Aggregation-Induced Emission Enhancement of Polycyclic Aromatic Alkaloids Derivatives and the Crucial Role of excited-state proton- transfer

Tao He^a, XuTang Tao^a*, JiaXiang Yang^b, Dan Guo^a, HaiBing Xia^a, Jiong Jia^{ac} and MinHua Jiang^a

^a State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.

^b Department of Chemistry, Anhui University, Hefei, 230039, P. R. China.

^c Department of Chemistry, Shandong University, Jinan, 250100, P. R. China.

Table of Contents

Experimental Section

(2)

Figure S1. (a) The fluorescence of **TBBF** in ethanol (left), ethanol/water = 1:9 (middle) and solid of **TBBF** under illumination with a 365 nm lamp. (b) The fluorescence of **TBBH** in ethanol (left), ethanol/water = 1:9 (middle) and solid of **TBBH** under illumination with a 365.0nm lamp. (5)

Figure S2 Absorption and **PL** spectra of **TBBH** in ethanol-water mixtures with different fractions of water; $c = 5\mu M$. (5)

Figure S3. SEM images of TBBH (The volume of water: a. 0%; b. 30%; c. 50%;

d. 70%; e. 80%; f. 90%; g. 100%) (6)

Figure S4. The nano-particle size of TBBH (a) and TBBF (b) in ethanol/water solution. (6)

Figure S5. Emission spectra of **TBBH** (a) and **TBBF** (b) in toluene, **THF**, **DMF**. Excitation wavelength, 400nm; $c = 10\mu M$. (6)

Figure S6. The HOMO and LUMO of TBBH are obtained by calculation.(7)

Figure S7. PL spectra and normalized fluorescence emission spectra of TBBH in

different pH.

 Figure S8. NMR spectra of TBBH taken in CDCl₃ at room temperature with various concentrations.
 (8)

Figure S9. IR spectra of TBBH (a) in solution (CDCl₃) and (b) solid state. (9)
Figure S10. (a) Intramolecular interactions in the single molecule; (b) Intermolecular interactions within the crystal structure of TBBH projected onto the *ab* plane; (c) Intermolecular interactions within the crystal structure of TBBH projected onto the *bc* plane. (10)

Table S1. Optical Properties of TBBF and TBBH in Ethanol/Water Mixtures.(11)Table S2. Prominent molecular forces for structure of TBBH.(11)Table S3. Crystal data and structure refinement parameters for TBBH.(12)

Experimental Section

General Information. All reagents and starting materials are commercially available and were used as received. Scheme 1 shows the synthesis routes and molecular structures of the two polycyclic aromatic alkaloids derivatives, TBBH and TBBF. The ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance 400 spectrometer. Mass spectrum was determined with an AXIMA-CFR plus MALDI-TOF mass spectrograph. Absorption measurements were carried out on a TU-1800 spectrophotometer. Photoluminescence (**PL**) measurements were recorded using a Hitachi F-4500 fluorescence spectrophotometer with a 150 W Xe lamp. **IR** spectra were obtained on a VERTEX-70 spectrometer. The X-ray diffraction intensity data were collected at 293 K on a Bruker Smart Apex2 CCD area-detector diffractometer with graphite-monochromated Mo Ka radiation (λ =0.71069 Å). Data were corrected for absorption. Processing the intensity data was carried out using the Bruker SMART routine, and the structures were solved by direct methods and refined by a full-matrix least-squares technique on F² using SIR-97 programs. Crystallographic data and refinement parameters are given in Table S3

Synthesis of N-Trifluoracetyltryptamin

Under an argon atmosphere, Tryptamine (8.0 g, 50.0 mmol) in 300 mL

Dichloromethane was stirred at 0 °C. Then **TFAA** (8.5ml, 60.0 mmol) was slowly added, after 5h reacted at 0 °C, water was added to terminate the reaction. The mixture was extracted, dried over with anhydrous sodium sulfate. The solvent was removed under reduced pressure, and then the residue was purified by flash column chromatography over silica gel with petroleum ether / dichloromethane (2:1) as a eluate, a product of a yellow solid 10.28g, Yield of 80.30%.¹H NMR (CDCl₃, 300 MHz, ppm) δ : 3.04 (t, *J* = 7.2Hz, 2H), 3.68 (dd, *J* = 6.6Hz, *J* = 6.6Hz, 2H), 6.40 (s, 1H), 7.03 (s, 1H), 7.12-7.26 (m, 2H), 7.37 (d, *J* = 8.1Hz, 1H), 7.57-7.60 (d, *J* = 7.2Hz, 1H) ,8.13 (s, 1H); ¹³ C NMR (CDCl₃, 100.61 MHz, ppm) δ : 24.71, 40.10, 111.44, 111.47, 118.46, 119.78, 122.25, 122.52, 126.95, 136.49; MALDI/TOF MS calcd for C₁₂H₁₁F₃N₂O 256.08, found 255.98.

Synthesis of N-Formyl -2-(3-trifluoracetylaminopropionyl)aniline

NaIO₄ (6.84 g, 32.0 mmol) was dissolved in 160 mL of water and then stirred for 30 minutes at 0 °C. N-Trifluoracetyltryptamin (2.05 g, 8.0 mmol) in 160 mL methanol was dropped. After removing the ice bath, the reaction was stirred at room temperature for 20 hours. The mixture was poured into 150 mL of water and extracted with dichloromethane (3 × 150 mL). The crude product was purified by flash column chromatography (petroleum ether/CH₂Cl₂ = 1:1) to give 1.98g as white solid (86.08% yield). ¹H NMR (CDCl₃, 300 MHz, ppm) δ : 3.38 (t, *J* = 5.7Hz, 2H), 3.76-3.83 (m, 2H), 6.91 (s, 1H), 7.17 (m, 1H), 7.61 (t, *J* = 7.8Hz, 1H), 7.85 (d, *J* = 8.4Hz, 1H), 8.52 (s, 1H), 8.76 (d, *J* = 8.4Hz, 1H), 11.43 (s, 1H); ¹³C NMR (CDCl₃, 100.61 MHz, ppm) δ : 34.79, 38.59, 113.87, 117.69, 121.11, 121.85, 123.36, 130.80, 135.92, 140.06, 159.82, 202.84; MALDI/TOF MS calcd for C₁₂H₁₁F₃N₂O₃ 288.07, found 287.86.

Synthesis of 2-(3-trifluoracetylaminopropionyl)aniline

N-Formyl-2-(3-trifluoracetylaminopropionyl)aniline (1.45 g, 5.0 mmol) was dissolved in 100 mL Methanol solution, conc. HCl (0.62 mL, 7.5 mmol) was dropped into the reaction mixture, refluxed for 1 hour. After cooling to room temperature, the reaction solution is neutralized with 1 M potassium carbonate solution to PH=6. The yellow residue was poured into 25 mL water and extracted with CH_2Cl_2 (3 × 75 mL). The organic phase was dried with sodium sulfate and the solvent removed under vacuum. The crude product was purified by flash column chromatography (petroleum ether/CH₂Cl₂ = 1:1) to give 1.02g as yellow crystal (78.46% yield). ¹H NMR (CDCl₃, 300 MHz, ppm) δ : 3.24 (t, *J* = 5.7Hz, 2H), 3.77 (dd, *J* = 6.0Hz, *J* = 6.0Hz, 2H), 6.29 (s, 2H), 6.65 (m, 2H), 7.28 (m, 2H), 7.63 (d, *J* = 8.4Hz, 1H); ¹³ C NMR (CDCl₃, 100.61 MHz, ppm) δ : 34.98, 37.60, 113.96, 116.14, 117.16, 117.52, 117.77, 130.90, 135.11, 150.57, 200.55; MALDI/TOF MS calcd for C₁₁H₁₁F₃N₂O₂ 260.08, found 259.93.

Synthesis of 4-(2-(3-trifluoroacetylamino)propionylphenylamino)-9 -(2-trifluoroacetylamino)ethylacridine-1,2-dione (TBBF)

2-(3-trifluoracetylaminopropionyl)aniline (1.3g, 5mmol) was reacted with catechol (0.24g, 2.2mmol) in aq. EtOH in the presence of (5.0g, 25mmol) NaIO₃ at room temperature for 30 hours. Then 30mL water was added to terminate the reaction. The mixture was extracted with CH₂Cl₂, dried over with anhydrous sodium sulfate. The solvent was removed under reduced pressure, and then the residue was purified by flash column chromatography over silica gel with ethanol / dichloromethane (1 : 30) as a eluate, a product of a orange solid 0.53g, Yield of 17.5%.¹H NMR (CDCl₃, 300 MHz, ppm) δ : 3.42 (m, 2H), 3.62 (m, 4H), 3.88 (t, *J* = 6.9Hz, 2H), 6.48 (s, 1H), 7.40 (t, *J* = 7.8Hz, 1H), 7.82 (m, 2H), 7.89 (t, *J* = 8.4Hz, 1H), 8.06 (t, *J* = 8.4Hz, 1H), 8.13 (d, *J* = 7.8Hz, 1H), 8.24(d, *J* = 7.8Hz, 1H), 8.54(d, *J* = 8.4Hz, 1H), 9.45 (t, *J* = 8.4Hz, 1H), 9.68 (t, *J* = 8.4Hz, 1H), 11.86 (s, 1H); ¹³C NMR (CDCl₃, 100.61 MHz, ppm) δ : 27.85, 29.77, 35.52, 37.41, 103.68, 123.42, 123.98, 125.21, 126.36, 128.57, 128.61, 129.77, 130.57, 132.01, 133.67, 134.46, 138.42, 146.72, 150.36, 151.55, 156.47, 156.72, 156.95, 157.20, 178.14, 182.79, 201.24; MALDI/TOF MS calcd for C₂₈H₂₀F₆N₂O₅ 606.13, found 605.84.

Synthesis of 4-(2-acetylphenylamino)-9-methylacridine-1,2-dione (TBBH)

TBBH was prepared according to the same procedure as that of **TBBF** from1-(2-aminophenyl)ethanone (2.97g, 22mmol) and catechol (1.1g, 10mmol). Column chromatography(ethanol / dichloromethane =1:30 as a eluate, a product of a orange solid 1.16g, Yield of 32.58%.¹H NMR (CDCl₃, 300 MHz, ppm) δ : 2.72 (d, 3H), 3.19 (s, 3H), 6.91 (s, 1H), 7.25 (m, 1H), 7.25(t, *J* = 8.4Hz, 1H), 7.58 (d, *J* = 8.4Hz,

1H), 7.74(m, 2H), 7.87 (t, J = 7.2Hz, 1H), 8.27(m, 2H), 12.31 (s, 1H); ¹³ C NMR (CDCl₃, 100.61 MHz, ppm) δ : 15.55, 28.17, 103.29, 122.20, 122.57, 123.67, 125.11, 127.10, 128.41, 130.48, 131.42, 133.27, 138.40, 146.23, 146.80, 149.97, 151.67, 178.45, 182.58, 200.47; MALDI/TOF MS calcd for C₂₂H₁₆N₂O₃ 356.12, found 357.0.

Fig. S1 (a) The fluorescence of **TBBF** in ethanol (left), ethanol/water = 1:9 (middle) and solid of **TBBF** under illumination with a 365.0nm lamp (right). (b) The fluorescence of **TBBH** in ethanol (left), ethanol/water = 1:9 (middle) and solid of **TBBH** under illumination with a 365.0nm lamp (right).

Fig. S2 Absorption and **PL** spectra of **TBBH** in ethanol-water mixtures with different fractions of water; $c = 5\mu M$.

Fig. S3 SEM images of **TBBH** (The volume of water: a. 0%; b. 30%; c. 50%; d. 70%; e. 80%; f. 90%; g. 100%)

Fig. S4 The nano-particle size of TBBH (a) and TBBF (b) in ethanol/water solution.

Fig. S5 Emission spectra of **TBBF** (left) and **TBBH** (right) in toluene, **THF**, **DMF**. Excitation wavelength, 400nm; $c = 20\mu M$

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Fig. S6 The HOMO and LUMO of TBBH are obtained by calculation.

Fig. S7 PL spectra and normalized fluorescence emission spectra of TBBH in different pH.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Fig. S8 NMR spectra of **TBBH** taken in CDCl₃ at room temperature with various concentrations.

Fig. S9 IR spectra of TBBH (a) in solution $(CDCl_3)$ and (b) solid state.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Fig. S10 (a) Intramolecular interactions in the single molecule; (b) Intermolecular interactions within the crystal structure of **TBBH** projected onto the *ab* plane; (c) Intermolecular interactions within the crystal structure of **TBBH** projected onto the *bc* plane.

Compound	f_w (vol %) ^a	$\lambda_{ab}^{b}(nm)$	$\lambda_{em}^{c}(nm)$	Φ_{F}^{d} (%)	$\tau^{e}(ns)$		
					A_1/A_2	τ_1	τ_2
TBBF	0%	294, 455	443, 470, 509	6.5	1/0	0.072	
	30%	295, 455	450, 476, 510	24.5	1/0	0.087	
	50%	295, 457	452, 479, 511, 565	30.9	0.70/0.30	0.096	4.457
	70%	296, 460	455, 481, 570	65.0	0.45/0.55	0.984	6.452
	90%	296, 460	481, 571	71.9	0.39/0.61	1.127	5.545
TBBH	0%	293, 451	460, 560	5.5	1/0	0.045	
	30%	294, 454	460, 561	6.3	0.96/0.04	0.054	5.090
	50%	293, 452	461, 567	10.7	0.71/0.29	0.171	5.124
	70%	294, 457	461, 570	15.1	0.59/0.41	0.627	5.273
	90%	289,	462, 575	61.1	0.43/0.57	0.756	5.542

Table S1 : Optical Properties of TBBF and TBBH in Ethanol/Water Mixtures

^a f_w = water fraction, solution concentration: 5µM.; ^b λ_{ab} = absorption maximum; ^c λ_{em} = emission maximum, excitation wavelength: 400nm; ^d Quantum yields were calculated on the basis of coumarin as standard (Φ = 0.56 in ethanol); ^e Dynamic parameters determined from $I = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2)$, where A_1/A_2 are the fractions (A) and lifetimes (τ) of shorter (1) and longer (2) lived species. Solution concentration: 5µM. Excitation wavelength: 400nm.

Туре	No	Orientation of interacti	on Distance (Å)	Angle (deg)
intra	1	N(1)H(1D)O	(1) 2.03	129
	2	N(1)H(1D)N	(2) 2.12	112
	3	C(22)H(22C)O	(2) 2.12	127
inter	4	C(4)H(4A)O	(2) 2.37	146
	5	C(1)H(1B)O	(3) 2.59	140
	6	C(17)H(17A)O	(3) 2.61	113
	7	C(7)H(7A)O	(3) 2.66	138
	8	O(4)H(10)O	(1) 2.16	
	9	C(1)H(22B)O	(1) 2.60	126
	10	C(1)H(1C) Cg	(2) 2.82	17.89

Table S2 Prominent molecular forces for structure of TBBH

TBBH		
$C_{22}H_{16}N_2O_3$ H ₂ O		
374.38		
Monoclinic		
10.898(3)		
22.742(7)		
7.482(2)		
90.00		
106.178(4)		
90.00		
1780.8(9)		
273(2)		
P21/c		
4		
19956		
3798		
0.1114		
0.0775		
0.2049		
0.1930		
0.2729		
1.000		

Table S3 Crystal data and structure refinement parameters for TBBH