C-H Activation of 2,4,6-Triphenylphosphinine: Unprecedented Formation of Cyclometalated [(P^C)Ir(III)] and [(P^C)Rh(III)] Complexes

Leen E.E. Broeckx^{*a*}, Martin Lutz^{*b*}, Dieter Vogt^{*a*}, and Christian Müller*^{*a*}

 ^a Schuit Institute of Catalysis, Laboratory for Homogeneous Catalysis, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands. Fax: +31 40-2455054; Tel: +31-40-2474679; E-mail: c.mueller@tue.nl

^b Bijvoet Center for Biomolecular Research, Crystal and Structural Chemistry, Utrecht University, 3584 CH Utrecht, The Netherlands

Supplementary Material

General remarks:

All experiments were performed under an inert argon atmosphere, using modified Schlenk techniques or in a MBraun dry box, unless otherwise stated. All glassware was dried prior to use by heating under vacuum to remove traces of water. 2,4,6-triphenylphosphinine $(1)^1$ and 2,4,6-triphenylpyridine $(6)^2$ were prepared according to the literature. [Cp*IrCl₂]₂ and [Cp*RhCl₂]₂ were obtained from Aldrich. The solvents were dried and deoxygenated using custom-made solvent purification columns filled with Al₂O₃. The ¹H, ¹³C{¹H} and ³¹P{¹H} NMR spectra were recorded on a Varian Mercury 200 or 400 MHz spectrometer. The mass characterization of **2** has been performed by positive mode reflection MALDI-TOF using a Voyager-DE PRO instrument.

Chloro(η⁵-pentamethylcyclopentadienyl)(2,4,6-triphenylphosphinine-P)iridium(III) (2)

A mixture of $[Cp*IrCl_2]_2$ (24.6 mg, 0.031 mmol, 1.0 equiv) and 2,4,6triphenylphosphinine **1** (20.9 mg, 0.064 mmol, 2.1 equiv) was suspended in CD_2Cl_2 (0.5 mL) and transferred to a Young NMR-Tube under argon. **2** was formed immediately at room temperature. δ_H (400.16 MHz; CD_2Cl_2) 1.35

Ph² = 10 miled miled active at room temperature. $O_{H}(400.10 \text{ WHz}, CD_2Cl_2)$ 1.55 (15 H, s, Me), 7.35-7.41 (7 H, m, H_{arom}), 7.44 (2 H, t, ${}^{3}J_{(H,H)} = 7.4$ Hz, H_{arom}), 7.59-7.64 (6 H, m, H_{arom}), 8.03 (2 H, d, ${}^{3}J_{(H,P)} = 19.2$ Hz, H_β); $\delta_{C}(100.63 \text{ MHz}; CD_2Cl_2)$ 8.9 (C₅Me₅), 94.3 (C₅Me₅),

127.8 (d, $J_{(C,P)} = 3.1$ Hz), 127.9 (br s), 128.4, 129.2, 130.7 (br s), 139.4 (br s), 140.3, 140.5, 140.7 (d, $J_{(C,P)} = 4.7$ Hz), 142.2 (d, $J_{(C,P)} = 12.1$ Hz), 163.2 (d, $J_{(C,P)} = 17.2$ Hz); $\delta_P(161.00$ MHz; CD₂Cl₂) 133.0. MALDI-TOF (m/z): 722.12 g/mol [M⁺].

rac-Chloro(η⁵-pentamethylcyclopentadienyl)(2-phenyl-C₀-4,6-diphenylphosphinine-P)iridium(III) (3)

A mixture of $[Cp*IrCl_2]_2$ (24.6 mg, 0.031 mmol, 1.0 equiv), 2,4,6triphenylphosphinine **1** (20 mg, 0.062 mmol, 2.0 equiv), and NaOAc (5.7 mg, 0.070 mmol, 2.3 equiv) was suspended in dichloromethane (0.5 mL) and transferred to a Young NMR-tube under argon. The suspension was heated to T = 80°C for 6 h and monitored by means of ³¹P{¹H} NMR spectroscopy. The orange reaction mixture was filtered over celite and recrystallized by diffusion of diethyl ether into the dichloromethane solution. **3** was obtained as dark orange crystals (40.9 mg, 96.7%). $\delta_{H}(400.16$ MHz; CD₂Cl₂) 1.59 (15 H, d, ⁴J_(H,P) = 3.2 Hz, Me), 7.05-7.12 (2 H, m, H_{arom}), 7.39-7.43 (1 H, m, H_{arom}), 7.45-7.56 (5 H, m, H_{arom}), 7.65-7.70 (3 H, m, H_{arom}), 7.79-7.83 (1 H, m, H_{arom}), 7.84-7.86 (1 H, m, H_{arom}), 7.86-7.88 (1 H, m, H_{arom}), 8.01 (1 H, dd, ³J_(H,P) = 21.6 Hz, ⁴J_(H,H) = 1.6 Hz, H_β), 8.35 (1 H, dd, ³J_(H,P) = 22.4 Hz, ⁴J_(H,H) = 1.6 Hz, H_β); $\delta_{C}(50.27 \text{ MHz}; \text{CD}_2\text{Cl}_2)$ 9.1 (C₅Me₅), 96.6 (d, ²J_(C,P) = 3.3 Hz, C₃Me₅), 120.1 (d, J_(C,P) = 19.1 Hz), 123.2, 127.8, 128.2, 128.5, 128.6, 128.7, 129.2, 129.5, 134.9 (d, J_(C,P) = 11.4 Hz), 139.8 (d, J_(C,P) = 25.3 Hz), 140.3 (d, J_(C,P) = 11.2 Hz), 140.6, 142.7 (d, J_(C,P) = 5.3 Hz), 144.5 (d, J_(C,P) = 30.8 Hz), 152.6 (d, J_(C,P) = 28.0 Hz), 154.0, 165.4 (d, ¹J_(C,P) = 42.9 Hz, C_a), 177.0; $\delta_{P}(161.00 \text{ MHz}; \text{CD}_2\text{Cl}_2)$ 170.8.

rac-Chloro(η⁵-pentamethylcyclopentadienyl)(2-phenyl-C₀-4,6-diphenylphosphinine-P)rhodium(III) (5)

A mixture of $[Cp*RhCl_2]_2$ (22.3 mg, 0.036 mmol, 1.0 equiv), 2,4,6triphenylphosphinine **1** (23.2 mg, 0.072 mmol, 2.0 equiv), and NaOAc (6.2 mg, 0.076 mmol, 2.1 equiv) was suspended in dichloromethane (0.5 mL) and transferred to a Young NMR-tube under argon. The suspension was heated to T =

Ph['] 80°C for 18 h and monitored by means of ${}^{31}P{}^{1}H$ NMR spectroscopy. The dark brown solution was filtered over celite and recrystallized by diffusion of diethyl ether in the filtrate to obtain 5 as red crystals (18.9 mg, 44.3%). $\delta_{H}(400.16 \text{ MHz}; \text{CD}_2\text{Cl}_2)$ 1.49 (15 H, d, ⁴*J*_(H,P) = 4.4 Hz, Me), 7.09-7.13 (2 H, m, H_{arom}), 7.39-7.44 (1 H, m, H_{arom}), 7.46-7.56 (5 H, m, H_{arom}), 7.68 (3 H, d, *J*_(H,P) = 6.8 Hz, H_{arom}), 7.75-7.78 (1 H, m, H_{arom}), 7.90 (2 H, d, *J*_(H,P) = 7.6 Hz, H_{arom}), 8.03 (1 H, d, ${}^{3}J_{(H,P)}$ = 18.8 Hz, H_β) and 8.34 (1 H, d, ${}^{3}J_{(H,P)}$ = 21.2 Hz, H_β). δ_C(100.63 MHz; CD₂Cl₂) 9.5 (C₅*Me*₅), 102.2 (d, ${}^{2}J_{(C,Rh)}$ = 9.3 Hz, *C*₅Me₅), 120.8 (d, ${}^{2}J_{(C,Rh)}$ = 20.6 Hz), 123.6, 127.8, 128.1, 128.4 (d, *J*_(C,Rh) = 11.1 Hz), 128.6, 128.9, 129.2, 129.5, 134.4 (d, ${}^{2}J_{(C,Rh)}$ = 13.5 Hz), 140.2 (d, ${}^{2}J_{(C,Rh)}$ = 12.4 Hz), 140.7, 141.0, 141.2, 142.6 (d, ${}^{1}J_{(C,Rh)}$ = 5.3 Hz,), 145.3 (d, ${}^{1}J_{(C,Rh)}$ = 36.1 Hz), 160.5 (dd, ${}^{2}J_{(C,Rh)}$ = 9.5 Hz, ${}^{2}J_{(C,Rh)}$ = 13.3 Hz); δ_P(162.01 MHz; CD₂Cl₂) 208.8 (d, ${}^{1}J_{(P,Rh)}$ = 187.8 Hz).

Reaction of 2,4,6-triphenylphosphinine (1) with [Cp*IrCl₂]₂ in the absence of NaOAc:

A mixture of $[Cp*IrCl_2]_2$ (17.6 mg, 0.022 mmol, 1.0 equiv) and 2,4,6-triphenylphosphinine 1 (14.5 mg, 0.045 mmol, 2.0 equiv) was suspended in CD_2Cl_2 (0.5 mL) and transferred to a Young NMR-Tube under argon. 2 was formed immediately at room temperature. The mixture was heated to T = 80°C and the composition was followed by means of ³¹P NMR (Figure S-1).

Figure S-1: Time-dependent ³¹P{1H} NMR spectra for the reaction of **1** with $[Cp*IrCl_2]_2$ in the absence of NaOAc at T = 80°C.

Reaction of 2,4,6-triphenylpyridine with [Cp*IrCl₂]₂:

Attempt 1: A mixture of $[Cp*IrCl_2]_2$ (42.9 mg, 0.054 mmol, 1.0 equiv), 2,4,6-triphenylpyridine **6** (33.0 mg, 0.107 mmol, 2.0 equiv), and NaOAc (8.8 mg, 0.107 mmol, 2.0 equiv) was suspended in CD_2Cl_2 (0.5 mL) and heated to T = 80°C for 5 days under argon. The yellow reaction mixture

was analyzed by means of ¹H NMR spectroscopy. No signals of the cyclometalated product 7 could be detected.

Attempt 2: A mixture of $[Cp*IrCl_2]_2$ (25.3 mg, 0.032 mmol, 1.0 equiv), 2,4,6-triphenylpyridine (20.2 mg, 0.066 mmol, 2.1 equiv), and NaOAc·3·H₂O (11.3 mg, 0.083 mmol, 2.6 equiv) was suspended in CD₂Cl₂ (0.5 mL) and heated to T = 80°C for 5.5 days under argon. The yellow reaction mixture was analyzed by means of ¹H NMR spectroscopy. No signals of the cyclometalated product 7 could be detected.

Reaction of 2,4,6-triphenylpyridine with [Cp*RhCl₂]₂:

Attempt 1: A mixture of $[Cp*RhCl_2]_2$ (19.7 mg, 0.032 mmol, 1.0 equiv), 2,4,6-triphenylpyridine (19.9 mg, 0.065 mmol, 2.0 equiv), and NaOAc (5.3 mg, 0.065 mmol, 2. equiv) was suspended in CD_2Cl_2 (0.5 mL) and heated to T = 80°C for 8 days under argon. The yellow reaction mixture was analyzed by means of ¹H NMR spectroscopy. No signals of the cyclometalated product **8** could be detected.

Attempt 2: A mixture of $[Cp*RhCl_2]_2$ (20.3 mg, 0.033 mmol, 1.0 equiv), 2,4,6-triphenylpyridine **6** (20.2 mg, 0.066 mmol, 2.0 equiv), and NaOAc·3·H₂O (20.0 mg, 0.147 mmol, 4.5 equiv) was suspended in CD₂Cl₂ (0.5 mL) and heated to T = 80°C for 8 days under argon. The yellow reaction mixture was analyzed by means of ¹H NMR spectroscopy. No signals of the cyclometalated product **8** could be detected.

X-ray crystal structure analysis of 3:

 $C_{33}H_{31}CIIrP$, Fw = 686.20, orange needle, 0.23 x 0.06 x 0.04 mm³, orthorhombic, P2₁2₁2₁ (no. 19), a = 7.1991(8), b = 14.1332(15), c = 25.829(3) Å, V = 2628.0(5) Å³, Z = 4, D_x = 1.734 g/cm³, μ = 5.26 mm⁻¹. 31203 Reflections were measured on a Bruker Kappa ApexII diffractometer with sealed tube and Triumph monochromator (λ = 0.71073 Å) up to a resolution of (sin θ/λ)_{max} = 0.65 Å⁻¹ at a temperature of 150(2) K. Intensity data were integrated with the SAINT software.³ An analytical absorption correction was performed with SADABS⁴ (0.34-0.86 correction range). 6014 Reflections were unique (R_{int} = 0.0531), of which 5582 were observed [I>2 σ (I)]. The structure was solved with Direct Methods using the program SHELXS-97⁵ and refined with SHELXL-97⁵ against F² of all reflections. Non-hydrogen atoms were refined freely with anisotropic displacement parameters. Hydrogen atoms were introduced in calculated

positions and refined with a riding model. 330 Parameters were refined with no restraints. R1/wR2 [I > $2\sigma(I)$]: 0.0261 / 0.0584. R1/wR2 [all refl.]: 0.0314 / 0.0610. S = 1.051. Flack parameter⁶ x = -0.016(6). Residual electron density between -1.33 and 1.98 e/Å³. Geometry calculations and checking for higher symmetry was performed with the PLATON program.⁷

X-ray crystal structure analysis of 5:

 $C_{33}H_{31}CIPRh$, Fw = 596.91, red block, 0.39 x 0.29 x 0.17 mm³, monoclinic, P2₁/c (no. 14), a = 7.3342(1), b = 16.3287(4), c = 22.9799(3) Å, β = 98.867(1)°, V = 2719.14(8) Å³, Z = 4, D_x = 1.458 g/cm³, $\mu = 0.81$ mm⁻¹. 49748 Reflections were measured on a Bruker Kappa ApexII diffractometer with sealed tube and Triumph monochromator ($\lambda = 0.71073$ Å) up to a resolution of $(\sin \theta/\lambda)_{max} = 0.65 \text{ Å}^{-1}$ at a temperature of 150(2) K. Intensity data were integrated with the Eval15 software.⁸ An absorption correction based on multiple measured reflections was performed with SADABS⁴ (0.67-0.75 correction range). 6249 Reflections were unique ($R_{int} =$ 0.0265), of which 5694 were observed [I> 2σ (I)]. The symmetry of a pseudo-orthorhombic C-cell is not fulfilled by the intensities and pseudo-orthorhombic twinning was not detected. The structure was solved with Direct Methods using the program SHELXS-97⁵ and refined with SHELXL-97⁵ against F^2 of all reflections. Non-hydrogen atoms were refined freely with anisotropic displacement parameters. All hydrogen atoms were located in difference Fourier maps and refined with a riding model. 330 Parameters were refined with no restraints. R1/wR2 [I $> 2\sigma(I)$]: 0.0216 / 0.0549. R1/wR2 [all refl.]: 0.0251 / 0.0574. S = 1.040. Residual electron density between -0.23 and 0.47 $e/Å^3$. Geometry calculations and checking for higher symmetry was performed with the PLATON program.⁷

References:

- 1) G. Märkl, Angew. Chem. 1966, 78, 907.
- 2) K. Dimroth, Angew. Chem. 1960, 72, 331.
- 3) SAINT (Version 7.68A). Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1999). SADABS: Area-Detector Absorption Correction, v2.10, Universität Göttingen, Germany.

- 5) G. M. Sheldrick, *Acta Cryst.* **2008**, *A64*, 112-122.
- 6) H. D. Flack, Acta Cryst. **1983**, *A39*, 876-881.
- 7) A.L. Spek, Acta Cryst. 2009, D65, 148-155.
- 8) A.M.M. Schreurs, X. Xian, L.M.J. Kroon-Batenburg, J. Appl. Cryst. 2010, 43, 70-82.