Supporting Information

For

Catalytic Dioxygen Activation by Co(II) Complexes Employing a Versatile Ligand Scaffold

Savita K. Sharma, Philip S. May, Matthew B. Jones, Sheri Lense, Kenneth I. Hardcastle, and Cora E. MacBeth*

Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322

Table of Contents

Pages

S2 S2 S3 S4

S5 S5

S9

Synthesis and Characterization Details	
A. General Considerations	
B. Ligand Syntheses	
C. Complex Syntheses	
D. Catalytic Oxidation Procedures	
Figures	
Figure S1. UV-Vis absorption data for $(Et_4N)_2[1]$ and $(Et_4N)_2[2]$ in CH_2Cl_2	
Figure S2. UV-Vis absorption data for $(Et_1N)_{2}[1]$ and $(Et_2N)_{2}[2]$ in DMF	

Figure S3. Cyclic voltammogram of $(Et_4N)_2[2]$	S 6
Figure S4. Cyclic voltammogram of $(Et_4N)_2[1]$	S 6
Figure S5. Cyclic voltammogram of oxidised $(Et_4N)_2[1]$	S7
Figure S6. Cyclic voltammogram of oxidised $(Et_4N)_2[1]$ $(E_{1/2}^1 and E_{1/2}^2)$	S 7
Figure S7. Charge vs. time plot from bulk electrolysis of $(Et_4N)_2[1]$	S 8
Figure S8. Overlay of UV-Vis absorption data for (Et_4N) [1] and $(Et_4N)_2$ [1]	S 8

Figure S8. Overlay of UV-Vis absorption data for $(Et_4N)[1]$ and $(Et_4N)_2[1]$ Figure S9. Thermal ellipsoid diagram of $(Et_4N)[1]$ and selected metrical parameters

A. General Considerations

All manipulations were carried out using standard Schlenk techniques or conducted in an MBraun Labmaster 130 drybox under a nitrogen atmosphere. All reagents used were purchased from commercial vendors and used as received unless otherwise noted. Anhydrous solvents were purchased from Sigma-Aldrich and further purified by sparging with Ar gas followed by passage through activated alumina columns. Anhydrous ¹⁶O₂ was purchased from NexAir and passed through a Drierite[™] column before using. ¹⁸O₂ (99%) was purchased from Icon Isotopes, New Jersey. Elemental analyses were performed by Midwest Microlab, LLC. ¹H, ¹³C, and ³¹P NMR spectra were recorded on Varian Mercury 300 and Inova 400 MHz spectrometers at ambient temperature. ¹H and ¹³C chemical shifts were referenced to residual solvent peaks. ³¹P chemical shifts were referenced to phosphoric acid. Infrared spectra were recorded as KBr pellets on a Varian Scimitar 800 Series FT-IR spectrophotometer. UV-Visible absorption spectra were recorded on a Cary50 spectrophotometer using 1.0 cm quartz cuvettes. Solution-state magnetic moments were measured using Evans' method.^{1, 2} Mass spectra were recorded in the Mass Spectrometry Center at Emory University on a JEOL JMS-SX102/SX102A/E mass spectrometer. X-ray diffraction studies were carried out in the X-ray Crystallography Laboratory at Emory University on a Bruker Smart 1000 CCD diffractometer. Cyclic voltammetry experiments were carried out using a CH Instruments (Austin, TX) Model 660C potentiostat. All experiments were conducted in CH_2Cl_2 with 0.10 M tetrabutylammonium hexafluorophosphate as the supporting electrolyte. Electrochemical experiments were conducted in a threecomponent cell consisting of a Pt auxiliary electrode, a non-aqueous reference electrode (Ag/AgNO₃), and either a glassy carbon (CV) or reticulated vitreous carbon (bulk electrolysis) working electrode. All electrochemical measurements are referenced and reported versus the ferrocene/ferrocenium couple.

B. Ligand Synthesis

Bis(2-nitrophenyl)amine [HN(*o***-PhNO₂)₂]. Prepared using a modified literature procedure.³ A mixture of 2-nitroaniline (2.0 g, 14.1 mmol) and 1-fluoro-2-nitrobenzene (1.5 mL, 14.1 mmol) was stirred in dimethyl sulfoxide (DMSO, 40 mL) at room temperature. KO¹Bu (3.3 g, 29.0 mmol) was added slowly and the reaction stirred under N₂ at room temperature for 24 h. The reaction mixture was then diluted with water (200 mL) and filtered to give a bright orange solid. The solid was recrystallized from MeOH (500 mL) and dried under vacuum to afford the product as a bright orange, crystalline solid (63%, 2.30 g). ¹H NMR (\delta, CDCl₃, 300 MHz): 11.02 (s, 1H), 8.21 (dd, 2H,** *J* **= 1.5), 7.56 (m, 4H), 7.10 (td, 2H,** *J* **= 1.8 Hz,** *J* **= 1.5 Hz). ¹³C NMR (\delta, CDCl₃, 75.5 MHz): 137.40, 134.30, 127.01, 121.32, 119.20. HRMS(ESI): C₁₂H₉N₃O₄** *m/z* **Calcd. 259.0593, Found 260.06584 [M+1]⁺. FTIR (KBr, cm⁻¹): v(NO₂) 1514, 1334, v(NH) 3303. UV-vis (CH₂Cl₂) \lambda_{max}, nm (\varepsilon, M⁻¹ cm⁻¹): 430 (14100), 268 (35700).**

Bis(2-aminophenyl)amine [HN(o-PhNH₂)₂]. Prepared using a modified literature procedure.⁴ To a THF (50.0 mL) solution of $HN(o-PhNO_2)_2$ (2.0 g, 7.7 mmol) was added 5 wt.% Pd/C (1.0 g, 0.5 mmol, 6 mol%). The reaction mixture was placed in a pressure-safe reaction vessel and shaken under H₂ at 50 psi for 45 min. The reaction mixture was filtered through a pad of Celite, and the filtrate was concentrated in vacuo to obtain a thick, colorless oil. Crystalline product can be obtained by layering a concentrated ether solution of the compound with hexanes (1.38 g, 90%). ¹H NMR (δ , CDCl₃, 300 MHz): 6.93 (m, 4H, ArH), 6.79 (m, 4H, ArH), 5.05 (s, 1H, NH), 3.64 (s, 4H, NH). ¹³C NMR (δ , CDCl₃, 75.5 MHz): 138.56, 131.21, 124.12, 122.61, 120.84, 118.78. HRMS(ESI): C₁₂H₁₃N₃ *m/z* Calcd. 199.11095 Found 200.11751 [M+1]⁺. FTIR (KBr, cm⁻¹): v(NH) 3413, 3375, and 3344.

2,2'-Bis(isobutyrylamido)diphenylamine (HN(o-PhNHC(O)ⁱPr)₂). A suspension of HN(o-PhNH₂)₂ (1.32 g, 6.6 mmol) in dichloromethane (CH₂Cl₂, 50 mL) was lowered to 0 °C under an atmosphere of N₂. Triethylamine (2.02 mL, 14.5 mmol) was then added, followed by isobutyryl chloride (1.53 mL, 14.5 mmol). The mixture stirred at 0 °C for 1 hour. The reaction mixture was slowly warmed to room temperature and stirred for an additional 20 hours. The resulting pale brown solution was extracted with a saturated aqueous NaHCO₃ (3 x 30 mL) solution. The organic layers were combined, dried over magnesium sulfate, filtered, and concentrated in vacuo. The crude solid was recrystallised by layering

hexanes onto a concentrated CH₂Cl₂ solution of the product (1.78 g, 80%). ¹H NMR (δ , CDCl₃, 300 MHz): 7.83 (s, 2H, NH(CO)), 7.67 (d, 2H, J = 1.6 Hz, ArH), 7.04 (m, 4H, ArH), 6.88 (d, 2H, J = 1.2 Hz, ArH), 5.75 (s, 1H, NH), 2.58 (q, 2H, J = 6.8 Hz, CH), 1.16 (d, 12H, J = 7.2 Hz, CH₃). ¹³C NMR (δ , CDCl₃, 75.5 MHz): 176.48, 136.02, 129.26, 126.27, 124.18, 123.0, 121.11, 36.20, 19.76. HRESI-MS: C₂₀H₂₅N₃O₂ *m/z* Calcd. 339.19468 Found 340.20150 [M+1]⁺. FTIR (KBr, cm⁻¹): ν (NH_{amide}) 3230, ν (NH_{amine}) 3367, ν (CO) 1660.

C. Complex Syntheses

Synthesis of (Et₄N)₂[1]

To a solution of HN(*o*-PhNHC(O)^{*i*}Pr₂ (114.0 mg, 0.34 mmol) in DMF, (10 mL) was added potassium hydride (29.67 mg, 0.74 mmol). When gas evolution ceased, CoBr₂ (36.77 mg, 0.17 mmol) was added as a solid. When the reaction mixture became homogenous, tetraethylammonium bromide (70.67 mg, 0.34 mmol) was added to the red solution. After stirring for 3 h, the DMF was removed under high vacuum and the resulting solid was dissolved in CH₃CN (15 mL), filtered through a medium porosity frit, and the filtrate was concentrated to dryness. Bulk recrystallization was obtained by diffusing diethylether into a concentrated CH₂Cl₂ solution containing the product. Red, X-ray quality crystals were obtained by slow diffusion of diethyl ether into a concentrated DMF solution of (Et₄N)₂[1] (120 mg, 72%). ¹H NMR (δ , CD₃CN, 400 MHz): -70.03 (s), -63.80 (s), -46.48 (s), -37.23 (s), -16.31 (s), -14.7 (s), -4.11 (s), 1.32 (s), 3.60 (s), 4.90 (s), 6.36 (s), 8.56 (s), 9.22 (s), 12.39 (br), 17.67 (br), 23.44 (s), 27.01 (s), 56.50 (s), 60.54 (s). FTIR (KBr, cm⁻¹): ν (NH) 3388, ν (CO) 1681. Anal. Calcd (found) for (Et₄N)₂[1]·CH₂Cl₂: C, 63.44 (63.27); H, 8.22 (8.50); N, 10.38(10.02). $\mu_{eff} = 4.37 \ \mu_{B}$ (Evans Method, CD₂Cl₂, 298K). λ_{max} , nm (ϵ , M⁻¹ cm⁻¹) (DMF): 634 (sh), 569 (640), 535 (sh); λ_{max} , nm (ϵ , M⁻¹ cm⁻¹) (CH₂Cl₂): 636 (sh), 573 (570), 534 (sh); λ_{max} , nm (solid, silicon oil): 211, 255, 360, 573.

Synthesis of (Et₄N)₂[2]

To a solution of HN(*o*-PhNHC(O)[']Pr)₂ (99.3 mg, 0.29 mmol) in dry dimethylformamide (DMF, 10 mL) was added potassium hydride (41.11 mg, 1.0 mmol). When gas evolution ceased, CoBr₂ (64.06 mg, 0.29 mmol) was added as a solid and the mixture stirred for 1 h. Tetraethylammonium bromide (61.55 mg, 0.29 mmol) was then added to the deep green solution. After stirring for 3 h, DMF was removed under vacuum and the resulting solid was dissolved in CH₃CN (15 mL), filtered through a medium porosity frit, and the filtrate was concentrated to dryness. Dark green, X-ray quality crystals were obtained by slow diffusion of diethyl ether into a concentrated DMF solution of the product (70%, 108 mg). ¹H NMR (δ , CD₂Cl₂, 400 MHz): -46.28 (s), -40.05 (s), -1.12 (s), 0.71 (s), 10.92 (s), 25.99 (s), 28.64 (s), 65.20 (s). FTIR (KBr, cm⁻¹): ν (CO) 1592. Anal. Calcd (found) for (Et₄N)₂[**2**]: C, 63.98 (63.64); H, 8.05 (7.95); N, 10.66 (11.01). $\mu_{eff} = 4.73 \ \mu_{B}$ (Evans Method, CD₂Cl₂, 298K). λ_{max} , nm (ϵ , M⁻¹cm⁻¹) (CH₂Cl₂): 609 (749), 926 (106); λ_{max} , nm (solid, silicon oil): 253, 343, 455 (sh), 644.

Synthesis of (Et₄N)[1]

To a red solution of $(Et_4N)_2[1]$ (237.6 mg, 0.239 mmol) in acetonitrile (CH₃CN, 10 mL) was added ferrocenium tetrafluoroborate (FcBF₄) (65.23 mg, 0.239 mmol) as an CH₃CN solution (3 mL). After stirring for 12 h, the solvent was removed under vacum, and the resulting solid was dissolved in THF and filtered to remove Et₄NBF₄. The deep blue filtrate was then concentrated to dryness. The deep blue solid that resulted was washed with hexanes (3 x 5 mL) to remove ferrocene, and the crude solid was collected on a frit. Fine blue crystals can be obtained by layering hexanes onto a CH₂Cl₂ solution of the product (149 mg, 72%). ¹H NMR (δ , CD₃CN, 400 MHz): -39.08 (s), -37.15 (d), -26.99 (s), -25.34 (s), -21.74 (s), -18.61 (s), -11.74 (s), -9.59 (s), -9.10 (br), -6.46(s), -2.65 (s), 1.17 (s), 3.16 (s), 5.74 (s), 6.93 (t), 7.31 (s), 7.57 (s), 7.81 (s), 10.16 (br), 12.0 (s), 13.11 (s), 14.27 (s), 16.80 (s), 22.71 (s), 36.98 (s), 38.03 (s), 42.05 (s), 51.23 (s), 54.38 (d). FTIR (KBr, cm⁻¹): ν (NH) 3378. $\lambda_{max}(\epsilon, M^{-1}cm^{-1})$ (CH₂Cl₂): 300 (25540), 455 (55030), 582 (6770), 805 (4230). HRESI-MS: for [1]¹⁻ Calcd (*m/z*): 733.29125, Found 733.29180. Et₄N[1]. Anal. Calcd (found) for (Et₄N)[1]-0.25CH₂Cl₂: C, 65.46 (65.11); H, 7.57 (7.53); N, 11.08 (10.87).

D. Catalytic Oxidation Procedures

Typical procedure for $(Et_4N)_2[1]$: Under an inert atmosphere, a 25 mL round bottom flask was charged with a stir bar, triphenylphosphine (0.53 g, 2.0 mmol), $(Et_4N)_2[1]$ (0.02 g, 0.020 mmol), and 10 mL of CH₃CN. The mixture was stirred until homogeneous (~3 min) and then the flask was fitted with a septum and removed from the drybox. While stirring at room temperature, a constant slow purge of O₂ (1 atm) was then introduced to flask by connecting it, via 18-gauge needles inserted through the septum, to an O₂ line and to a mineral oil gas bubbler. Reactions were monitored by GC (traces compared to authentic samples of PPh₃ and OPPh₃). After 2 hours, 69% of the PPh₃ had been converted to OPPh₃ (1.38 mmol, 0.39 g). Isolate yield of OPPh₃ confirmed by GC and ³¹P NMR. Catalytic oxidations were run in triplicate and conversion numbers (yields of OPPh₃) in good agreement (±3%).

Typical procedure for $(Et_4N)_2[2]$: Under an inert atmosphere, a 25 mL round bottom flask was charged with a stir bar, triphenylphosphine (0.498 g, 1.9 mmol), $(Et_4N)_2[2]$ (0.02 g, 0.019 mmol), and 12 mL of CH₃CN. The mixture was stirred until homogeneous (~3 min) and then the flask was fitted with a septum and removed from the drybox. While stirring at room temperature, a constant slow purge of O₂ (1 atm) was then introduced to flask by connecting it, via 18-gauge needles inserted through the septum, to an O₂ line and to a mineral oil gas bubbler. Reactions were monitored by GC (traces compared to authentic samples of PPh₃ and OPPh₃). After 2 hours, 95% of the PPh₃ had been converted to OPPh₃ (0.50 g, 1.81 mmol). Isolated yields of OPPh₃ confirmed by GC and ³¹P NMR. Catalytic oxidations were run in triplicate. Catalytic oxidations were run in triplicate and conversion numbers (yields of OPPh₃) in good agreement (±3%).

Reactions with ¹⁸O₂: Typical experiment: Under an inert atmosphere, a 10 mL round bottom flask was charged with a stir bar, triphenylphosphine (0.030 g, 0.10 mmol), $(Et_4N)_2[2]$ (0.0107 g, 0.010 mmol), and 5 mL of CH₃CN. The mixture was stirred until homogeneous (~3 min) and then the flask was fitted with a septum and removed from the drybox. While stirring, ¹⁸O₂ was then introduced to flask via syringe. Incorporation of ¹⁸O from the ¹⁸O₂ into the oxidized product was confirmed by mass spectrometry.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Figure S1: UV-Visible absorption spectra of $(Et_4N)_2[2]$ (green) and $(Et_4N)_2[1]$ (red) in CH_2Cl_2 .

Figure S2: UV-Visible absorption spectra of $(Et_4N)_2[2]$ (green) and $(Et_4N)_2[1]$ (red) in DMF.

Figure S3: Cyclic voltammogram of $(Et_4N)_2[2]$ recorded in CH_2Cl_2 (0.10 M nBu_4NPF_6). at room temperature at 100 mV/s.

Figure S4: Cyclic voltammogram of $(Et_4N)_2[1]$ recorded in CH₂Cl₂ (0.10 M ^{*n*}Bu₄NPF₆) at room temperature at 100 mV/s (ΔE_p for $E^1_{1/2}$, $E^2_{1/2}$ and $E^3_{1/2}$ are 143.5 mV, 170 mV and 216 mV; $i_p^{a/i_p^{c}}$ are 1.1, 1.3 and 0.86, respectively).

Figure S5: Cyclic voltammogram of electrochemically oxidised $(Et_4N)_2[1]$ after first oxidation in CH₂Cl₂ (0.10 M ^{*n*}Bu₄NPF₆) at 100 mV/s.

Figure S6: Cyclic voltammogram of electrochemically oxidised $(Et_4N)_2[1]$ after first oxidation in CH₂Cl₂ (0.10 M ^{*n*}Bu₄NPF₆) at 100mV/s.

Figure S7: Charge vs. time plot for bulk electrolysis of $(Et_4N)_2[1]$ in CH_2Cl_2 at room temperature.

Figure S8: Overlay of UV-Visible absorption spectra of $(Et_4N)[1]$ (blue) and $(Et_4N)_2[1]$ (red) in CH_2Cl_2 .

Figure S9. Thermal ellipsoid diagram of $(Et_4N)[1]$ drawn at 50% probability. Hydrogen atoms, tetraethylammonium counter cation, and solvent (CH_2Cl_2) have been removed for clarity. Selected bond distances (Å): Co–N1 1.933(14), Co–N2 1.943(14), Co–N4 1.933(13), Co–N5 1.923(15) and angles (°): N1–Co–N5 132.7(6), N1–Co–N2 87.3(6), N5–Co–N4 85.1(6), N1–Co–N4 114.6(4) N5–Co–N2 111.7(5) N4–Co–N2 131.8(6).⁵

References & Notes.

- 1. Evans, D. F., Journal of the Chemical Society 1959, 2003-2005.
- 2. Sur, S. K., Journal of Magnetic Resonance (1969-1992) 1989, 82, (1), 169-173.
- 3. Gorvin, J. H., J. Chem. Soc. Perkin Trans. 1 1988, 6, 1331-1335.
- 4. Black, D. S.; Rothnie, N. E., Australian Journal of Chemistry 1983, 36, (6), 1141-1147.

5. Crystal data for (Et₄N)[1]: C_{49.47} H_{68.94} Cl_{2.94} CoN₇O₄, M = 988.85, 0.29 x 0.18 x 0.07 mm³, Triclinic, space group *P-1*, a = 12.264(10) Å, b = 14.280(12) Å, c = 15.642(13), V = 2593(4), Z = 2, $\rho = 1.266$ g cm⁻³, $\mu = 531$ mm⁻¹, F(000) = 1047, T = 173(2) K, $R(F^2 > 2\sigma) = 0.1377$, w $R_2 = 0.2424$, 9133 independent reflections, [$\theta_{range} = 1.34 - 25.0^\circ$] and 560 parameters, GOF on $F^2 = 1.096$.