Electronic Supplementary Information (ESI) for

An efficient H₂O₂-based oxidative bromination of alkenes, alkynes, and aromatics by a divanadium-substituted phosphotungstate

Kazuhiro Yonehara, Keigo Kamata, Kazuya Yamaguchi, and Noritaka Mizuno*

Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 E-mail: tmizuno@mail.ecc.u-tokyo.ac.jp

Experimental Section

General. GC analyses were performed on Shimadzu GC-2014 with a FID detector equipped with a TC-WAX capillary column (0.25 mm \times 30 m, GL Science Inc.). Mass spectra were recorded on a Shimadzu GCMS-QP2010 equipped with a TC-5HT capillary column (0.25 mm \times 30 m, GL Science Inc.) at an ionization voltage of 70 eV. NMR spectra were recorded at room temperature on JEOL JNM-EX-270 (¹H, 270 MHz; ¹³C, 67.8 MHz; ⁵¹V, 70.9 MHz; and ³¹P, 109 MHz). Chemical shifts (δ) were reported in ppm downfield from TMS (internal, in CDCl₃), TMS (internal, in CDCl₃), neat VOCl₃ (external), and 85% H₃PO₄ (external) for ¹H, ¹³C, ⁵¹V, and ³¹P NMR spectra, respectively. Vanadium salts and complexes were obtained from Wako, Aldrich, or Kanto (reagent grade), and used as received. Solvents and substrates were obtained from Tokyo Kasei or Aldrich (reagent grade), and purified prior to the use.^{S1}

Synthesis and Characterization of TBA₄[γ -HPV₂W₁₀O₄₀] (1). The cesium salt of deprotonated divanadium-substituted phosphotungstate Cs₅[γ -PV₂W₁₀O₄₀] was synthesized according to the published literature procedures^{S2} and characterized by IR spectroscopy. The tetra-*n*-butylammonium (TBA) salt of the monoprotonated derivative TBA₄[γ -HPV₂W₁₀O₄₀] (1) was prepared by the cation exchange reaction.¹⁰ Sodium metavanadate (1.2 mmol) was dissolved in 120 mL of hot water. Upon cooling, the pH of the solution was adjusted to 2.0 with 3 M HCl. Cs5[γ -PV₂W₁₀O₄₀]·6H₂O (3.8 g, 1.1 mmol) was dissolved into the solution and the insoluble materials were removed by filtration. TBABr (1.8 g, 5.6 mmol) was added with vigorous stirring. The precipitate was collected by filtration, washed with 400 mL of water, and dried in vacuo. Recrystallization from acetone/diethyl ether gave analytically pure orange crystals of 1. Yield: 60%. ⁵¹V NMR (CD₃CN): δ –581 ppm. ¹H NMR (CD₃CN): δ 4.38 ppm (1H per anion). ³¹P NMR (CD₃CN): δ –14.1 ppm. Anal. calcd for [(C₄H₉)₄N]₄[HPV₂W₁₀O₄₀]·H₂O; C, 21.4; H, 4.12; N, 1.56; P, 0.86; V, 2.83; W, 51.1. Found: C, 21.3; H, 3.96; N, 1.61; P, 0.84; V, 2.92; W, 49.0. IR (KBr): 1096, 1062, 1039, 1001, 952, 870, 803, 752, 534, 489, 399, 358, 333, 282, 256 cm⁻¹.

Additional References

- S1 *Purification of Laboratory Chemicals*, 3rd ed., ed. by D. D. Perrin, W. L. F. Armarego, Pergamon Press, Oxford, U.K., 1988.
- S2 P. J. Domaille and R. L. Harlow, J. Am. Chem. Soc., 1986, 108, 2108.

- S3 N. B. Barhate, A. S. Gajare, R. D. Wakharkar and A. V. Bedekar, *Tetrahedron*, 1999, 55, 11127.
- S4 T. Ying, W. Bao and Y. Zhang, J. Chem. Res., 2004, 806.
- S5 N. Narender, P. Srinivasu, S. J. Kulkarni and K. V. Raghavan, *Synth. Commun.* 2000, **30**, 3669.
- S6 A. Podgoršek, S. Stavber, M. Zupan and J. Iskra, *Tetrahedron*, 2009, 65, 4429.
- S7 K. V. V. K. Mohan, N. Narender, P. Srinivasu, S. J. Kulkarni and K. V. Raghavan, *Synth. Commun.*, 2004, **34**, 2143.

Compound Data

Conversions of substrates, yields of products, and selectivities to products are also summarized below.

Compound 3a (Conv. 99%, Yield 90%, Select. 91%)

GC (TC-WAX capillary column, 0.25 mm \times 30 m, GL Science Inc.): carrier gas (N₂, 130 kPa), initial column temperature (50°C), initial time (5 min), final column temperature (220°C), progress rate (10°C/min), injection temperature (250°C), detection temperature (250°C), retention time (15.51 min).

MS (EI): *m/z* (%): 151(8), 149 (10), 137 (7), 135 (8), 112 (8), 111 (69), 71 (10), 70 (11), 69 (100), 67 (7), 57 (46), 56 (8), 55 (49), 53 (7).

¹H NMR (CDCl₃, TMS): δ 4.22–4.12 (m, 1H), 3.85 (dd, J = 10.0, 4.5 Hz, 1H), 3.63 (dd, J = 10.0, 10.0 Hz, 1H), 2.20–2.07 (m, 1H), 1.85–1.71 (m, 1H), 1.57–1.27 (m, 8H), 0.90 (t, J = 6.6 Hz, 3H). ¹³C{¹H} NMR (CDCl₃, TMS): δ 53.1, 36.4, 36.2, 31.5, 28.5, 26.7, 22.5, 14.0.

Compound erythro-3b (2R*3S*) (Conv. 99%, Yield 87%, Select. 88%)

GC (TC-WAX capillary column, 0.25 mm \times 30 m, GL Science Inc.): carrier gas (N₂, 130 kPa), initial column temperature (50°C), initial time (5 min), final column temperature (220°C), progress rate (10°C/min), injection temperature (250°C), detection temperature (250°C), retention time (14.31 min).

MS (EI): *m*/*z* (%): 191 (5), 112 (8), 111 (60), 70 (10), 69 (100), 67 (6), 57 (10), 56 (8), 55 (59), 53 (7).

¹H NMR (CDCl₃, TMS): δ 4.23 (dq, J = 7.5, 6.5 Hz, 1H), 4.11 (ddd, J = 8.2, 7.5, 3.0 Hz, 1H), 2.16–2.04 (m, 1H), 1.96–1.89 (m, 1H), 1.86 (d, J = 6.5 Hz, 3H), 1.69–0.93 (m, 6H), 0.91 (t, J = 6.6, 3H).

¹³C{¹H} NMR (CDCl₃, TMS): δ 61.8, 52.4, 37.1, 31.0, 26.6, 25.0, 22.4, 14.0.

Compound threo-3b (2R*3R*) (Conv. >99%, Yield 76%, Select. 76%)

 \vec{Br} \vec{Br} \vec{Br} \vec{Br} \vec{Sr} $\vec{Sr$

MS (EI): *m/z* (%): 112 (15), 111 (55), 83 (8), 81 (5), 70 (21), 69 (100), 67 (9), 57 (14), 56 (22), 55 (83), 54 (7), 53 (9).

¹H NMR (CDCl₃, TMS): δ 4.45 (dq, J = 3.0, 6.8 Hz, 1H), 4.20 (ddd, J = 10.3, 3.0, 3.0 Hz, 1H), 2.13–2.01 (m, 1H), 1.87–1.81 (m, 1H), 1.76 (d, J = 6.8 Hz, 3H), 1.67–1.54 (m, 1H), 1.34 (m, 6H), 0.91 (t, J = 6.6 Hz, 3H).

¹³C{¹H} NMR (CDCl₃, TMS): δ 60.1, 52.3, 33.9, 30.9, 27.4, 22.4, 21.5, 13.9.

Compound 3c (Conv. 93%, Yield 82%, Select. 88%)

GC (TC-WAX capillary column, 0.25 mm \times 30 m, GL Science Inc.): carrier gas (N₂, 130 kPa), initial column temperature (50°C), initial time (5 min), final column temperature (220°C), progress rate (10°C/min), injection temperature (250°C), detection temperature (250°C), retention time (14.79 min).

MS (EI): *m/z* (%): 244 (0.5), 242 (1.1), 240 (0.6), 163 (14), 161 (15), 82 (9), 81 (100), 79 (18), 67 (8), 54 (7), 53 (10).

¹H NMR (CDCl₃, TMS): δ 4.46 (brs, 2H), 2.52–2.40 (m, 2H), 1.95–1.74 (m, 4H), 1.61–1.26 (m, 2H).

¹³C{¹H} NMR (CDCl₃, TMS): δ 55.2, 32.0, 22.4.

Compound 3d (Conv. 92%, Yield 92%, Select. >99%)

GC (TC-WAX capillary column, 0.25 mm \times 30 m, GL Science Inc.): carrier gas (N₂, 130 kPa), initial column temperature (50°C), initial time (5 min), final column temperature (220°C), progress rate (10°C/min), injection temperature (250°C), detection temperature (250°C), retention time (13.34 min).

MS (EI): *m/z* (%): 272 (7), 270 (13), 268 (7), 199 (5), 134 (6), 133 (6), 132 (7), 121 (8), 119 (14), 117 (6), 110 (9), 109 (100), 81 (13), 79 (8), 77 (5), 71 (11), 70 (37), 69 (48), 68 (14), 67 (89), 66 (6), 65 (11), 55 (43), 53 (16), 52 (6), 51 (14).

¹H NMR (CDCl₃, TMS): δ 6.40 (s, 1H), 2.59 (t, J = 7.3 Hz, 2H), 1.63–1.52 (m, 2H), 1.31 (m, 6H), 0.90 (t, J = 6.8 Hz, 3H).

¹³C{¹H} NMR (CDCl₃, TMS): δ 127.0, 102.1, 36.9, 31.5, 28.0, 27.0, 22.5, 14.0.

<u>Compound 3e (Conv. 99%, Yield 96%, Select. 97%)</u>

GC (TC-WAX capillary column, 0.25 mm \times 30 m, GL Science Inc.): carrier gas (N₂, 130 kPa), initial column temperature (50°C), initial time (5 min), final column temperature (220°C), progress rate (10°C/min), injection temperature (250°C), detection temperature (250°C), retention time (12.27 min).

MS (EI): m/z (%): 272 (7), 270 (14), 268 (8), 148 (6), 146 (6), 135 (26), 134 (6), 133 (34), 131 (8), 110 (9), 109 (100), 81 (8), 79 (7), 77 (6), 67 (30), 66 (5), 65 (9), 57 (33), 56 (7), 55 (22), 54 (5), 53 (34), 52 (7), 51 (16).

¹H NMR (CDCl₃, TMS): δ 2.65 (t, J = 7.6Hz, 2H), 2.41 (s, 3H), 1.63–1.52 (m, 2H), 1.35–1.28 (m, 4H), 0.91 (t, J = 6.9 Hz, 3H).

¹³C{¹H} NMR (CDCl₃, TMS): δ 122.2, 115.1, 40.6, 30.7, 28.8, 27.1, 22.4, 14.0.

Compound 3f (Conv. 94%, Yield 94%, Select. >99%)

GC (TC-WAX capillary column, 0.25 mm \times 30 m, GL Science Inc.): carrier gas (N₂, 130 kPa), initial column temperature (100°C), initial time (5 min), final column temperature (250°C), progress rate (10°C/min), injection temperature (250°C), detection temperature (250°C), retention time (12.97 min).

MS (EI): m/z (%): 278 (11), 276 (24), 274 (12), 197 (24), 195 (26), 117 (6), 116 (66), 115 (100), 89 (15), 65 (5), 63 (13), 62 (6), 58 (21), 51 (7), 50 (5).

¹H NMR (CDCl₃, TMS): *δ*7.41–7.26 (m, 5H), 2.61 (s, 3H).

¹³C{¹H} NMR (CDCl₃, TMS): *δ*140.8, 129.1, 128.6, 128.2, 117.2, 116.8, 29.3.

Compound 3g (Conv. 96%, Yield 96%, Select. >99%)

OCH₃

GC (TC-WAX capillary column, 0.25 mm \times 30 m; GL Science Inc.): carrier gas (N₂, 130 kPa), initial column temperature (50°C), initial time (5 min), final column temperature (220°C), progress rate (10°C/min), injection temperature (250°C), detection temperature (250°C), retention time (15.93 min).

MS (EI): m/z (%): 189 (8), 188 (97), 187 (8), 186 (100), 173 (45), 171 (47), 145 (37), 143 (38), 92 (11), 79 (7), 77 (16), 76 (8), 75 (10), 74 (8), 64 (16), 63 (25), 62 (7), 51 (6), 50 (15). ¹H NMR (CDCl₃, TMS): δ 7.35 (d, *J* = 9.2 Hz, 2H), 6.75 (d, *J* = 9.2, 2H), 3.76 (s, 3H). ¹³C{¹H} NMR (CDCl₃, TMS): δ 158.7, 132.2, 115.7, 112.7, 55.4.

Compound 3h (Conv. 98%, Yield 95%, Select. 97%)

GC (TC-WAX capillary column, 0.25 mm \times 30 m, GL Science Inc.): carrier gas (N₂, 130 kPa), initial column temperature (100°C), initial time (5 min), final column temperature (250°C), progress rate (10°C/min), injection temperature (250°C), detection temperature (250°C), retention time (20.20 min).

MS (EI): m/z (%): 248 (98), 247 (12), 246 (100), 205 (15), 203 (16), 190 (6), 188 (7), 173 (5), 167 (5), 159 (5), 157 (6), 152 (9), 139 (30), 138 (66), 137 (75), 124 (11), 123 (7), 122 (24), 109 (30), 108 (10), 107 (19), 96 (6), 94 (6), 93 (5), 92 (5), 81 (6), 79 (14), 78 (8), 77 (20), 69 (21), 66 (9), 65 (8), 63 (12), 62 (10), 59 (16), 53 (17), 51 (12), 50 (14).

¹H NMR (CDCl₃, TMS): *δ*6.17 (s, 2H), 3.87 (s, 6H), 3.81 (s, 3H).

¹³C{¹H} NMR (CDCl₃, TMS): δ 160.4, 157.4, 91.6, 56.3, 55.4.

Compound 4h (Conv. 96%, Yield 88%, Select. 92%)

GC (TC-WAX capillary column, 0.25 mm \times 30 m, GL Science Inc.): carrier gas (N₂, 130 kPa), initial column temperature (100°C), initial time (5 min), final column temperature (250°C), progress rate (10°C/min), injection temperature (250°C), detection temperature (250°C), retention time (18.92 min).

MS (EI): m/z (%):204 (33), 203 (12), 202 (100), 175 (8), 173 (28), 172 (5), 161 (9), 159 (29), 144 (11), 143 (6), 139 (16), 138 (27), 137 (14), 129 (10), 122 (5), 113 (9), 109 (20), 108 (5), 107 (5), 101 (5), 86 (7), 85 (6), 79 (6), 77 (8), 73 (5), 69 (13), 65 (7), 63 (7), 62 (6), 59 (10), 53 (8), 51 (6), 50 (6). ¹H NMR (CDCl₃, TMS): δ 6.19 (s, 2H), 3.88 (s, 6H), 3.81 (s, 3H).

¹³C{1H} NMR (CDCl₃, TMS): δ 159.4, 156.6, 91.6, 56.3, 55.5.

Alkene	Catalyst	Bromo source	Solvent	Temp.	Time	Total	Selectivity /%		TON	TOF	Ref.
	/Acid			/∘C	/min	yield /%	dibromoalkane	bromohydrin		/h ⁻¹	
2a	1	NaBr	1,2-DCE/AcOH	20	10	06	>99	1	1800	10800	this
	/AcOH		(v/v = 1/2)								work
2a	PhEt ₃ NCl	HBr/CaBr ₂	CCl ₄ /H ₂ O	r.t.	20	92	>66	I	105	315	6b
	/HBr										
1-heptene	WO4 ^{2–} –LDH	NH₄Br	CH ₃ OH/H ₂ O	25	667	60^{\ddagger}	46	I	120	11	6c
	—/		(v/v = 19/1)								
1-heptene	WO4 ²⁻ -LDH	$\rm NH_4Br$	CH ₃ CN/H ₂ O	25	1180	81	17	83	182	9.3	6c
	—/		(v/v = 1/4)								
2a	$\rm NH_4VO_3$	KBr	H ₂ O/CHCl ₃	25	I	95	>66	I	0.95	I	6a
	/HCIO ₄		(v/v = 1/1)								
1-decene	I	HBr	CCI ₄	r.t.	120	95	>99	I	Ι	I	S3
	/HBr										
1-tetradecene	I	NaBr	[bmim]CC1 ₃ COO	r.t.	480	90	>66	I	I	I	$\mathbf{S4}$
	$/H_2SO_4$										
Yields were base † 1-Bromo-2-me	ed on 2a . LDH = thoxyheptane an	Ni, Al- layered d	ouble hydroxide. [bi hoxyheptane were fc	mim] = $1-b_1$ ormed in 9%	utyl-3-met 6 and 23%	hylimidazol s yields, resp	um. r.t. = room tel ectively.	mperature.			

Table S1. Oxidative bromination of terminal alkenes with H₂O₂ (comparison)

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010

(comparison)
3
H_2C
with
f 2g
io uc
natic
romi
_
ative
ά,
XI.
\circ
S2.
able
Ξ

	OCH3		_OCH ₃		OC	H ₃				
	2g		eres agenter teres	Br	B	3g'				
Catalyst/Acid	Bromo source	Solvent	Temp.	Time	Total	Selectivity /	%	TON	TOF	Ref.
			/∘C	/min	yield /%	3g	3g'		$/h^{-1}$	
1	KBr	1,2-DCE/AcOH	20	30	96	66<	I	1920	3840	this
/AcOH		(v/v = 1/2)								work
(NH4) ₆ Mo ₇ O ₂₄ /AcOH	KBr	AcOH	r.t.	20	66	>99	I	74	222	6f
NH4VO3	HBr/KBr	H_2O	r.t.	1440	96	50	50	9.6	0.4	6d
/HBT						0				ţ
NH4VO3 /HBr	HBr/KBr	$H_2O/CHCl_3$ (v/v = 1/1)	r.t.	1440	94	66<	I	9.4	0.4	6d
V ₂ O ₅ /HBr	HBr/KBr	H_2O	25	100	68	66<	I	68	41	6e
V_2O_5	KBr	H_2O	25	06	85	93	7	57	38	6e
/HBr										
V ₂ O ₅ /HBr	KBr	H_2O	25	140	30	66<	I	12	5.1	6e
Ι	HBr/KBr	H_2O	25	100	15	>99	I	I	I	6e
/HBr										
HZSM-5 /AcOH	KBr	AcOH	r.t.	120	66	98	I	I	I	S5
– /HRr	HBr	H_2O	r.t.	480	100	66<	I	I	Ι	S6
- /AcOH	NH₄Br	AcOH	r.t.	180	66	66	I	I	I	S7
Yields were base	d on $2g$. r.t. = room ten	nperature.								

S7