Novel *C*₃-Symmetric *n*-Type Tris(aroyleneimidazole) and Its Analogs: Synthesis, Physical Properties and Self-Assembly

David Hanifi, Dennis Cao, Liana M. Klivansky, Yi Liu*

The Molecular Foundry, Lawrence Berkeley National Laboratory, One

Cyclotron Road, Berkeley, California, USA 94720.

Email: yliu@lbl.gov

Electronic Supplementary Information

Table of Contents

General Methods	S3
Computation Methodology	S4
Materials Synthesis	S4
Thermogravitic Analysis	S8
Figure S1-S2	S8
Figure S3-S4	S9
DSC of TAI-b	S10
Figure S5	S10
Polarized Optical Images	S10
Figure S6	S10
Electrochemical Measurements	S11
Figure S7	S11
Powder XRD Measurement	S11
Figure S8	S11
Thin-film UV-vis Spectra	S12
Figure S9	S12
UV-vis Titration Spectra of TAI-b	S12
Figure S10	S12
Fluorescence Spectra	S13
Figure S11	S13
MALDI-TOF Spectra	S13
Figure S12	S13
Figure S13	S14
Figure S14	S15
Figure S15	S16
Figure S16	S17
¹ H NMR and ¹³ C NNR Spectra	S18
Figure S17	S18
Figure S18	S19
Figure S19	S20
Figure S20	S21
Figure S21	S22
Figure S22	S23
Figure S23	S24
Figure S24	S25
Figure S25	S26
References	S26

Experimental Section

General Methods: Reagents were purchased from Aldrich or synthesized as described. Thin-layer chromatography (TLC) was carried out using aluminum sheets, precoated with silica gel 60F (Merck 5554). The plates were inspected by UV-light. Proton and carbon nuclear magnetic resonance spectra (¹H-NMR and ¹³C-NMR) spectra were recorded on a Bruker Avance500 II, using the deuterated solvent as lock and tetramethylsilane as internal standard. All chemical shifts are quoted using the δ scale, and all coupling constants (J) are expressed in Hertz (Hz). Matrix-assisted laser desorption ionization (MALDI) mass spectra were measured on 4800 MALDI TOF/TOF analyzer from Applied Biosystems. SEM images were recorded on a Zeiss Gemini Ultra-55 Analytic Scanning Electron Microscope. UV-vis absorption and fluorescence spectra were recorded on Cary 500 UV-vis-NIR spectrophotometer and Nanolog spectrofluorometer, respectively. All the thin-film samples were prepared by spincasting the corresponding CH_2Cl_2 solution (~ 5 mg / mL) onto a quartz substrate. The electrochemical experiments were carried out in N₂-purged CH₂Cl₂ solutions at concentrations ranging from 1.0×10^{-4} to 1.0×10^{-3} M and with 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆) as supporting electrolyte. Cyclic voltammetric (CV) experiments were performed with a Princeton 265A instrument interfaced to a PC using a glassy carbon working electrode, a Pt electrode as the counter electrode, and a silver wire as a pseudo-reference electrode. The surface of the working electrode was polished routinely with a 0.05 µm alumina-water slurry on a felt surface immediately before use. In all cases ferrocene ($E_{1/2}$ =+0.395 V vs SCE) was present as internal standard for the potential values. TGA and DSC curves were obtained using QA5000IR and Q200 from TA Instruments, respectively. Compound 1^{s1} and $2a-b^{s2}$ were synthesized according to literature procedures. Optical and polarized optical images were taken using a Leica DM4500P microscope. Powder XRD data was collected on a Bruker-AXS D8 Discover with GADDS powder X-ray diffractometer with Cu K_a radiation.

Computational Methodology

All calculations were performed using Q-Chem 3.2.^{s3} The free softwares Avogadro and Q-Chem User Interface (QUI) were used as the molecular builder and the script editor, respectively. To simplify the calculation, methyl was used as the side chains that attached to the **TAI** core, which should have a minimal effect on the optimized molecular structure and the frontier orbitals. The energy level of the HOMO and the LUMO of the **TAI** molecule was carried out at the DFT level^{\$4,\$5} using B3LYP/6-311G* basis set. DFT/B3LYP/6-311G* has been found to be an accurate formalism for calculating the structural and electronic properties of many molecular systems.^{\$6} No symmetry constraints were imposed during the optimization process. The electrostatic potential was plotted with an ISO value of 0.01.

Materials Synthesis

Method A – Condensation Reaction in DMF. A mixture of 1 (102 mg, 0.607 mmol), 2a (0.690 g, 1.82 mmol) and Zn(OAc)₂ (180 mg, 0.981 mmol) was dissolved in degassed DMF (30 mL) under N₂ and stirred at 170 °C for 18 hs. The reaction mixture was concentrated under reduced pressure and subsequently partitioned between CH_2Cl_2 and water (50 mL each). After extracting the aqueous layer twice with CH_2Cl_2 (2 × 30 mL), the organic layers were combined, dried over MgSO₄, filtered and evaporated to dryness. The residue was subjected to column chromatography (Silica, CH_2Cl_2 100% to 3% MeOH in CH_2Cl_2) to get a mixture (450 mg) of the tetramer **5a**, the acyclic trimer **4a**, and the asymmetric cyclic trimer **3a**. A portion of the mixture (60 mg) was subjected to preparative TLC (1.5% (v/v) MeOH in CH_2Cl_2) to get **5a**, **4a** and **3a** as an orange-red, green and red solid in a yield of 24%, 22% and 16%, respectively.

3a: ¹H NMR (C₆D₅Cl, 500 MHz, 373 K): δ = 8.60 (d, J = 8.0 Hz, 2 H), 8.55 (d, J = 8.0 Hz, 2 H), 8.52 (d, J = 8.0 Hz, 2 H), 8.45 (d, J = 8.0 Hz, 2 H), 8.42 (d, J = 8.0 Hz, 4 H), 8.37 (m, 6 H), 8.33 (d, J = 8.0 Hz, 2 H), 8.31 (m, 4 H), 4.05 (m, 6 H), 1.95 (m, 3 H), 1.32–1.11 (m, 33 H), 0.85 (m, 9 H). MS (MALDI-TOF): [M + H]⁺ calcd. 1198.4827, found 1198.6910 (100%).

4a: ¹H NMR (CDCl₃, 500 MHz, 298 K): $\delta = 8.95$ (d, J = 8.0 Hz, 4 H), 8.81 (d, J = 6.0 Hz, 1 H), 8.66 (d, J = 6.0 Hz, 1 H), 8.51 (d, J = 6.0 Hz, 1 H), 8.48 (d, J = 6.0 Hz, 1 H), 8.31 (d, J = 6.0 Hz, 1 H), 8.26 (d, J = 6.0 Hz, 1 H), 8.10 (d, J = 6.0 Hz, 1 H), 7.94 (d, J = 6.0 Hz, 1 H), 6.39 (br s, 2 H), 4.35 (br s, 2 H), 4.08 (br s, 2 H), 3.65 (br s, 2 H), 1.89 (br s, 2 H), 1.70-1.23 (m, 34 H), 0.96 (br s, 3 H), 0.87 (t, J = 7.0 Hz, 6 H). ¹³C NMR (CDCl₃, 125 MHz, 298 K): $\delta = 163.9$, 163.1, 162.5, 162.2, 162.1, 161.7, 158.7, 158.2, 149.2, 145.7, 143.9, 132.6, 131.7, 131.4, 131.1, 131.0, 130.8, 130.6, 130.1, 129.9, 127.9, 127.6, 127.3, 127.1, 126.9, 126.8, 126.6, 125.9, 125.3, 125.2, 125.0, 124.8, 124.8, 122.7, 121.5, 125.2, 125.0, 124.8, 124.8, 122.7, 121.5, 125.2, 125.0, 124.8, 124.8, 122.7, 121.5, 125.2, 125.0, 124.8, 124.8, 122.7, 121.5, 125.2, 125.0, 124.8, 124.8, 122.7, 121.5, 125.2, 125.0, 124.8, 124.8, 122.7, 121.5, 125.2, 125.0, 124.8, 124.8, 124.8, 124.7, 121.5, 125.2, 125.0, 124.8, 124.8, 122.7, 121.5, 125.2, 125.0, 124.8, 124.8, 124.8, 124.7, 121.5, 125.2, 125.0, 124.8, 124.8, 124.8, 124.7, 121.5, 125.2, 125.0, 124.8, 124.8, 124.8, 124.7, 121.5, 125.2, 125.0, 124.8, 124.8, 124.8, 124.7, 121.5, 125.2, 125.0, 124.8, 124.8, 124.8, 124.7, 121.5, 125.2, 125.0, 124.8, 12

117.7, 102.1, 41.1, 40.9, 40.4, 31.9, 31.8, 31.8, 29.7, 29.4, 29.3, 29.3, 29.2, 29.2, 28.3, 28.1, 27.9, 27.2, 27.1, 27.0, 22.7, 22.6, 22.6, 14.2, 14.1, 14.1; MS (MALDI-TOF): [M]⁺ calcd. 1215.4854, found 1215.6841 (100%).

5a: ¹H NMR (CDCl₃, 500 MHz, 298 K): $\delta = 8.92$ (m, 8 H), 8.63 (d, J = 8.0 Hz, 2 H), 8.61 (d, J = 8.0 Hz, 2 H), 8.60 (d, J = 8.0 Hz, 2 H), 8.51 (d, J = 8.0 Hz, 2 H), 4.26 (m, 4 H), 4.12 (m, 4 H), 2.03 (m, 2 H), 1.90 (m, 2 H), 1.47 (m, 8 H), 1.37 (m, 16 H), 1.30 (m, 8 H), 1.02 (t, J = 7.5 Hz, 6 H), 0.96 (t, J = 7.5 Hz, 6 H), 0.91 (t, J = 7.5 Hz, 6 H), 0.86 (t, J = 7.5 Hz, 6 H).¹³C NMR (CDCl₃, 125 MHz, 298 K): $\delta = 163.4$, 163.1, 163.1, 162.9, 158.6, 150.7, 143.4, 132.1, 131.6, 131.4, 131.2, 130.8, 130.2, 127.9, 127.8, 127.3, 127.2, 127.1, 127.0, 1268, 125.7, 125.1, 124.9, 115.0, 44.7, 44.6, 38.1, 38.0, 30.8, 30.7, 28.7, 28.6, 24.1, 24.0, 23.1, 23.0, 14.2, 14.1, 10.7, 10.5; MS (MALDI-TOF): [M + H]⁺ calcd. 1577.6176, found 1578.1060 (25%).

Method B – Condensation Reaction in Quinoline. A mixture of 1 (0.100 g, 0.590 mmol) and $Zn(OAc)_2$ (0.163 mg, 0.888 mmol) was dissolved in degassed quinoline (20 mL). A solution of **2b** (0.632 g, 1.67 mmol) in quinoline (10 mL) was added slowly into the above mixture over 30 min under N₂ and stirred at 170 °C for 18 hs. The reaction mixture was concentrated under reduced pressure and subsequently partitioned between CH_2Cl_2 and water (50 mL each). After extracting the aqueous layer twice with CH_2Cl_2 (2 × 30 mL), the organic layers were combined, dried over MgSO₄, filtered and evaporated to dryness. The residue was subjected to column chromatography (Silica, CH_2Cl_2 100% to 3% MeOH in CH_2Cl_2) to get a mixture (520 mg) of **4b** and **TAI-b**. A portion of the mixture (60 mg) was subjected to recycling GPC (CHCl₃) to give **4b** and **TAI-b** as a green and red solid in a yield of 35% and 25%, respectively.

4b: ¹H NMR (CDCl₃, 500 MHz, 298 K): $\delta = 8.95$ (m, 4 H), 8.83 (d, J = 8.0 Hz, 1 H), 8.66 (d, J = 8.0 Hz, 1 H), 8.61 (m, 2 H), 8.55 (d, J = 8.0 Hz, 1 H), 8.52 (d, J = 8.0 Hz, 1 H), 8.48 (d, J = 8.0 Hz, 1 H), 8.36 (d, J = 8.0 Hz, 1 H), 6.71 (br s, 2 H), 4.34 (t, J = 8.0Hz, 2 H), 4.17 (t, J = 8.0 Hz, 2 H), 3.99 (t, J = 8.0 Hz, 2 H), 1.87 (m, 2 H), 1.74 (m, 2 H), 1.38–1.30 (m, 32 H), 0.98 (t, J = 7.5 Hz, 3 H), 0.85 (m, 6 H). ¹³C NMR (CDCl₃, 125 MHz, 298 K): $\delta = 163.8$, 163.1, 162.5, 162.1, 162.0, 161.7, 158.6, 158.2, 149.2, 145.7, 143.9, 132.5, 131.6, 131.1, 130.9, 130.8, 130.6, 130.1, 129.9, 127.9, 127.5, 127.3, 127.1, 126.8, 126.7, 126.5, 125.8, 125.1, 125.0, 124.8, 124.7, 122.7, 121.1, 116.0, 108.6, 102.2, 41.1, 40.9, 40.4, 31.9, 31.8, 31.8, 29.7, 29.4, 29.3, 29.3, 29.2, 29.2, 28.3, 28.1, 27.9, 27.2, 27.1, 27.0, 22.7, 22.6, 22.6, 14.2, 14.1, 14.1; MS (MALDI-TOF): [M]⁺ calcd. 1215.4854, found 1215.6721 (100%).

TAI-b: ¹H NMR (C₂D₂Cl₄, 500 MHz, 413 K): $\delta = 7.92$ (br s, 6 H), 7.67 (br s, 3 H), 7.64 (br s, 3 H), 3.78 (br s, 6 H), 1.62 (br s, 6 H), 1.34–1.21 (m, 30 H), 0.86 (br s, 9 H).¹³C NMR (C₂D₂Cl₄, 125 MHz, 413 K): $\delta = 162.9$, 162.8, 156.4, 147.0, 139.9, 132.1, 131.6, 131.1, 128.1, 127.7, 127.4, 127.0, 125.5, 124.9, 123.5, 121.8, 33.1, 31.1, 30.6, 30.5, 29.4,

S7

28.6, 23.9, 15.3. MS (MALDI-TOF): [M + H]⁺ calcd. 1198.4827, found 1198.7484 (100%).

Thermogravitic Analysis

Figure S1. TGA of **3a**.

Figure S2. TGA of 4a.

Figure S4. TGA of TAI-b.

DSC trace of TAI-b

Figure S5. DSC of TAI-b. Note that the bumps are system artifacts from the instrument

rather than real phase transitions.

Optical Images

Figure S6. Normal optical image (left) and polarized optical image (right) of **TAI-b** nanofibers (× 500).

Electrochemical Measurements

Figure S7. CV of (a) **TAI-b**, (b) **3a**, (c) **5a** and (d) **4b**. Ferrocene/ferrocenium redox couple was used as the internal standard in all cases.

Figure S8. Powder XRD of the TAI-b nanofibers.

Thin-Film UV-vis Spectra

Figure S9. Thin film UV-vis spectra of **TAI-b** (red), **4b** (green), **3a** (deep red), **4a** (light green) and **5a** (orange).

Figure S10. UV-vis spectra of **TAI-b** at 10 µM, 8.0 µM, 6.0 µM, 4.0 µM and 2.0 µM.

Figure S11. Fluorescence spectra of TAI-b, 4b, 3a, 4a and 5a.

Figure S12. MALDI-TOF spectrum of asymmetric cyclic trimer **3a**. The insert indicates the isotopic distribution of the molecular ion peak.

Figure S13. MALDI-TOF spectrum of acyclic trimer **4a**. The insert indicates the isotopic distribution of the molecular ion peak.

Figure S14. MALDI-TOF spectrum of tetramer **5a**. The insert indicates the isotopic distribution of the molecular ion peak.

Figure S15. MALDI-TOF spectrum of **TAI-b**. The insert indicates the isotopic distribution of the molecular ion peak.

Figure S16. MALDI-TOF spectrum of acyclic trimer **4b**. The insert indicates the isotopic distribution of the molecular ion peak.

¹H NMR and ¹³C NMR Spectra

Figure S17. ¹H NMR of **3a** (298 K, C₆D₅Cl).

Figure S18. ¹H NMR of **3a** (373 K, C_6D_5Cl), The insert is a blow-up of the aromatic region.

Figure S19. ¹H NMR of **4a** (298 K, CDCl₃).

Figure S20. ¹H NMR of **5a** (298 K, CDCl₃). The insert is a blow-up of the aromatic region and the methyl protons.

Figure S21. ¹³C NMR of **5a** (298 K, CDCl₃).

Figure S22. ¹H NMR of **TAI-b** (413 K, $C_2D_2Cl_4$).

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Figure S23. ¹³C NMR of **TAI-b** (413 K, C₂D₂Cl₄).

Figure S24. ¹H NMR of **4b** (298 K, CDCl₃).

Figure S25. ¹³C NMR of **4b** (298 K, CDCl₃).

References:

- S1. Rogers, D. Z. J. Org. Chem. 1986, 51, 3905-3907.
- S2. Ganesan, P.; Yang, X.; Loos, J.; Savenije, T. J.; Abellon, R. D.; Zuilhof, H.;
- Sudhoelter, E. J. R. J. Am. Chem. Soc. 2005, 127, 14530-14531.
- S3. Q-Chem is a product of Q-Chem. Inc.
- S4. Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.
- S5. Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
- S6. Tretiak, S.; Mukamel, S. Chem. Rev. 2002, 102, 3171.