Ion-Exchange Synthesis of Micro/Mesoporous Zn₂GeO₄

Photocatalyst at Room Temperature for Photoreduction of CO₂

Ning Zhang,^{ab} Shuxin Ouyang,^b Peng Li,^{ab} Yuanjian Zhang,^b Guangcheng Xi,^b

Tetsuya Kako,^{ab} and Jinhua Ye* ab

^a Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Japan.

E-mail: Jinhua.Ye@nims.go.jp, Fax: (+81)-29-859-2301

^b Photocatalytic Materials Center (PCMC), International Center for Materials

Nanoarchitectonics (MANA), and Innovative Center of Nanomaterials Science for Environment

and Energy (ICNSEE), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba,

Ibaraki, Japan

Supporting Information

Experimental Section

Materials preparation: The Na₂GeO₃ powders were prepared by solid state reaction route that stoichiometric mixture of Na₂CO₃ and GeO₂ were heated at 900 °C for 10 h. Mesoporous Zn₂GeO₄ was prepared as follows. 0.01mol Zn(CH₃COO)₂·2H₂O was dissolved in 50 mL deionized water to form a clear solution. 0.005 mol as-prepared Na₂GeO₃ was dissolved in 50 mL deionized water to form a transparent colloidal suspension of Na₂GeO₃ hydrates. Then the Na₂GeO₃ hydrates colloidal suspension was added dropwise to the Zn(CH₃COO)₂ solution. The mixture was stirred for 3-20 h at room temperature. The white precipitation was separated by centrifugation and then dried under vacuum at room temperature for 4 h. The loading of Pt was performed by a photocatalytic reduction method.¹ For comparison purpose, Zn₂GeO₄ was also obtained by solid-state reaction of ZnO and GeO₂ at 1200 °C for 10 h.

*Photoreduction of CO*₂: A 300 W Xenon arc lamp was used as the light source. The reaction was performed in a gas-closed system with a gas-circulated pump. The volume of the reaction system was about 360 mL (The scheme of reaction device is shown in Figure S7). In a typical process, Zn_2GeO_4 powder (0.2 g) was uniformly dispersed on a glass reactor with an area of 8.5 cm². Deionized water (0.5 mL) was injected into the reaction system as reducing agent. The reaction system was vacuum-pumped and washed with high purity CO₂ gas for several times. Then high purity CO₂ gas was introduced into the reaction system to achieve ambient pressure.

During the irradiation, about 0.5 mL of gas was sampled from the reaction cell at given intervals for subsequent CH₄ concentration analysis with a gas chromatograph (GC-14B, Shimadzu Corp., Japan).

Apparent quantum yield: The apparent quantum yield were measured by inserting 251 nm band-pass filters in front of the reaction cell to supply the irradiant light with wavelength of 251 ± 16 nm. The apparent quantum yield was calculated according to as-below equation,

A.Q.Y. =
$$[N(CH_4) \times 8] / N(Photons) \times 100\%$$

in which $N(CH_4)$ and N(Photons) signify the molecular number of generated CH₄ in unit time and the number of incident photons in unit time, respectively. (Generation of one CH₄ molecule will consume 8 photoelectrons, since CO₂ + 8e⁻ + 8H⁺ \rightarrow CH₄ + 2H₂O.²)

Characterization: X-ray diffraction patterns were characterized by a RIGAKU Rint-2000 X-ray diffractometer equipped with graphite monochromatized Cu-K α radiation (λ =1.54178 Å). Scanning electron microscopy images and energy-dispersive X-ray spectroscopy patterns were recorded with a JEOL 6700F field emission scanning electron microscopy. Transmission electron microscopy and high-resolution were performed with a JEOL 2100F field emission transmission electron microscopy operated at 200 kV. UV-visible diffuse reflectance spectrum was recorded with a Shimadzu UV-2500 Spectrophotometer. Brunauer-Emmett-Teller measurements were carried out in a BELSORP II Surface Area Analyzer. The zeta potential was tested in a BECKMAN COULTER Delsa Nano C Zeta-potential & particle size analyzer.

Reference

- 1. Z. G. Yi, J. H. Ye, Appl. Phys. Lett. 2007, 91, 254108.
- 2. T. Inoue, A. Fujishima, S. Konishi, and K. Honda, Nature, 1979, 277, 637.

Supporting Figures

Figure S1. (a) SEM image, (b) nitrogen adsorption-desorption isotherms of Na₂GeO₃; (c) SEM image, (d) nitrogen absorption-desorption isotherms of the dry gel.

Figure S2. Tyndall scattering effect for colloidal suspension of Na₂GeO₃ hydrates is

illuminating with a 635 nm laser beam.

Figure S4. (a) TEM and (b) HRTEM image of Zn₂GeO₄ prepared at reaction time for 3h,

which shows the amorphous erosion-like micro/mesoporous structure.

Figure S5. XRD pattern of Zn_2GeO_4 prepared at the reaction time for (a) 3h, (b) 6h, (c) 12h, and (d) 20h, which shows that the amorphous Zn_2GeO_4 gradually transformed into well crystalline Zn_2GeO_4 .

Figure S6. UV-visible diffuse reflectance spectrum of as-prepared micro/mesoporous Zn_2GeO_4 prepared at the reaction time for 12h. The inset is the calculation diagram of its band gap.

Figure S8. CH_4 evolution rates over micro/mesoporous Zn_2GeO_4 loaded with

different concentrations of Pt under full arc Xe lamp irradiation.