Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Experimental

Titanium oxide film was deposited directly on FTO substrate by applying an anodic current density of 5 μ A cm⁻² for 4000 s. The plating solution consisted of a solution of 0.25 mol L⁻¹ TiCl₃ (20 wt% TiCl₃ in 3 wt% HCl aqueous solution) at room temperature under a nitrogen atmosphere.^{1,2} The plating solution of pH 2.5 was adjusted by Na₂CO₃ solution and stirred by a Teflon stir bar on a magnetic hot plate during the entire deposition. The blocking layer formed by TiCl₄ treatment was carried out to compare the effects of different blocking layers on the photoelectron conversion efficiency of the cells. The detailed procedure of TiCl₄ treatment was described in a literature.³ Prior to electrochemical deposition, FTO (Nippon Sheet Glass) was cut into pieces of 4 cm × 4 cm, soaked in acetone and ultrasonic vibrated for 20 min to wash away any contaminants off the surface. De-ionized water was then used to rinse the FTO in ultrasonic vibration for another 15 min. A pre-process was applied to ensure the uniformity and adhesion of the deposited titanium oxide: conduct a 2 mA cm⁻² current through each FTO sample in NaOH solution (1 mol L⁻¹) for 30 s for anodic oxidation. The as-deposited films were rinsed several times in de-ionized water and then dried for 1 h in air at 450°C. All electrochemical experiments were carried out in a three-compartment cell. A saturated calomel electrode (SCE) was used as the reference electrode and a platinum foil with dimension $4 \text{ cm} \times 4 \text{ cm}$ was the counter electrode.

Surface morphology of the deposited films was examined with a field-emission electron microscope (FE-SEM, Jeol JEOL-6330). Crystal structure of the deposited films was identified by a glance angle X-ray diffractometer (GAXRD, Rigaku D/MAX2500) with a Cu K α target (wavelength = 1.54056 Å) and an incidence angle of 2°. The optical transmittance of the deposited films was carried out with an ultraviolet-visible spectrometer (UV-VIS, PerkinElmer Lambda 35). The photoanode was prepared by screen printing the TiO₂ paste on the FTO or the TiO₂-coated FTO. The TiO₂ paste used for photoanodes was in-house made by Tripod as shown in Scheme S1. The prepared TiO₂ film electrode was calcined at 450°C for 1 h in air. The thickness of resultant TiO₂ film was approximately 15 µm. The adsorption of dye on the TiO₂ surface was carried out by soaking the TiO₂ electrodes in a dry ethanol solution of N719 dye (3×10⁻⁴ mol L⁻¹, C₅₈H₈₆O₈N₈S₂Ru) at room

temperature for 12 h. In this study, we used a two-step dip coating process to prepare a nanocluster Pt counterelectrode and the detailed procedure was described in a previous publication.⁴

Scheme S1 Flow diagram of TiO₂ paste used in screen-printing process.

A dye-coated photoanode was assembled with a counterelectrode by using a sealing plastic (25 μ m, SX-1170-25, Solaronix) to form a sandwich-type DSSC. An electrolyte containing 0.6 mol L⁻¹ DMPII (1-propyl-2,3-dimethylimidazolium iodide), 0.1 mol L⁻¹ LiI (lithium iodide), 0.05 mol L⁻¹ iodine, and 0.5 mol L⁻¹ TBP (4-tert-butylpyridine) in AN (acetonitrile) was then infiltrated into voids between the two electrodes of the cell. The photovoltaic properties of the fabricated DSSCs were carried out by scanning DSSCs from the open-circuit voltage (V_{oc}) of the cell to the short-circuit condition (V_{sc}) at 5 mV s⁻¹ with a source meter (Keithley 2400) under one-sun illumination by a solar simulator (AM1.5, 100 mW cm⁻²). Electrochemical impedance measurement was carried out under one-sun illumination using an AUTOLAB P10 potentiostat with ac amplitude of 5 mV at a frequency range of 50 kHz down to 0.1 Hz.

X-ray diffraction

Figure S1 shows XRD patterns of the bare FTO and TiO₂-coated FTO substrates after annealing at 450°C for 1 h. Clearly, in addition to the characteristic peaks of the FTO substrate, the diffraction peaks of the deposited film could be identified as anatase TiO₂ (JCPDS 89-4921). In addition to crystal structure, the optical transmittance of the TiO₂-coated FTO should be assured when used as the TCO (transparent conductive oxide) layer of DSSCs.

Fig. S1 XRD patterns of the bare FTO and TiO₂-coated FTO substrates.

Optical transmittance

Figure S2 shows the UV-vis spectra of the bare FTO and TiO₂-coated FTO substrates. The transmittance of the TiO₂-coated FTO was similar to that of the bare FTO in all wavelength regions, indicating that the deposited porous TiO₂ film did not significantly decrease the substrate transmittance since a very thin layer was obtained. As a result of this, the proposed TiO₂ bifunctional layer did not result in the loss of harvest of light.

Fig. S2 UV-vis spectra of the bare FTO and TiO₂-coated FTO substrates.

Cross-sectional SEM micrographs of photoanodes

Figure S3 shows the cross-sectional SEM micrographs of photoanodes employing bare FTO substrate and TiO₂-coated FTO substrate (bifunctional TiO₂ layer). Clearly, a small gap between the FTO substrate and main TiO₂ layer was found in the photoanode employing bare FTO substrate (Fig. S3a). The interfacial adhesion between the FTO substrate and main TiO₂ layer was significantly improved by employing the TiO₂-coated FTO substrate (Fig. S3b). The deposited TiO₂ film could employ as a bifunctional layer in DSSC, which acts as a blocking layer to suppress the charge recombination and an anchoring layer to reduce the interfacial contact resistance.

Fig. S3 Cross-sectional micrographs of photoanodes employing (a) FTO substrate and (b) TiO₂-coated FTO substrate.

References

- 1. L. Kavan, B O'Regan, A. Kay and M. Grätzel, J. Electroanal. Chem., 1993, 346, 291.
- K. Wessels, A. Feldhoff, M. Wark, J. Rathousky and T. Oekermann, *Electrochem.* Solid-State Lett., 2006, 9, C93.
- 3. S. Ito, P. Liska, P. Comte, R. Charvet, P. Péchy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin and M. Grätzel, *Chem. Commun.*, 2005, 4351.
- 4. T. C. Wei, C. C. Wan and Y. Y. Wang, Appl. Phys. Lett., 2006, 88, 103122.