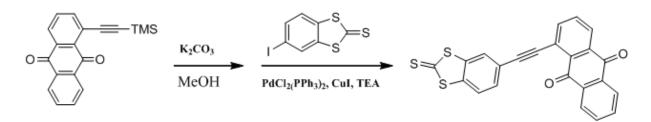
Electronic Supplementary Information (ESI)

Platinadithiolene-conjugated Pyrylium Salt with Strong Intramolecular Donor-Acceptor Interaction

Koya Prabhakara Rao,^{*a*} Tetsuro Kusamoto,^{*a*} Yuki Yamamoto,^{*a*} Shoko Kume,^{*a*} Ryota Sakamoto,^{*a*} Masayuki Nihei,^{*b*} Hiroki Oshio,^{*b*} and Hiroshi Nishihara^{**a*}

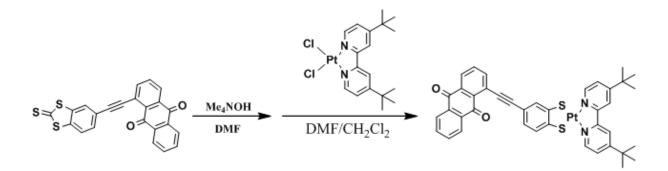

^{*a*} Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 ,Japan. Fax +81(03)5841-8063; Tel: +81(03)5841-4346; E-mail: <u>nisihara@chems.u-tokyo.ac.jp</u>

^b Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8571, Japan

Experimental Section

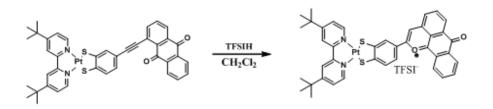
Synthesis:

1) **1-pdtAq:**



Under N₂, a mixture of 1-((trimethylsilyl)ethynyl)anthraquinone (0.350 g, 1.15 mmol), and K₂CO₃ (0.318 g, 2.31 mmol), in MeOH (40 mL) was stirred for 12 hrs. The solvent was removed under vacuum and added a mixture of 5-iodobenzo[*d*][1,3]dithiole-2-thione (0.357 g, 1.15 mmol) was prepared according to the reported procedure^[1,2], bis(triphenylphosphine)palladium(II) dichloride (0.161 g, 0.23 mmol) and cuprous iodide (0.088 g, 0.46 mmol) in triethylamine (50 mL, 358.73 mmol) was refluxed at 90 °C overnight. The color of the reaction mixture was changed from yellow to dark brown. After cooling to room temperature, the solvent was removed under vacuum. The residue was dissolved in chloroform and washed with water and dried with Na₂SO₄. The product was purified by silica gel column chromatography eluted with CH₂Cl₂: hexane = 3 : 1. **1-pdtAq**, was obtained in 40% yield. Anal. Calcd for C₂₃H₁₀O₂S₃.0.4(H₂O): C, 65.50; H, 2.58. Found: C, 65.49; H, 2.81. ¹H NMR (CDCl₃400 MHz): δ 7.51(d, 1H, *J* = 8.3 Hz), 7.72 (d, 1H, *J* = 8.3 Hz), 7.80 (m, 4H), 7.98 (d, 1H, *J* = 7.8 Hz), 8.31 (d, 1H, *J* = 6.8 Hz), 8.37 (m, 2H).

References


- (1) J. Nakayama, E. Seki, M. Hoshino, J. Chem. Soc., Perkin Trans. 1, 1978, 468 471.
- (2) J. Nakayama, H. Sugiura, M. Hoshino, *Tetrahedron Lett*, **1983**, *24*, 2585-2588.

2) Pt(1-pdtAq)(^tBu₂bpy):

Under N₂, a mixture of **1-pdtAq** (0.140 g, 0.34 mmol), and tetramethylammonium hydroxide (1.15 mL, 2.71 mmol), in DMF (25 mL) was stirred for 3 h. The color of the reaction mixture was changed from yellow to dark red. To this reaction a mixture (⁴Bu₂bpy)PtCl₂ (0.216 g, 0.41 mmol) in DMF/ CH₂Cl₂ (15/10 mL) was added and stirred at room temperature for 6 h. The color of the reaction mixture was changed from dark red to violet. The solvent was removed under vacuum. The residue was dissolved in CH₂Cl₂ and washed with water and dried with Na₂SO₄. The product was purified by basic Al₂O₃ column chromatography eluted with CH₂Cl₂: hexane = 5:1. **Pt(1-pdtAq)(^tBu₂bpy)** was obtained in 29% yield. Anal. Calcd for C₄₀H₃₄N₂O₂PtS₂·0.55(CH₂Cl₂): C, 55.31; H, 4.02; N, 3.18. Found: C, 55.38; H, 4.14; N, 3.01. HRMS (ESI-TOF): *m/z* = 833.1716 (calcd M⁺ 833.1713). 1H NMR (400 MHz, CDCl₃): δ 7.21(dd, 1H, *J* = 9.0 Hz, 1.5Hz), 7.44 (d, 1H, *J* = 8.0 Hz), 7.50 (m, 2H), 7.73 (t, 1H, *J* = 7.8 Hz), 7.79 (m, 2H), 7.97 (m, 4H), 8.28 (m, 2H), 8.39 (d, 1H, *J* = 7.6 Hz), 9.17 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) 30.3, 35.9, 88.5, 98.2, 115.9, 119.7, 124.8, 125.9, 125.6, 126.7, 126.9, 127.7, 128.1, 131.8, 132.7, 132.8, 132.9, 133.7 134.5, 134.6, 140.3, 148.4, 155.7, 163.0, 183.3.

3) [Pt(1-pdtPyl)(^tBu₂bpy)](TFSI):

Under an argon atmosphere, Pt(1-pdtAq)(^tBu₂bpy) (0.050 g, 0.12 mmol) was dissolved in 10 mL CH₂Cl₂ and stirred. To this was added bis(trifluoromethanesulfone)imide (0.040 g, 1.19 in 3 mL CH₂Cl₂. The color of solution changed from violet to dark red. After stirring for 30 min, 20 mL hexane was added. The mixture was allowed to crystallize overnight. The dark precipitate filtered off using а membrane filter and washed with hexane. [Pt(1was 85% pdtPyl)(^tBu₂bpy)](TFSI) vield. Anal. Calcd was obtained in for C₄₂H₃₅N₃O₆S₄F₆Pt.2(H₂O): C, 43.82; H, 3.41; N, 3.65 %. Found: C, 43.86; H, 3.30; N, 3.44 %. HRMS (ESI-TOF): m/z = 834.1794 (calcd M⁺ 834.1791).

NMR Measurements and Mass Spectrometry: ¹H NMR and ¹³C spectra of samples in chloroform- d_1 were collected with AL-400 (JEOL) NMR and DRX500 NMR (Bruker) spectrometer, respectively. ESI-TOF mass spectra were recorded with a LCT time-of-flight mass spectrometer (Micromass).

UV-vis-near-IR Spectroscopy in Solution: Samples for UV-vis-near-IR spectroscopy in solution were prepared under an argon atmosphere. UV-vis-NIR spectra were recorded with a V-570 spectrometer (JASCO). Quartz cells with a path length of 0.1 cm were utilized to observe absorption in the UV region.

DFT calculations: The geometries of **1-pdtAq**, **Pt(1-pdtAq)(^tBu₂bpy)** and **[Pt(1-pdtPyl)(^tBu₂bpy)]**⁺ were fully optimized using the DFT methods. The three-parametrized Becke-Lee-Yang-Parr (B3LYP) hybrid exchange-correlation functional was employed. The 6-31G** basis set was used for all atoms and LanL2DZ(Hay-Wadt ECP) basis set was used for Pt

atom. Based on the optimized structure, the TD-DFT method was applied to calculate the excited states relevant to the absorption spectra of each compound. The solvent effect (CH_2Cl_2) was considered using the PCM model. The present calculations were implemented using the Gaussian03 program package.¹

References

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian03, Revision C.02*, Gaussian, Inc., Pittsburgh PA, **2003**.

EPR measurements: The spin susceptibility of the samples was measured using a JEOL FA 200. The sample solution was introduced in the sample tube and degassed by three freeze–pump–thaw cycles. Finally, the tube was sealed under vacuum.

Magnetic susceptibility measurements: The magnetic susceptibilities were measured using an MPMS-5S superconducting quantum interference device spectrometer (SQUID) at a field length of 2 T (Quantum Design) in the temperature range of 1.8–300 K. The scan rate of the temperature was fixed to 3.0 K/min and each measurement was performed 30 seconds after the temperature had stabilized. Aluminum foil purchased from Nippaku Co. was used for the sample

containers, the magnetic contributions of which were subtracted as background by measuring their individual magnetic susceptibilities at each experiment.

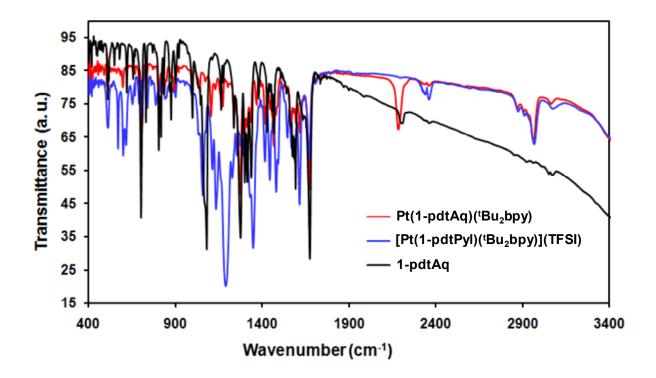
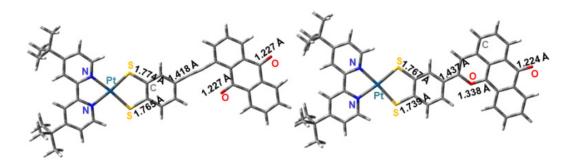
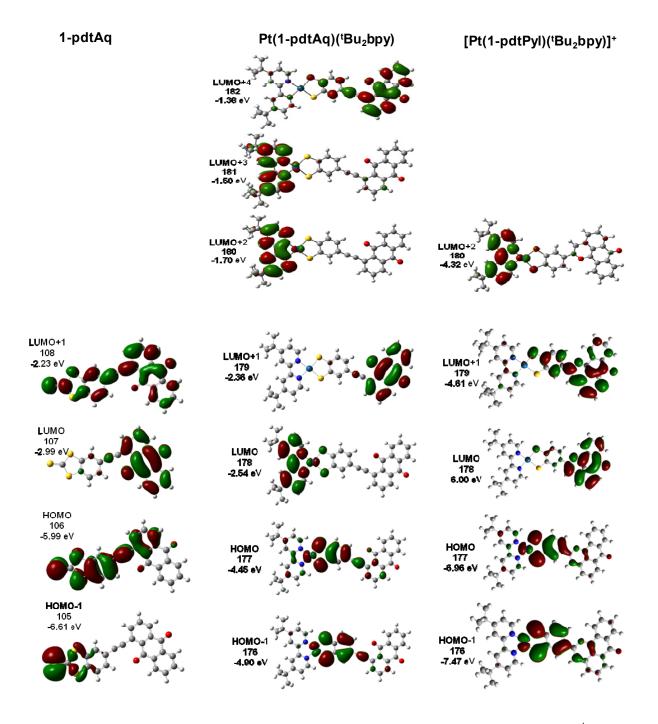
Table S1. Experimental and calculated excitation energies to the lowest excited state for, [Pt(1-
pdtPyl)(^t Bu ₂ bpy)] ⁺

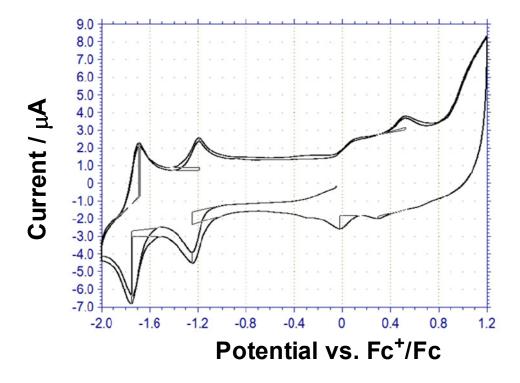
Excitation energy / eV		Oscillator strength (Calcd.)	Assignment (CI Coefficient)
Exptl.	Calcd.		(CI Coemcient)
1.28	1.09	0.0723	177→178 (0.67890)
1.75	1.55	0.1591	176→178 (0.68168)
2.34	2.33	0.5644	$\begin{array}{c} 174 \rightarrow 178 \ (-0.13730) \\ 177 \rightarrow 179 \ (0.60566) \\ 177 \rightarrow 180 \ (-0.29292) \end{array}$
2.34	2.47	0.0188	$\begin{array}{c} 174 \rightarrow 178 \ (-0.12093) \\ 177 \rightarrow 179 \ (0.25248) \\ 177 \rightarrow 180 \ (0.60833) \end{array}$
2.82	2.58	0.1571	174→178 (0.62562) 176→179 (-0.15754) 177→180 (0.14954)
2.82	2.72	0.0412	176→179 (0.49118) 176→180 (-0.47889)
2.82	2.85	0.2803	$\begin{array}{c} 174 \rightarrow 178 \ (0.10019) \\ 176 \rightarrow 179 \ (0.43007) \\ 176 \rightarrow 180 \ (0.47649) \\ 177 \rightarrow 181 \ (-0.11317) \end{array}$
2.82	2.85	0.0019	177→183 (0.67476)
2.82	3.01	0.0100	172→178 (0.34991) 173→178 (0.60335)
2.82	3.10	0.0127	166→178 (0.30580) 168→178 (0.55981) 171→178 (-0.14825) 177→181 (0.16757)
2.82	3.13	0.0819	166→178 (-0.15594) 171→178 (-0.26578) 172→178 (0.11937) 173→181 (-0.11792) 177→181 (0.59362)

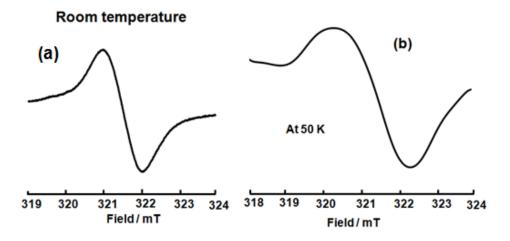
Table S1. (continued)

3.65	3.20	0.0071	$172 \rightarrow 178 (0.58997) \\ 173 \rightarrow 178 (-0.33151) \\ 177 \rightarrow 181 (-0.14926) \\ 177 \rightarrow 182 (0.10373)$
3.65	3.21	0.0046	177→182 (0.68469)
3.65	3.22	0.0008	$\begin{array}{c} 174 \rightarrow 183 \ (0.11068) \\ 175 \rightarrow 179 \ (-0.16224) \\ 175 \rightarrow 180 \ (0.32736) \\ 176 \rightarrow 183 \ (0.55880) \end{array}$
3.65	3.28	0.0029	175→179 (-0.27170) 175→180 (0.52548) 176→183 (-0.33340)
3.65	3.28	0.1332	166→178 (-0.21879) 169→178 (0.31668) 171→178 (0.45715) 177→181 (-0.24321)
3.65	3.39	0.0386	177→184 (0.68016)
3.65	3.43	0.0156	166→178 (0.52041) 169→178 (-0.16596) 171→178 (0.37441)
3.65	3.59	0.0586	175→183 (0.35915) 176→181 (0.53748) 176→182 (0.19154)
3.65	3.67	0.0286	175→183 (-0.24011) 176→182 (0.63299)
3.82	3.81	0.1462	174→179 (0.57775) 176→184 (0.29992) 177→185 (-0.13718)
3.82	3.84	0.0094	177→185 (0.68085)
3.82	3.87	0.0135	$165 \rightarrow 178 (-0.24011) \\ 174 \rightarrow 179 (-0.27840) \\ 174 \rightarrow 180 (-0.26442) \\ 176 \rightarrow 184 (0.53566)$
3.82	3.93	0.0031	165→178 (0.67480) 174→179 (-0.11970)

Fig. S1. Deconvolution of the IVCT band for [Pt(1-pdtPyl)(^tBu₂bpy)](TFSI).


Fig. S2. FT-IR spectra of 1-pdtAq (black), Pt(1-pdtAq)(^tBu₂bpy) (red) and [Pt(1-pdtPyl)(^tBu₂bpy)](TFSI) (blue).


Fig. S3. Optimized structures of **Pt(1-pdtAq)(^tBu₂bpy)** (left) and **[Pt(1-pdtPyl)(^tBu₂bpy)]**⁺ (right) by the DFT (B3LYP) method.

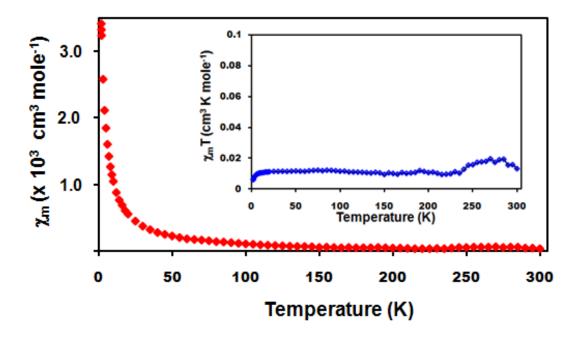

Fig. S4. Molecular orbitals calculated by the DFT method for **1-pdtAq**, **Pt(1-pdtAq)**(^t**Bu**₂**bpy**) and [**Pt(1-pdtPyl)**(^t**Bu**₂**bpy**)]⁺.

Fig. S5. A cyclic voltammogram of $(Pt(1-pdtAq)(^{t}Bu_{2}bpy)$ at 0.1 Vs⁻¹ in 0.1 M Bu₄NClO₄-CH₂Cl₂ at 293 K.

Fig. S6. EPR spectra of $[Pt(1-pdtPyl)(^{t}Bu_{2}bpy)](TFSI)$ in the solid state at room temperature (a), and in a CH₂Cl₂ frozen solution (2.0×10^{-4} M) at 50 K (b).

Fig. S7. Magnetic susceptibility (χ_m) vs temperature (T) plot of [Pt(1-pdtPyl)(^tBu₂bpy)](TFSI). Inset shows a χ_m T - T plot of [Pt(1-pdtPyl)(^tBu₂bpy)](TFSI).