Tunable stereoselective alkene synthesis by treatment of activated imines with

nonstabilized phosphonium ylides

De-Jun Dong, Yuan Li, Jie-Qi Wang and Shi-Kai Tian*

Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China

Supporting information

Table of contents

General information	S-2
Preparation of N-sulfonyl imines	S-2
General procedure for the olefination reaction of N-sulfonyl imines with nonstabilized phose	sphonium
ylides (Table 2)	S-4
Analytical data for the products shown in Table 2	S-4
Gram-scale synthesis of alkene Z3a	S-13
General procedure for the synthesis of phosphonium salt 4a (Table 3)	S-14
Analytical data for the phosphonium salts shown in Table 3	S-14
General procedure for the conversion of phosphonium salt 4a to alkene 3a (Table 3)	S-15
Work-up with $H_2^{18}O$ (Note 10)	S-15
References	S-16
Copies of ¹ H and ¹³ C NMR spectra	S-18

General information

¹H and ¹³C NMR spectra were recorded on a Bruker AC-300 FT spectrometer at 300 MHz and 75 MHz, respectively, using tetramethylsilane as an internal reference. ³¹P NMR spectra were recorded on a Bruker AC-400 FT spectrometer (162 MHz) using 85% phosphoric acid as an external reference. Chemical shifts (δ) and coupling constants (*J*) were expressed in ppm and Hz, respectively. Low resolution mass spectra (LRMS) were recorded on a Finnigan LCQ Advantage Max spectrometer. High resolution mass spectra (HRMS) were recorded on a LC-TOF spectrometer (Micromass). Elemental analyses were carried out on a Vario EL III elemental analyzer. Melting points are uncorrected.

All reactions were carried out under a nitrogen atmosphere. Tetrahydrofuran was distilled from sodium/benzophenone prior to use. Phosphonium salts were prepared from triphenylphosphine and alkyl halides according to the literature procedures.¹ Chemicals and solvents were purchased from the Sinopharm Chemical Reagent Co., Meryer, Acros, Alfa Aesar, and AstaTech Pharmaceutical Co., and used as received.

Preparation of *N***-sulfonyl imines**

The *N*-sulfonyl imines were prepared according to the literature procedures.² Shown below are the analytic data for the new *N*-sulfonyl imines listed in Table 2.

1ea, white solid. m.p. 122-124 °C; ¹H NMR (300 MHz, CDCl₃): δ 9.20 (s, 1H), 8.73-8.71 (m, 1H), 8.53-8.47 (m, 1H), 8.27-8.21 (m, 1H), 7.80-7.75 (m, 1H), 3.12 (s, 3H).

1eg, white solid. m.p. 133-134 °C; ¹H NMR (300 MHz, CDCl₃): δ 9.51 (s, 1H), 8.73-8.70 (m, 1H), 8.52-8.47 (m, 2H), 8.25-8.21 (m, 1H), 8.03-8.00 (m, 1H), 7.80-7.74 (m, 2H), 7.34-7.29 (m, 1H), 2.70 (s, 3H).

1fa, white solid. m.p. 104-105 °C; ¹H NMR (300 MHz, CDCl₃): δ 8.80 (s, 1H), 7.81-7.77 (m, 1H), 7.50-7.44 (m, 1H), 7.39-7.33 (m, 1H), 7.27-7.24 (m, 1H), 3.11 (s, 3H), 2.67 (s, 3H).

1ig

1ig, white solid. m.p. 123-124 °C; ¹H NMR (300 MHz, CDCl₃): δ 9.20 (s, 1H), 8.82-8.79 (m, 2H), 8.00-7.95 (m, 2H), 7.92-7.85 (m, 2H), 7.56-7.52 (m, 2H), 2.70 (s, 3H).

1ka, white solid. m.p. 91-92 °C; ¹H NMR (300 MHz, CDCl₃): δ 8.71 (s, 1H), 7.80-7.75 (m, 2H), 7.24-7.20 (m, 1H), 3.11 (s, 3H).

1kg, white solid. m.p. 105-106 °C; ¹H NMR (300 MHz, CDCl₃): δ 9.01 (s, 1H), 8.02-7.99 (m, 1H), 7.80-7.76 (m, 2H), 7.47-7.43 (m, 2H), 7.23-7.20 (m, 2H), 2.69 (s, 3H).

1ma, white solid. m.p. 77-78 °C; ¹H NMR (300 MHz, CDCl₃): δ 8.82 (d, J = 3.0 Hz, 1H), 6.93-6.82

(m, 1H), 6.18-6.10 (m, 1H), 3.11 (s, 3H), 2.05-2.03 (m, 3H).

1mg, white solid. m.p. 92-93 °C; ¹H NMR (300 MHz, CDCl₃): δ 9.02 (d, *J* = 6.0 Hz, 1H), 8.02-8.00 (m, 1H), 7.47-7.43 (m, 2H), 7.34-7.27 (m, 1H), 6.91-6.82 (m, 1H), 6.18-6.10 (m, 1H), 2.69 (s, 3H), 2.04-2.03 (m, 3H).

General procedure for the olefination reaction of *N*-sulfonyl imines with nonstabilized phosphonium ylides (Table 2)

To a stirred suspension of phosphonium salt **2** (0.60 mmol) in tetrahydrofuran (1.0 mL) under nitrogen at -78 °C was added a solution of *n*-BuLi in hexane (2.50 M, 0.26 mL, 0.65 mmol). The resulting mixture was stirred at -78 °C for 1 h, and were added *N*-sulfonyl imine **1** (0.50 mmol) and tetrahydrofuran (1.0 mL). The resulting mixture was stirred at -78 °C for 3 h, warmed naturally to room temperature (in ca. 5 h), and stirred at room temperature for 4 h. Saturated brine (2.0 mL) was added to the mixture, and the organic phase was extracted with petroleum ether (2 x 20 mL), dried over anhydrous magnesium sulfate, and concentrated. The residue was purified by flash column chromatography on silica gel or by preparative thin layer chromatography (TLC), eluting or developing with petroleum ether [For entries 19–23 of Table 2, petroleum ether/ethyl acetate (10:1)] to give alkene **3** (**Z3** or **E3**).

The *Z/E* ratios of alkene products were determined by ¹H NMR analysis within four days owing to the isomerization of (*Z*)-alkenes under the influence of light and air at room temperature.

Analytical data for the products shown in Table 2

Z3a,³ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.34-7.24 (m, 5H), 6.39 (d, *J* = 12.0 Hz, 1H), 5.65 (dt, *J* = 12.0, 7.2 Hz, 1H), 2.36-2.26 (m, 2H), 1.35-1.24 (m, 6H), 0.87 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 133.4, 128.8, 128.5, 128.2, 126.8, 126.5, 31.7, 29.8, 28.7, 22.6, 14.1.

Z3b,³ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.28-7.18 (m, 2H), 6.88-6.80 (m, 2H), 6.33 (d, *J* = 12.0 Hz, 1H), 5.56 (dt, *J* = 12.0, 7.2 Hz, 1H), 3.80 (s, 3H), 2.35-2.25 (m, 2H), 1.36-1.24 (m, 6H), 0.89 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 158.2, 131.8, 130.6, 129.9, 128.1, 113.6, 55.2, 31.7, 29.8, 28.7, 22.6, 14.1.

Z3c, yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.30-7.16 (m, 4H), 6.33 (d, *J* = 11.7 Hz, 1H), 5.67 (dt, *J* = 11.7, 7.2 Hz, 1H), 2.32-2.23 (m, 2H), 1.35-1.25 (m, 6H), 0.88 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 132.1, 130.1, 128.3, 127.6, 127.2, 31.6, 29.8, 29.0, 22.6, 14.1; HRMS (EI): Calcd for C₁₃H₁₇Cl (M): 208.1019. Found: 208.1018.

Z3d,⁴ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 8.20-8.13 (m, 2H), 7.47-7.38 (m, 2H), 6.44 (d, *J* = 11.7 Hz, 1H), 5.87 (dt, *J* = 11.7, 7.2 Hz, 1H), 2.37-2.28 (m, 2H), 1.37-1.25 (m, 6H), 0.88 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 144.4, 137.3, 129.4, 127.1, 123.6, 31.6, 29.8, 29.4, 22.6, 14.1.

Z3e

Z3e, yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 8.20-8.01 (m, 2H), 7.64-7.40 (m, 2H), 6.43 (d, *J* = 12.0 Hz, 1H), 5.85 (dt, *J* = 12.0, 7.2 Hz, 1H), 2.36-2.27 (m, 2H), 1.37-1.22 (m, 6H), 0.88 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 144.7, 134.8, 131.9, 129.4, 127.7, 126.7, 123.5, 31.5, 29.8, 29.4, 22.6, 14.1; HRMS (EI): Calcd for C₁₃H₁₇NO₂ (M): 219.1259. Found: 219.1262.

Z3f

Z3f,⁵ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.34-7.25 (m, 4H), 6.39 (d, *J* = 11.7 Hz, 1H), 5.65 (dt, *J* = 11.7, 7.2 Hz, 1H), 2.51 (s, 3H), 2.36-2.27 (m, 2H), 1.35-1.24 (m, 6H), 0.89 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 131.4, 129.8, 128.9, 128.6, 128.2, 126.8, 126.0, 31.9, 29.5, 29.1, 22.7, 20.0, 14.2.

Z3g, yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.38-7.09 (m, 4H), 6.49 (d, J = 12.0 Hz, 1H),

5.79 (dt, J = 12.0, 7.2 Hz, 1H), 2.26-2.13 (m, 2H), 1.48-1.20 (m, 6H), 0.95-0.82 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 137.9, 133.4, 128.8, 128.5, 128.2, 126.8, 126.5, 126.0, 31.7, 29.8, 28.7, 22.6, 14.1; HRMS (EI): Calcd for C₁₃H₁₇Cl (M): 208.1019. Found: 208.1024.

Z3h,³ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 8.00-7.93 (m, 1H), 7.87-7.78 (m, 2H), 7.65-7.48 (m, 4H), 6.85 (d, *J* = 13.2 Hz, 1H), 5.95 (dt, *J* = 13.2, 7.2 Hz, 1H), 2.24-2.13 (m, 2H), 1.35-1.25 (m, 6H), 0.88 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 136.1, 133.4, 132.0, 130.5, 129.9, 129.5, 128.6, 127.1, 126.2, 124.6, 123.4, 123.2, 31.8, 29.3, 28.9, 22.7, 14.1.

Z3i

Z3i,⁶ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 8.60-8.58 (m, 1H), 7.65-7.58 (m, 1H), 7.28-7.22 (m, 1H), 7.11-7.06 (m, 1H), 6.45 (d, *J* = 12.0 Hz, 1H), 5.88 (dt, *J* = 12.0, 7.2 Hz, 1H), 2.60-2.52 (m, 2H), 1.37-1.25 (m, 6H), 0.88 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 149.2, 137.4, 135.9, 129.8, 128.5, 123.7, 121.0, 31.5, 29.7, 28.7, 22.6, 14.0.

Z3j, yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.22 (s, 1H), 6.32-6.24 (m, 1H), 6.17-6.10 (m, 2H), 5.48 (dt, *J* = 11.7, 7.2 Hz, 1H), 2.13-2.05 (m, 2H), 1.43-1.17 (m, 6H), 0.85 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 150.1, 141.2, 130.4, 117.3, 111.1, 108.7, 32.1, 31.7, 29.3, 22.6, 14.1; HRMS (EI): Calcd for C₁₁H₁₆O (M): 164.1201. Found: 164.1133.

Z3k,³ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.22 (d, J = 4.8 Hz, 1H), 7.01-6.94 (m, 2H), 6.51 (d, J = 11.7 Hz, 1H), 5.57 (dt, J = 11.7, 7.2 Hz, 1H), 2.45-2.35 (m, 2H), 1.43-1.24 (m, 6H), 0.92 (t, J = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 141.0, 131.4, 127.2, 127.1, 124.9, 121.7, 31.7, 29.4, 29.2, 22.6, 14.1.

Z3I,⁷ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.47-7.34 (m, 5H), 7.16-7.05 (m, 1H), 6.56 (d, J = 15.6 Hz, 1H), 6.29-6.22 (m, 1H), 5.60-5.54 (m, 1H), 2.37-2.30 (m, 2H), 1.35-1.30 (m, 6H), 0.90 (t, J = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 136.1, 133.4, 132.0, 130.5, 129.9, 129.6, 128.6, 127.1, 124.6, 29.0, 28.9, 28.1, 22.7, 14.1.

Z3m

Z3m,⁸ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 6.33-6.28 (m, 1H), 6.01-5.95 (m, 1H), 5.70-5.62 (m, 1H), 5.31-5.26 (m, 1H), 2.18-2.11 (m, 2H), 1.79-1.75 (m, 3H), 1.40-1.23 (m, 6H), 0.90 (t, *J* = 6.6 Hz 3H); ¹³C NMR (75 MHz, CDCl₃): δ 131.8, 130.0, 128.5, 126.7, 32.6, 31.6, 29.5, 22.6, 18.3, 14.1.

Z3n,⁹ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 5.15-5.01 (m, 2H), 2.04-1.96 (m, 4H), 1.65-1.28 (m, 14H), 0.97-0.85 (m, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 130.4, 129.9, 34.0, 32.7, 32.6, 31.5, 31.4, 28.2, 25.0, 22.7, 19.2, 14.1, 14.0.

Z30,¹⁰ yellow oil; ¹H NMR (300 MHz, CDCl₃): δ 7.30-7.13 (m, 5H), 5.34-5.21 (m, 2H), 2.80-2.70 (m, 2H), 2.56-2.42 (m, 4H), 1.40-1.20 (m, 6H), 0.97-0.87 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 141.3, 130.9, 128.7, 128.5, 128.3, 127.3, 36.1, 32.6, 31.6, 29.4, 29.3, 22.7, 14.2.

Z3p,¹¹ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 5.28-5.17 (m, 2H), 2.27-2.22 (m, 1H), 2.06-1.98 (m, 2H), 1.39-1.13 (m, 16H), 0.93-0.87 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 136.1, 128.2, 33.5, 32.7, 31.6, 29.8, 29.6, 26.2, 26.1, 22.7, 14.1.

Z3q

Z3q,¹² yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.78-7.69 (m, 4H), 7.45-7.34 (m, 3H), 6.56 (d, J = 12.0 Hz, 1H), 5.85 (dq, J = 12.0, 5.4 Hz, 1H), 1.97-1.94 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 131.3, 130.0, 128.1, 128.0, 127.9, 126.2, 126.1, 126.0, 125.7, 125.5, 125.2, 123.6, 14.8.

Z3r,¹³ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.43-7.16 (m, 5H), 7.11-7.04 (m, 1H), 6.52 (d, *J* = 14.7 Hz, 1H), 6.22-6.13 (m, 1H), 5.62-5.56 (m, 1H), 1.87-1.84 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 129.4, 129.1, 128.7, 128.4, 127.7, 127.6, 127.1, 126.6, 126.4, 125.3, 13.4.

Z3s,¹⁴ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.82-7.67 (m, 4H), 7.48-7.38 (m, 3H), 6.45 (d, *J* = 11.7 Hz, 1H), 5.60-5.50 (m, 1H), 3.04-2.94 (m, 1H), 1.08 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 141.0, 133.5, 131.0, 130.9, 128.0, 127.6, 127.3, 127.2, 126.5, 126.1, 126.0, 125.7, 27.3, 23.3.

Z3t,¹⁵ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.37-7.24 (m, 5H), 6.56 (d, *J* = 12.0 Hz, 1H), 5.75 (dt, *J* = 12.0, 7.2 Hz, 1H), 3.21 (d, *J* = 6.0 Hz, 2H), 2.44 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 132.6, 128.8, 128.5, 128.2, 127.2, 126.8, 126.2, 126.1, 67.0, 46.0.

Z3u,¹⁶ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.43-7.26 (m, 5H), 7.08 (dd, *J* = 11.7, 8.4 Hz, 1H), 6.51 (d, *J* = 11.7 Hz, 1H), 6.22-6.14 (m, 1H), 5.62-5.55 (m, 1H), 3.40 (d, *J* = 6.0 Hz, 2H), 2.50 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 131.2, 128.8, 128.5, 128.2, 127.2, 126.8, 126.2, 125.8, 124.4, 68.2, 47.2.

Z3v,¹⁷ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.39-7.20 (m, 5H), 6.60 (d, J = 12.0 Hz, 1H), 5.99-5.86 (m, 1H), 4.47 (d, J = 5.7 Hz, 2H), 1.98 (s, br., 1H); ¹³C NMR (75 MHz, CDCl₃): δ 132.0, 130.5, 129.9, 129.5, 128.6, 127.1, 126.3, 124.6, 60.1.

Z3w,¹⁸ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.43-7.20 (m, 5H), 7.09 (dd, *J* = 11.7, 8.4 Hz, 1H), 6.72 (d, *J* = 11.7 Hz, 1H), 6.21-6.14 (m, 1H), 5.62-5.58 (m, 1H), 4.46 (d, *J* = 6.0 Hz, 2H), 1.58 (s, br., 1H); ¹³C NMR (75 MHz, CDCl₃): δ 130.5, 129.3, 129.1, 128.7, 128.4, 127.7, 127.6, 127.1, 126.6, 126.4, 61.2.

Z3x,¹⁹ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 5.64-5.52 (m, 1H), 5.49-5.31 (m, 1H), 4.24 (d, J = 6.6 Hz, 2H), 2.87 (s, br., 1H), 2.30-2.14 (m, 1H), 1.75-1.55 (m, 5H), 1.39-1.25 (m, 5H); ¹³C NMR (75 MHz, CDCl₃): δ 132.0, 127.5, 62.5, 27.1, 26.6, 26.1, 26.0, 25.8, 25.4.

E3a

E3a,³ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.34-7.14 (m, 5H), 6.39 (d, *J* = 15.9 Hz, 1H), 6.21 (dt, *J* = 15.9, 6.9 Hz, 1H), 2.24-2.15 (m, 2H), 1.48-1.38 (m, 6H), 0.87 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 137.9, 131.3, 129.8, 128.8, 128.2, 126.5, 126.0, 33.1, 31.7, 28.7, 22.6, 14.1.

E3b,³ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.29-7.19 (m, 2H), 6.88-6.81 (m, 2H), 6.32 (d, *J* = 15.9 Hz, 1H), 6.07 (dt, *J* = 15.9, 6.9 Hz, 1H), 3.79 (s, 3H), 2.21-2.13 (m, 2H), 1.48-1.39 (m, 6H), 0.95-0.85 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 159.0, 130.0, 129.2, 128.1, 127.0, 114.0, 55.3, 33.1, 31.5, 29.3, 22.6, 14.1.

E3c,²⁰ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.30-7.16 (m, 4H), 6.34 (d, *J* = 15.9 Hz, 1H), 6.19 (dt, *J* = 15.9, 7.2 Hz, 1H), 2.23-2.15 (m, 2H), 1.49-1.38 (m, 6H), 0.89 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 134.0, 130.1, 128.6, 128.3, 127.6, 33.1, 29.6, 28.6, 22.6, 14.1.

E3d,⁴ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 8.19 (d, J = 9.0 Hz, 2H), 7.40 (d, J = 9.0 Hz, 2H), 6.47-6.42 (m, 2H), 2.29-2.22 (m, 2H), 1.59-1.40 (m, 6H), 0.89 (t, J = 7.1 Hz, 3H); ¹³C NMR

(75 MHz, CDCl₃): δ 147.9, 144.9, 136.3, 129.4, 126.4, 124.1, 33.3, 31.6, 28.9, 22.6, 14.1.

E3e,²¹ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 8.20-8.05 (m, 2H), 7.59-7.41 (m, 2H), 6.46-6.38 (m, 2H), 2.31-2.21 (m, 2H), 1.61-1.43 (m, 6H), 0.94-0.84 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 148.2, 136.2, 131.9, 129.1, 127.7, 121.4, 120.5, 33.0, 31.5, 29.8, 22.6, 14.1.

E3f,⁵ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.34-7.14 (m, 4H), 6.38 (d, *J* = 15.9 Hz, 1H), 6.21 (dt, *J* = 15.9, 6.9 Hz, 1H), 2.39 (s, 3H), 2.24-2.15 (m, 2H), 1.48-1.38 (m, 6H), 0.88 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 137.9, 131.3, 129.8, 128.8, 128.2, 126.5, 126.0, 33.1, 31.7, 28.7, 22.6, 20.1, 14.1.

E3g,²² yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.51-7.46 (m, 1H), 7.38-7.33 (m, 1H), 7.25-7.13 (m, 2H), 6.74 (d, *J* = 15.9 Hz, 1H), 6.21 (dt, *J* = 15.9, 6.9 Hz, 1H), 2.23-2.13 (m, 2H), 1.37-1.20 (m, 6H), 0.94-0.84 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 137.9, 133.3, 131.3, 128.8, 128.1, 126.8, 126.4, 126.0, 33.1, 31.5, 29.7, 22.6, 14.1.

E3h,³ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 8.14-8.13 (m, 1H), 7.72-7.59 (m, 3H), 7.42-7.15 (m, 3H), 7.07 (d, *J* = 15.9 Hz, 1H), 6.17 (dt, *J* = 15.9, 6.9 Hz, 1H), 2.37-2.27 (m, 2H), 1.37-1.25 (m, 6H), 0.91 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 131.3, 130.0, 128.1, 128.0, 127.9, 126.2, 126.1, 126.0, 125.7, 125.5, 125.2, 123.6, 32.1, 29.6, 28.6, 21.7, 14.1.

E3i,²³ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 8.52-8.50 (m, 1H), 7.66-7.58 (m, 1H), 7.28-7.21 (m, 1H), 7.12-7.06 (m, 1H), 6.79-6.71 (m, 1H), 6.51-6.43 (m, 1H), 2.29-2.25 (m, 2H), 1.55-1.26 (m, 6H), 0.90 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 149.9, 136.4, 136.2, 135.9, 128.5, 123.7, 121.5, 32.8, 29.4, 28.7, 22.6, 14.0.

E3j, yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.31-7.26 (m, 1H), 6.32-6.28 (m, 1H), 6.17-6.08 (m, 3H), 2.40-2.31 (m, 2H), 1.43-1.17 (m, 6H), 0.89-0.81 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 153.5, 141.2, 131.6, 118.6, 111.1, 105.9, 32.8, 31.7, 29.8, 22.6, 14.1; HRMS (EI): Calcd for C₁₁H₁₆O (M): 164.1201. Found: 164.1156.

E3k

E3k,³ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.11 (d, J = 5.1 Hz, 1H), 7.06-7.00 (m, 1H), 6.90 (d, J = 3.6 Hz, 1H), 6.57 (d, J = 15.9 Hz, 1H), 6.12 (dt, J = 15.9, 6.9 Hz, 1H), 2.25-2.16 (m, 2H), 1.60-1.33 (m, 6H), 0.90 (t, J = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 131.4, 127.2, 127.1, 124.1, 123.0, 121.7, 32.9, 31.5, 29.0, 22.6, 14.1.

E3I,²¹ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.42-7.16 (m, 5H), 6.75 (dd, *J* = 15.6, 10.2 Hz, 1H), 6.43 (d, *J* = 15.6 Hz, 1H), 6.24-6.11 (m, 1H), 5.88-5.76 (m, 1H), 2.18-2.10 (m, 2H), 1.42-1.24 (m, 6H), 0.95-0.85 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 136.1, 133.4, 132.0, 130.5, 129.9, 129.6, 128.6, 127.1, 126.4, 124.6, 32.9, 31.8, 29.4, 22.7, 14.1.

E3m,⁸ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 6.03-5.95 (m, 2H), 5.33-5.26 (m, 2H), 2.06-2.01 (m, 2H), 1.74-1.70 (m, 3H), 1.43-1.30 (m, 6H), 0.92-0.87 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 132.3, 130.3, 129.0, 127.2, 32.8, 29.2, 27.7, 22.6, 18.1, 14.1.

E3n

E3n,²⁴ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 5.40-5.33 (m, 2H), 2.03-1.97 (m, 4H), 1.30-1.20 (m, 14H), 0.94-0.86 (m, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 130.4, 130.1, 34.8, 32.2, 32.1, 31.9, 31.8, 29.8, 28.2, 25.8, 23.9, 19.2, 14.1.

E30,¹⁰ yellow oil; ¹H NMR (300 MHz, CDCl₃): δ 7.32-7.22 (m, 5H), 5.42-5.36 (m, 2H), 2.98-2.92 (m, 2H), 2.73-2.57 (m, 4H), 1.64-1.52 (m, 6H), 0.94-0.87 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 141.3, 129.7, 128.8, 128.5, 128.1, 126.7, 38.9, 33.1, 31.8, 29.4, 28.9, 22.6, 14.1.

E3p,²⁵ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 5.40-5.36 (m, 2H), 2.33-2.20 (m, 1H), 1.76-1.58 (m, 2H), 1.37-1.24 (m, 16H), 0.92-0.85 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 136.1, 128.2, 36.4, 31.6, 29.8, 29.6, 27.3, 26.2, 22.7, 14.1.

E3q,¹² yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.81-7.76 (m, 4H), 7.45-7.39 (m, 3H), 6.53 (d, J = 15.9 Hz, 1H), 6.38-6.27 (m, 1H), 1.95-1.94 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 131.2, 130.0, 128.1, 127.9, 127.8, 127.5, 127.3, 126.2, 125.7, 125.2, 123.6, 18.6.

E3r,¹³ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.42-7.25 (m, 5H), 6.75 (dd, *J* = 15.6, 10.5 Hz, 1H), 6.47 (d, *J* = 15.6 Hz, 1H), 6.20-6.14 (m, 1H), 5.87-5.77 (m, 1H), 1.31-1.28 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 136.1, 133.4, 132.0, 130.5, 129.9, 129.5, 128.6, 127.1, 126.2, 124.6, 19.1.

E3s

E3s,¹⁴ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.80-7.34 (m, 7H), 6.49 (d, *J* = 16.9 Hz, 1H), 6.35-6.26 (m, 1H), 2.56-2.45 (m, 1H), 1.12 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 135.5, 133.5, 132.6, 132.2, 129.0, 128.9, 128.0, 127.6, 127.3, 126.5, 126.1, 125.7, 29.0, 23.8.

E3t,²⁶ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.37-7.16 (m, 5H), 6.45 (d, *J* = 15.9 Hz, 1H), 6.22 (dt, *J* = 15.9, 6.0 Hz, 1H), 3.11 (d, *J* = 6.0 Hz, 2H), 2.27 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 131.2, 128.8, 128.6, 128.5, 128.2, 127.2, 126.8, 124.4, 67.0, 49.2.

E3u,²⁷ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.47-7.20 (m, 5H), 6.80 (dd, *J* = 15.9, 10.2 Hz, 1H), 6.56 (d, *J* = 15.6 Hz, 1H), 6.30-6.16 (m, 1H), 5.83-5.73 (m, 1H), 3.20 (d, *J* = 6.0 Hz, 2H), 2.39 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 136.1, 133.4, 132.0, 130.5, 129.9, 129.5, 128.6, 127.1, 126.2, 124.6, 67.7, 51.0.

E3v,²⁸ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.39-7.20 (m, 5H), 6.59 (d, *J* = 15.9 Hz, 1H), 6.39-6.28 (m, 1H), 4.29 (d, *J* = 5.7 Hz, 2H), 1.97 (s, br., 1H); ¹³C NMR (75 MHz, CDCl₃): δ 136.7, 131.1, 128.6, 128.5, 127.7, 126.5, 63.6.

E3w,²⁹ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 7.42-7.14 (m, 5H), 6.75 (dd, *J* = 15.6, 10.2 Hz, 1H), 6.52 (d, *J* = 16.2 Hz, 1H), 6.39-6.28 (m, 1H), 5.87-5.77 (m, 1H), 4.09 (d, *J* = 5.7 Hz, 2H), 1.84 (s, br., 1H); ¹³C NMR (75 MHz, CDCl₃): δ 133.8, 131.8, 131.1, 129.0, 128.7, 128.6, 128.5, 127.3, 126.3, 63.4.

E3x,³⁰ yellowish oil; ¹H NMR (300 MHz, CDCl₃): δ 5.70-5.55 (m, 2H), 4.06 (d, J = 6.6 Hz, 2H), 2.24 (s, br., 1H), 2.06-1.96 (m, 1H), 1.75-1.55 (m, 5H), 1.38-1.15 (m, 5H); ¹³C NMR (75 MHz, CDCl₃): δ 130.3, 126.6, 66.2, 28.9, 26.6, 26.1, 26.0, 25.2, 25.1.

Gram-scale synthesis of alkene Z3a

To a stirred suspension of phosphonium salt 2a (5.13 g, 12.0 mmol) in tetrahydrofuran (20.0 mL) under nitrogen at -78 °C was added a solution of *n*-BuLi in hexane (2.50 M, 5.2 mL, 13.0 mmol). The resulting mixture was stirred for 1 h, and were added *N*-sulfonyl imine **1aa** (1.83 g, 10.0 mmol) and tetrahydrofuran (3.0 mL). The resulting mixture was stirred at -78 °C for 3 h, warmed naturally to room temperature (in 5 h), and stirred at room temperature for 4 h. Saturated brine (10.0 mL) was added to the mixture, and the organic phase was extracted with petroleum ether (2 x 50 mL), dried over anhydrous magnesium sulfate, and concentrated. The residue was purified by flash column chromatography on silica gel, eluting with petroleum ether/ethyl acetate (100:1), to afford

alkene **Z3a** (1.34 g, 77%, >99:1 Z/E) as a yellowish oil.

General procedure for the synthesis of phosphonium salt 4a (Table 3)

To a stirred suspension of phosphonium salt 2a (0.60 mmol) in tetrahydrofuran (1.0 mL) under nitrogen at -78 °C was added a solution of *n*-BuLi in hexane (2.50 M, 0.26 mL, 0.65 mmol). The resulting mixture was stirred for 1 h, and were added *N*-sulfonyl imine **1a** (0.50 mmol) and tetrahydrofuran (1.0 mL). The resulting mixture was stirred at -78 °C for 1 h, added 40% aqueous HBr (0.14 mL, 1.0 mmol), and stirred at -78 °C for 2 h. The mixture was concentrated and purified by preparative TLC, developing with dichloromethane/methanol (20:1), to give phosphonium salt **4a**.

The relative configuration for phosphonium salt 4a was tentatively assigned based on its conversion to alkene 3a (*vide infra*).

Analytical data for the phosphonium salts shown in Table 3

Table 3, entry 1: Phosphonium salt **4aa** was obtained in 63% yield as a single *anti* isomer (>99:1 *anti/syn*). White solid; m.p. 144-145 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.86-7.70 (m, 20H), 3.70-3.60 (m, 1H), 3.22-3.15 (m, 1H), 2.05-1.99 (m, 7H), 1.68-1.58 (m, 2H), 1.29-1.18 (m, 2H), 0.84-0.79 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 136.0, 133.5, 131.9, 130.5, 129.8 (d, *J* = 15.8 Hz), 127.3, 127.1, 126.2, 124.6, 123.3, 123.1, 59.4, 46.2, 35.1, 31.8, 29.1 (d, *J* = 30.3 Hz), 22.7, 14.2; ³¹P NMR (CDCl₃, 162 MHz) δ 25.0; Anal. calcd. for C₃₂H₃₇BrNO₂PS (%): C, 62.95; H, 6.11; N, 2.29. Found: C, 62.72; H, 6.12; N, 2.30.

Table 3, entry 2: Phosphonium salt **4aa** was obtained in 73% yield as a 90:10 mixture of *anti/syn* isomers. White solid; Partial ¹H NMR (300 MHz, CDCl₃) for the *syn* isomer: δ 3.85-3.79 (m, 1H); ³¹P NMR (CDCl₃, 162 MHz) for the *syn* isomer: δ 24.4.

Table 3, entry 3: Phosphonium salt **4ac** was obtained in 66% yield as an 84:16 mixture of *anti/syn* isomers. White solid; ¹H NMR (300 MHz, CDCl₃) for the *anti* isomer: δ 7.88-7.65 (m, 24H), 3.50-3.45 (m, 1H), 3.16-3.08 (m, 1H), 2.57 (s, 3H), 2.06-1.99 (m, 4H), 1.70-1.56 (m, 2H), 1.31-1.17 (m, 2H), 0.86-0.80 (m, 3H); Partial ¹H NMR (300 MHz, CDCl₃) for the *syn* isomer: 3.90-3.84 (m,

1H); ³¹P NMR (CDCl₃, 162 MHz) for the *anti* isomer: δ 24.0; ³¹P NMR (CDCl₃, 162 MHz) for the *syn* isomer: 24.6; Anal. calcd. for C₃₈H₄₁BrNO₂PS (%): C, 66.47; H, 6.02; N, 2.04. Found: C, 66.23; H, 6.04; N, 2.05.

Table 3, entry 4: Phosphonium salt **4ag** was obtained in 69% yield as a single *syn* isomer (<1:99 *anti/syn*). White solid; m.p. 150-151 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.85-7.68 (m, 24H), 3.63-3.56 (m, 1H), 3.20-3.14 (m, 1H), 2.68 (s, 3H), 2.05-1.99 (m, 4H), 1.69-1.58 (m, 2H), 1.30-1.19 (m, 2H), 0.85-0.79 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 136.2, 135.0, 133.9, 133.7, 131.4, 130.6, 130.4, 129.8 (d, *J* = 15.5 Hz), 129.2, 128.2, 126.6, 51.1, 34.4, 30.1 (d, *J* = 23.2 Hz), 22.7, 22.3, 21.7, 14.0; ³¹P NMR (CDCl₃, 162 MHz) δ (ppm): 25.1; Anal. calcd. for C₃₈H₄₁BrNO₂PS (%): C, 66.47; H, 6.02; N, 2.04. Found: C, 66.60; H, 6.03; N, 2.05.

Table 3, entry 5: Phosphonium salt **4ag** was obtained in 64% yield as a 41:59 mixture of *anti/syn* isomers. White solid; Partial ¹H NMR (300 MHz, CDCl₃) for the *anti* isomer: δ 4.01-3.96 (m, 1H); ³¹P NMR (CDCl₃, 162 MHz): δ 24.1.

General procedure for the conversion of phosphonium salt 4a to alkene 3a (Table 3)

To a stirred suspension of phosphonium salt **4a** (0.25 mmol) in tetrahydrofuran (1.0 mL) under nitrogen at -78 °C was added a solution of *n*-BuLi in hexane (2.50 M, 0.12 mL, 0.30 mmol). The resulting mixture was stirred at -78 °C for 3 h, warmed naturally to room temperature (in ca. 5 h), and stirred at room temperature for 4 h. Saturated brine (2.0 mL) was added to the mixture, and the organic phase was extracted with petroleum ether (2 x 20 mL), dried over anhydrous magnesium sulfate, and concentrated. The residue was purified by preparative TLC, developing with petroleum ether, to give alkene **3a**. The yields are 73% (entry 1), 51% (entry 2), 86% (entry 3), 89% (entry 4), and 55% (entry 5).

Work-up with H₂¹⁸O (Note 10)

To a stirred suspension of phosphonium salt **2a** (256 mg, 0.60 mmol) in tetrahydrofuran (1.0 mL) under nitrogen at -78 °C was added a solution of *n*-BuLi in hexane (2.50 M, 0.26 mL, 0.65 mmol). The resulting mixture was stirred for 1 h, and were added *N*-sulfonyl imine **1ag** (130 mg, 0.50 mmol) and tetrahydrofuran (1.0 mL). The resulting mixture was stirred at -78 °C for 3 h, warmed naturally to room temperature (in 5 h), and stirred at room temperature for 4 h. Heavy oxygen water (98%, 91 μ L, 5.0 mmol) was added to the mixture and stirred at room temperature for 4 h. Saturated brine (2.0 mL) was added to the mixture, and the organic phase was extracted with petroleum ether (2 x 20 mL), dried over anhydrous magnesium sulfate, and concentrated. The residue was purified directly by preparative TLC, developing with petroleum ether/ethyl acetate (3:1) to give PPh₃¹⁸O (115 mg, 82%) and *o*-toluenesulfonamide (62.0 mg, 72%). MS (ESI) found for C₁₈H₁₆¹⁸OP (MH): 281.3; MS (ESI) found for C₇H₈NO₂S (M-H): 170.3.

References

- (1) M. Shi and B. Xu, J. Org. Chem., 2002, 67, 294.
- (2) (*a*) M. Yamanaka, A. Nishida and M. Nakagawa, J. Org. Chem., 2003, **68**, 3112; (*b*) D.-J. Dong, H.-H. Li and S.-K. Tian, J. Am. Chem. Soc., 2010, **132**, 5018.
- (3) S. E. Denmark and D. Wehrli, Org. Lett., 2000, 2, 565.
- (4) S. E. Denmark and R. F. Sweis, J. Am. Chem. Soc., 2001, 123, 6439.
- (5) S. E. Denmark and R. F. Sweis, Org. Lett., 2002, 4, 3771.
- (6) Y.-G. Lim, J.-B. Kang and Y. H. Kim, J. Chem. Soc., Perkin Trans. 1, 1998, 699.
- (7) S. E. Denmark and J. Y. Choi, J. Am. Chem. Soc., 1999, 121, 5821.
- (8) T. L. Underiner and H. L. Goering, J. Org. Chem., 1991, 56, 2563.
- (9) M. Huhtasaari, H. J. Schäfer and H. Luftmann, Acta Chem. Scand. B, 1983, 37, 537.
- (10) A. G. M. Barrett and G. A. Flygare, J. Org. Chem. 1991, 56, 638.
- (11) M. Periasamy, A. S. B. Prasad and Y. Suseela, Tetrahedron, 1995, 51, 2743.
- (12) L.-F. Huang, C.-H. Huang, B. Stulgies, A. de Meijere and T.-Y. Luh, Org. Lett., 2003, 5, 4489.
- (13) W. Kirmse and S. Kopannia, J. Org. Chem., 1998, 63, 1178.
- (14) M. R. Pitts, J. R. Harrison and C. J. Moody, J. Chem. Soc., Perkin Trans. 1, 2001, 955.
- (15) R. W. Jemison, T. Laird, W. D. Ollis and I. O. Sutherland, J. Chem. Soc., Perkin Trans. 1, 1980, 1436.
- (16) T. Laird, W. D. Ollis and I. O. Sutherland, J. Chem. Soc., Perkin Trans. 1, 1980, 2033.
- (17) I. S. Kim, G. R. Dong and Y. H. Jung, J. Org. Chem., 2007, 72, 5424.
- (18) K. S. Feldman and D. A. Mareska, J. Org. Chem., 1999, 64, 5650.
- (19) S. A. Reed and S. C. White, J. Am. Chem. Soc., 2008, 130, 3316.
- (20) D. Mirk, J.-M. Grassot and J. Zhu, Synlett, 2006, 1255.
- (21) S. E. Denmark and Z. Wang, Org. Lett., 2001, 3, 1073.
- (22) G. W. Kabalka, N.-S. Li, D. Tejedor, R. R. Malladi and S. Trotman, J. Org. Chem., 1999, 64, 3157.
- (23) S. E. Denmark and J. M. Kallemeyn, J. Am. Chem. Soc., 2006, 128, 15958.
- (24) W. Hoebold and R. Keck, J. Prakt. Chem., 1975, 317, 1054.
- (25) B. Breit and D. Breuninger, Synthesis, 2005, 147.
- (26) M. Gómez-Gallego, M. J. Mancheño, P. Ramírez, C. Piñar and M. A. Sierra, Tetrahedron, 2000,

56, 4893.

- (27) M. Nikaido, R. Aslanian, F. Scavo, P. Helquist, B. Åakermark and J.-E. Bäeckvall, J. Org. Chem., 1984, 49, 4738.
- (28) M. Mahesh, J. A. Murphy and H. P. Wessel, J. Org. Chem., 2005, 70, 4118.
- (29) D. D. Kim, S. J. Lee and P. Beak, J. Org. Chem., 2005, 70, 5376.
- (30) D. J. Pippel, G. A. Weisenburger, N. C. Faibish and P. Beak, J. Am. Chem. Soc., 2001, 123, 4919.

S-26

0.001

Ph

E3r ¹H NMR (CDCl₃, 300 MHz)

