -78 °C and the reaction mixture was stirred for 30 minutes. (–)-Menthyl chloroformate (**26**) (34.0 µL, 35.0 mg, 160 µmol, 1.20 eq.) was added and the solution was stirred 45 minutes at -78 °C and one hour at 0 °C. The reaction mixture was quenched with saturated ammonium chloride solution (0.3 mL) and was concentrated *in vacuo*. After addition of water (10 mL) and dichloromethane (20 mL) the layers were separated and the aqueous layer was extracted with dichloromethane (2 × 20 mL). The combined organic layers were dried over sodium sulfate, filtered and concentrated *in*

¹³ J. W. Worley, K. W. Ratts and K. L. Cammack, J. Org. Chem., 1975, 40, 1731-1734.

vacuo. The residue was purified by flash chromatography on silica gel (eluent: pentane/ethyl acetate = 5/1 → 1/1) to afford 12.1 mg (25%) of sulfoxide **10** as a single diastereoisomer; $R_{\rm f} = 0.43$ (EtOAc/MeOH = 95/5); m.p.: 160 °C; $[\alpha]_{\rm D}^{20} = +18.6$ (*c* = 0.7, CHCl₃); IR (ATR): $\tilde{\nu} = 3089$ cm⁻¹ (w), 2957 (w), 1761 (m), 1683 (m), 1644 (w), 1580 (w), 1484 (m), 1309 (m), 1227 (vs), 1111 (w), 1062 (s), 1018 (m), 951 (m), 771 (m); ¹H-NMR (360 MHz, CDCl₃): δ [ppm] = 7.78 (dd, ³*J* = 7.6 Hz, ⁴*J* = 1.6 Hz, 1 H), 7.61-7.55 (m, 1 H), 7.35 (*virt*. td, ³*J* = 7.6 Hz, ⁴*J* = 1.1 Hz, 1 H), 7.15 (dd, ³*J* = 8.3 Hz, ⁴*J* = 1.1 Hz, 1 H), 4.92 (*virt*. dt, ³*J* = 7.6 Hz, ³*J* = 4.3 Hz, 1 H), 4.17 (d, ²*J* = 14.2 Hz, 1 H), 3.77 (d, ²*J* = 14.2 Hz, 1 H), 2.27-2.21 (m, 1 H), 2.09-1.99 (m, 1 H), 1.76-1.67 (m, 2 H), 1.57-1.43 (m, 2 H), 1.25-1.05 (m, 3 H), 0.96 (d, ³*J* = 6.5 Hz, 3 H), 0.90 (d, ³*J* = 7.0 Hz, 3 H), 0.86 (d, ³*J* = 7.0 Hz, 3 H); ¹³C-NMR (90.6 MHz, CDCl₃): δ [ppm] = 159.8 (s), 151.8 (s), 135.5 (s), 133.5 (d), 129.4 (d), 127.9 (s), 125.7 (d), 120.2 (d), 80.8 (d), 53.5 (t), 46.6 (d), 39.9 (t), 33.9 (t), 31.5 (d), 25.9 (d), 23.1 (t), 21.9 (q), 20.7 (q), 16.0 (q); MS (EI, 70 eV): *m/z* (%) = 363 (6) [M⁺], 182 (88) [C₁₁H₁₈O₂⁺], 166 (16), 153 (19), 132 (17), 97 (18) [C₇H₁₃⁺], 83 (100) [C₆H₁₁⁺], 55 (53) [C₄H₇⁺], 41 (24) [C₃H₅⁺]; HRMS (EI) *m/z*: calcd. for C₁₉H₂₅NO₄S: 363.1504 [M⁺], found: 363.1501.

5.2. Single crystal X-Ray structure determination of compound 10

Operator: Molecular Formula: Crystal Color / Shape	*** Herdtweck *** C ₁₉ H ₂₅ NO ₄ S Colorless fragment	*** ient				
Crystal Size	Approximate size of crystal fragment used for data collection: $0.25 \times 0.20 \times 0.64$ mm					
Molecular Weight:	363.47 a.m.u. 776					
Systematic Absences:	h00: $h\neq 2n$; 0k0: $k\neq 2n$, 001: $l\neq 2n$					
Space Group:	Orthorhombic $P 2_1 2_1 2_1$ (I.TNo.: 19)					
Cell Constants:	Least-squares refinem "APEX suite" and "S	t-squares refinement of 9229 reflections with the programs EX suite" and "SAINT" ^{14,15} ; theta range $4.43^{\circ} < \theta < 66.53^{\circ}$;				
	$Cu(K\alpha); \lambda = 154.180$	$\lambda = 154.180 \text{ pm}$				
	<i>a</i> = 928.13	928.13(2) pm 1394.05(3) pm 1430.69(3) pm (7)• 10 ⁶ pm ³ ; $Z = 4$; $D_{calc} = 1.304$ g cm ⁻³ ; Mos. = 0.76				
	<i>b</i> = 1394.05					
	c = 1430.69					
	$V = 1851.11(7) \cdot 10^{6} \text{ pr}$					
Diffractometer:	Kappa APEX II (Are	PEX II (Area Diffraction System; BRUKER AXS); sealed				
	tube; graphite monochromator; 40 kV; 30 mA; $\lambda = 154.180$ pm;					
	$Cu(K\overline{\alpha})$					
Temperature:	(-150±1) °C;	(123±1) K				
Measurement Range:	$4.43^{\circ} < \theta < 66.53^{\circ}$; h:	-10/10, k: -15/16, l: -16/16				
Measurement Time:	2×5 s per film					
Measurement Mode:	measured: 30 runs; 5758 films / scaled: 30 runs; 5758 films					
	φ - and ω -movement;	Increment: $\Delta \varphi / \Delta \omega = 1.00^{\circ}$; dx = 35.0 mm				
LP - Correction:	Yes ¹⁵					
Intensity Correction	No/Yes; during scaling	g ¹⁴ .				
Absorption Correction:	Multi-scan; during scaling; $\mu = 1.747 \text{ mm}^{-1} ^{15}$					
	Correction Factors:	$T_{min} = 0.5140$ $T_{max} = 0.7528$				
Reflection Data:	46387 reflec	ctions were integrated and scaled				
	192 reflec	ctions systematic absent and rejected				
	46195 reflec	ctions to be merged				
	3167 indep	pendent reflections				
	0.033	(basis F_o^2)				
	3167 indep	pendent reflections (all) were used in				
	refinements					
	3130 indep	pendent reflections with $I_o > 2\sigma(I_o)$				
	97.4 % comp	pleteness of the data set				
	327 parat	meter full-matrix refinement				
	9.7 reflec	ctions per parameter				
Solution:	Direct Methods ¹⁶ ; Diff	terence Fourier syntheses				
Refinement Parameters:	In the asymmetric unit	·• ·•				

¹⁴ APEX suite of crystallographic software. APEX 2 Version 2008.4. Bruker AXS Inc., Madison, Wisconsin, USA (2008).

¹⁵ SAINT, Version 7.56a and SADABS Version 2008/1. Bruker AXS Inc., Madison, Wisconsin, USA (2008).

¹⁶ A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori and M. Camalli, "SIR92" *J. Appl. Cryst.*, 1994, **27**, 435-436.

	25 Non-hydro	gen atoms	with anis	otropic	displacement
	25 Hydrogen	atoms	with isot	tropic	displacement
	parameters	• , •	C 1 '	.1 1	CC
Hydrogen Atoms:	All hydrogen atom positions were found in the difference map calculated from the model containing all non-hydrogen atoms. The				
	hydrogen positions w	ere refine	d with	individu	ial isotropic
Atomic Form Factors:	For neutral atoms and and	omalous dis	persion ¹⁷		
Extinction Correction:	$F_{\rm c}$ (korr) = k $F_{\rm c}[1 + 0.001 \cdot \varepsilon \cdot F_{\rm c}^2 \cdot \lambda^3 / \sin(2\Theta)]^{-1/4}$ SHELXL-97 [5 ¹⁸]				
	ε refined to $\varepsilon = 0.0021(1)$				
Weighting Scheme:	$w^{-1} = \sigma^2 (F_0^2) + (a*P)^2 + b*F$	D. Mawing		²) . 2 E	21/2
Shift/Frr	With a: 0.0198; b: 0.4064 Less than 0.001 in the las	; P: [Maxim t cycle of re	$um(0 \text{ or } F_0)$	$_{\rm D}$)+2* $F_{\rm O}$	_c]/3
Pasid Electron Density:	$10.17 \text{ e}^{-}/\text{Å}^{3}$; 0.16 e^{-}/\text{Å}^{3}		intentent.		
Resid. Electron Density.	$\Sigma = \frac{1}{2} $				
$[F_{o} > 4\sigma(F_{o}); N=3130]$:	= 0.0190
[all reflctns; N=3167]		2		=	= 0.0193
wR2:	$[\Sigma w (F_{\rm o}^{2} - F_{\rm c}^{2})^{2} / \Sigma w (F_{\rm o}^{2})^{2}]^{1/2}$	2			0.0475
$[F_{o} > 4\sigma(F_{o}); N=3130]$				=	= 0.0475
[all reflections; $N=316/$]	$r = (r^2 - 2^2)^2 (r = 2^{-1})^2$	12		=	= 0.0476
Goodness of fit:	$[2w(F_0^2 - F_c^2)^2/(\text{NO-NV})]^2$., 2		=	= 1.069
Flack's Parameter :	x = 0.03(1)	2 2	n		
Remarks:	Refinement expression	$\Sigma w(F_0^2 - F_c^2)$	² 18,19,20		
	The correct enantiomer is proved by Flack's Parameter.				
	The correct enantiomer is	proved by	synthesis		

¹⁷ A. J. C. Wilson, *Tables for Crystallography*, 1992, **Vol. C**, Tables 6.1.1.4 (pp. 500-502), 4.2.6.8 (pp. 219-222), and 4.2.4.2 (pp. 193-199), Kluwer Academic Publishers, Dordrecht, The Netherlands.

¹⁸ G. M. Sheldrick, "SHELXL-97", University of Göttingen, Göttingen, Germany, (1998).

¹⁹ A. L. Spek, "PLATON", A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, (2010).

²⁰ L. J. Farrugia, "WinGX (Version 1.70.01 January 2005) ", J. Appl. Cryst., 1999, **32**, 837-838.

6. HPLC traces of chiral sulfoxides

AD-H, n Hex/ i PrOH = 70/30, 1 mL/min.

Racemate

enantioenriched

OJ-H, n Hex/ i PrOH = 80/20, 1 mL/min.

Racemate

enantioenriched (table 1, entry 2)

OJ-H, n Hex/ i PrOH = 70/30, 1 mL/min.

Racemate

enantioenriched (table 1, entry 3)

AD-H, n Hex/ i PrOH = 70/30, 1 mL/min.

Racemate

enantioenriched (table 1, entry 4)

OJ-H, n Hex/ i PrOH = 80/20, 0.8 mL/min.

Racemate

enantioenriched (table 1, entry 5)

AD-H, n Hex/ i PrOH = 70/30, 1 mL/min.

Racemate

enantioenriched (table 1, entry 6)

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

