Electronic Supplementary Information (ESI)

A highly specific Rhodamine-based colorimetric probe for hypochlorite and its application in tap water

Xiaoding Lou, Yi Zhang, Qianqian Li, ^{*} Jingui Qin, and Zhen Li ^{*}

Department of Chemistry, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Wuhan University, Wuhan, 430072, China. Fax: 86 27 68756757; Tel: 86 27 62254108; E-mail: <u>lizhen@whu.edu.cn</u>

Experimental Section

Materials and Instrumentations

Compound **1** was obtained following literature procedures.^[25] All reagents were of analytical reagent grade and used without further purification. Doubly distilled water was used for all experiments. CuI, NaClO, H₂O₂, Na₂SO₄, NaClO₄, NaNO₂, Na₂CO₃, NaAc·3H₂O, Na₄P₂O₇ and Sodium Ascorbate were purchased from Sinopharm Chemical Reagent Beijing Co., Ltd. UV-visible spectra were obtained using a Shimadzu UV-2550 spectrometer, and the pH values were determined by using a DELTA 320 PH dollar.

Preparation of solutions of metal ions and anions

1 mmol of each reagents (CuI, 190 mg; NaClO, 680 μ L; H₂O₂,100 μ L; Na₂SO₄, 142 mg; NaClO₄, 122 mg; NaNO₂, 69 mg; Na₂CO₃, 106 mg; NaAc·3H₂O, 136 mg; Na₄P₂O₇, 266 mg; Sodium Ascorbate, 198 mg) was dissolved in distilled water (10 mL) to afford 1×10⁻¹ mol/L aqueous solution. Tris-HCl buffer solutions (pH = 7.0) were prepared using 0.01 M Tris, proper amount of HCl under adjustment by a pH meter. The stock solutions could be diluted to desired concentrations with water before usage. A 5.0×10^{-4} mol/L stock solution of Compound **1** was

prepared in acetonitrile, then 200 μ L of this stock solution was added to a 10 mL glass tube and diluted by Tris-HCl (10 mM, pH = 7.0) buffer and acetonitrile to obtain the solutions of **1** (10 μ M) in Tris-HCl buffer containing 50%(v/v) water/CH₃CN.

UV absorption changes of 1 by Cu⁺

A solution of **1** (10 μ M) was prepared in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN, then 3.0 mL of the solution of **1** was placed in a quartz cell (10.0 mm width) and the UV absorption spectrum was recorded before and after the addition of Sodium Ascorbate and Cu⁺ to the solution of **1**.

UV absorption changes of 1 + Cu⁺ with ClO⁻

A solution of **1** (10 μ M) was prepared in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN, then 3.0 mL of the solution of **1** was placed in a quartz cell (10.0 mm width) and the UV absorption spectrum was recorded. After the solution of Sodium Ascorbate and Cu⁺ was added to **1**, the solution of NaClO was introduced in portions and the UV absorption changes were recorded at room temperature each time.

UV absorption changes of $1 + Cu^+$ with other anions

The solutions of anions were prepared in distilled water. UV absorption changes of $\mathbf{1}$ (1.0×10⁻⁵ mol/L) + Cu⁺ (4.0×10⁻⁵ mol/L) + Sodium Ascorbate (3.0×10⁻⁶ mol/L) were recorded before and after the addition of anions to the solution of $\mathbf{1}$.

UV absorption changes of $1 + Cu^{2+}$ with tap water

The UV absorption changes of **1** $(1.0 \times 10^{-5} \text{ mol/L}) + \text{Cu}^+ (4.0 \times 10^{-5} \text{ mol/L}) + \text{Sodium Ascorbate}$ $(3.0 \times 10^{-6} \text{ mol/L})$ were recorded before and after the addition of different amount of tap water.

UV absorption changes of $1 + Cu^+$ with ClO⁻ and other anions

Then UV absorption changes of 1 $(1.0 \times 10^{-5} \text{ mol/L}) + \text{Cu}^+ (4.0 \times 10^{-5} \text{ mol/L}) + \text{Sodium}$

Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ were recorded before and after the addition of NaClO and the other anions $(CO_3^{2-}, Ac^-, P_2O_7^{4-})$.

UV absorption changes of $1 + P_2O_7^{4-}$ with Cu^{2+}

The UV absorption changes of **1** $(1.0 \times 10^{-5} \text{ mol/L}) + P_2O_7^{4-} (7.0 \times 10^{-5} \text{ mol/L})$ were recorded before and after the addition of different amount of Cu²⁺.

UV absorption changes of $1 + P_2O_7^{4-} + Cu^{2+} + Cu^+$ with ClO⁻

The UV absorption changes of **1** $(1.0 \times 10^{-5} \text{ mol/L}) + P_2O_7^{4-} (7.0 \times 10^{-5} \text{ mol/L}) + Cu^{2+}(5.0 \times 10^{-5}, 4.0 \times 10^{-5}, 3.0 \times 10^{-5}, 2.0 \times 10^{-5} \text{mol/L}) + Cu^{+} (4.0 \times 10^{-5} \text{ mol/L}) + \text{Sodium Ascorbate } (3.0 \times 10^{-6} \text{ mol/L})$ were recorded before and after the addition of different amount of ClO⁻.

Fig. S1 Absorption spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), CuI ($3.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($1.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN.

Fig. S2 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (6.0×10^{-5} mol/L) and Sodium Ascorbate (1.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN.

Fig. S3 Absorption spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), CuI ($6.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN.

Fig. S4 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (4.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN.

Fig. S5 Absorption spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), CuI ($4.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of NaClO after 30min.

Fig. S6 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (4.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of NaClO after 27min.

Fig. S7 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (4.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of NaClO after 24min.

Fig. S8 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (4.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of NaClO after 21min.

Fig. S9 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (4.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of NaClO after 18min.

Fig. S10 Absorption spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of NaClO after 15min.

Fig. S11 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (4.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of NaClO after 12min.

Fig. S12 Absorption spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of NaClO after 9min.

Fig. S13 Absorption spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of NaClO $(3.0 \times 10^{-6} \text{ mol/L})$ at different time.

Fig. S14 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (4.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of NaClO (6.0×10^{-6} mol/L) at different time.

Fig. S15 Absorption spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of NaClO $(9.0 \times 10^{-6} \text{ mol/L})$ at different time.

Fig. S16 Absorption spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of NaClO $(1.3 \times 10^{-5} \text{ mol/L})$ at different time.

Fig. S17 Absorption spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of NaClO $(2.0 \times 10^{-5} \text{ mol/L})$ at different time.

Fig. S18 Absorption spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of NaClO $(3.0 \times 10^{-5} \text{ mol/L})$ at different time.

Fig. S19 Absorption spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of NaClO $(4.0 \times 10^{-5} \text{ mol/L})$ at different time.

Fig. S20 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (4.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of NaClO (5.0×10^{-5} mol/L) at different time.

Fig. S21 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (4.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of NaClO (7.0×10^{-5} mol/L) at different time.

Fig. S22 Absorption spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of ClO₃⁻ $(1.3 \times 10^{-4} \text{ mol/L})$. The concentration of ClO⁻ was $7.0 \times 10^{-5} \text{ mol/L}$.

Fig. S23 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (4.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of ClO₄⁻ (1.3×10^{-4} mol/L). The concentration of ClO⁻ was 7.0×10^{-5} mol/L.

Fig. S24 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (4.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of SO₄²⁻ (1.3×10^{-4} mol/L). The concentration of ClO⁻ was 7.0×10⁻⁵ mol/L.

Fig. S25 Absorption spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of CO₃²⁻ $(1.3 \times 10^{-4} \text{ mol/L})$. The concentration of ClO⁻ was $7.0 \times 10^{-5} \text{ mol/L}$.

Fig. S26 Absorption spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of NO₂⁻ $(1.3 \times 10^{-4} \text{ mol/L})$. The concentration of ClO⁻ was $7.0 \times 10^{-5} \text{ mol/L}$.

Fig. S27 Absorption spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of Ac⁻ $(1.3 \times 10^{-4} \text{ mol/L})$. The concentration of ClO⁻ was $7.0 \times 10^{-5} \text{ mol/L}$.

Fig. S28 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (4.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of P₂O₇⁴⁻ (1.3×10^{-4} mol/L). The concentration of ClO⁻ was 7.0×10^{-5} mol/L.

Fig. S29 Absorption spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different anions $(1.3 \times 10^{-4} \text{ mol/L})$ after 30min. The concentration of ClO⁻ was $7.0 \times 10^{-5} \text{ mol/L}$.

Fig. S30 Absorption spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different anions $(1.3 \times 10^{-4} \text{ mol/L})$ after 27min. The concentration of ClO⁻ was $7.0 \times 10^{-5} \text{ mol/L}$.

Fig. S31 Absorption spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different anions $(1.3 \times 10^{-4} \text{ mol/L})$ after 24min. The concentration of ClO⁻ was $7.0 \times 10^{-5} \text{ mol/L}$.

Fig. S32 Absorption spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different anions $(1.3 \times 10^{-4} \text{ mol/L})$ after 21min. The concentration of ClO⁻ was $7.0 \times 10^{-5} \text{ mol/L}$.

Fig. S33 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (4.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different anions (1.3×10^{-4} mol/L) after 18min. The concentration of ClO⁻ was 7.0×10^{-5} mol/L.

Fig. S34 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (4.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different anions (1.3×10^{-4} mol/L) after 15min. The concentration of ClO⁻ was 7.0×10^{-5} mol/L.

Fig. S35 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (4.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of P₂O₇⁴⁻ (7.0×10^{-5} mol/L) after 30min. The concentration of ClO⁻ was 7.0×10^{-5} mol/L.

Fig. S36 Absorption spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of CO₃²⁻ $(7.0 \times 10^{-5} \text{ mol/L})$ after 30min. The concentration of ClO⁻ was $7.0 \times 10^{-5} \text{ mol/L}$.

Fig. S37 Absorption spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of Ac⁻ $(7.0 \times 10^{-5} \text{ mol/L})$ after 30min. The concentration of ClO⁻ was $7.0 \times 10^{-5} \text{ mol/L}$.

Fig. S38 Absorption spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), $P_2O_7^{4-}$ ($7.0 \times 10^{-5} \text{ mol/L}$) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of Cu²⁺.

Fig. S39 Absorption spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), $P_2O_7^{4-}$ ($7.0 \times 10^{-5} \text{ mol/L}$), Cu^{2+} ($5.0 \times 10^{-5} \text{ mol/L}$), CuI ($4.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of ClO⁻ ($7.0 \times 10^{-5} \text{ mol/L}$) after 30min.

Fig. S40 Absorption spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), $P_2O_7^{4-}$ ($7.0 \times 10^{-5} \text{ mol/L}$), Cu^{2+} ($4.0 \times 10^{-5} \text{ mol/L}$), CuI ($4.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of ClO⁻ ($7.0 \times 10^{-5} \text{ mol/L}$) after 30min.

Fig. S41 Absorption spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), $P_2O_7^{4-}$ ($7.0 \times 10^{-5} \text{ mol/L}$), Cu^{2+} ($3.0 \times 10^{-5} \text{ mol/L}$), CuI ($4.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of ClO⁻ ($7.0 \times 10^{-5} \text{ mol/L}$) after 30min.

Fig. S42 Absorption spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), $P_2O_7^{4-}$ ($7.0 \times 10^{-5} \text{ mol/L}$), Cu^{2+} ($2.0 \times 10^{-5} \text{ mol/L}$), CuI ($4.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of ClO⁻ ($7.0 \times 10^{-5} \text{ mol/L}$) after 30min.

Fig. S43 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (4.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of H₂O₂ after 30min.

Fig. S44 Absorption spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of H₂O₂ after 27min.

Fig. S45 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (4.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of H₂O₂ after 24min.

Fig. S46 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (4.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of H₂O₂ after 21 min.

Fig. S47 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (4.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of H₂O₂ after 18 min.

Fig. S48 Absorption spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of H₂O₂ after 15 min.

Fig. S49 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (6.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of H₂O₂ after 21 min.

Fig. S50 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (6.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of H₂O₂ after 18 min.

Fig. S51 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (6.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of H₂O₂ after 15 min.

Fig. S52 Absorption spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(6.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of H₂O₂ after 12 min.

Fig. S53 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (4.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of 30 µL water. The concentration of ClO⁻ was 7.0×10^{-5} mol/L.

Fig. S54 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (4.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of 200 µL water. The concentration of ClO⁻ was 7.0×10^{-5} mol/L.

Fig. S55 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (4.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of 30 µL tap-water.

Fig. S56 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (4.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of 100 µL tap-water.

Fig. S57 Absorption spectra of **1** (1.0×10^{-5} mol/L), CuI (4.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of 200 µL tap-water.

Fig. S58 Absorption spectra of **1** $(1.0 \times 10^{-5} \text{ M})$, CuI $(4.0 \times 10^{-5} \text{ M})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ M})$ in Tris-HCl (10 mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amount tap-water. Inset: Photograph of **1**+Cu⁺, **1**+Cu⁺+tap water, **1**+Cu⁺+H₂O.

Fig. S59 Fluorescence Emission spectra of $1(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of NaClO after 30min. Excitation wavelength (nm):520.

Fig. S60 Fluorescence Emission spectra of $1(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of NaClO after 27min. Excitation wavelength (nm):520.

Fig. S61 Fluorescence Emission spectra of $1(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of NaClO after 24min. Excitation wavelength (nm):520.

Fig. S62 Fluorescence Emission spectra of $1(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of NaClO after 21min. Excitation wavelength (nm):520.

Fig. S63 Fluorescence Emission spectra of $1(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of NaClO after 18min. Excitation wavelength (nm):520.

Fig. S64 Fluorescence Emission spectra of $1(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of NaClO after 15min. Excitation wavelength (nm):520.

Fig. S65 Fluorescence Emission spectra of $1(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of NaClO after 12min. Excitation wavelength (nm):520.

Fig. S66 Fluorescence Emission spectra of $1(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of NaClO after 9min. Excitation wavelength (nm):520.

Fig. S67 Fluorescence Emission spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of NaClO after 6min. Excitation wavelength (nm):520.

Fig. S68 Fluorescence Emission spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of NaClO after 3min. Excitation wavelength (nm):520.

Fig. S69 Fluorescence Emission spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of NaClO $(3.0 \times 10^{-6} \text{ mol/L})$ at different time. Excitation wavelength (nm):520.

Fig. S70 Fluorescence Emission spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of NaClO $(6.0 \times 10^{-6} \text{ mol/L})$ at different time. Excitation wavelength (nm):520.

Fig. S71 Fluorescence Emission spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of NaClO $(9.0 \times 10^{-6} \text{ mol/L})$ at different time. Excitation wavelength (nm):520.

Fig. S72 Fluorescence Emission spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of NaClO $(1.3 \times 10^{-5} \text{ mol/L})$ at different time. Excitation wavelength (nm):520.

Fig. S73 Fluorescence Emission spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of NaClO $(2.0 \times 10^{-5} \text{ mol/L})$ at different time. Excitation wavelength (nm):520.

Fig. S74 Fluorescence Emission spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of NaClO $(3.0 \times 10^{-5} \text{ mol/L})$ at different time. Excitation wavelength (nm):520.

Fig. S75 Fluorescence Emission spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), CuI ($4.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of NaClO ($4.0 \times 10^{-5} \text{ mol/L}$) at different time. Excitation wavelength (nm):520.

Fig. S76 Fluorescence Emission spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of NaClO $(5.0 \times 10^{-5} \text{ mol/L})$ at different time. Excitation wavelength (nm):520.

Fig. S77 Fluorescence Emission spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), CuI ($4.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of NaClO ($6.0 \times 10^{-5} \text{ mol/L}$) at different time. Excitation wavelength (nm):520.

Fig. S78 Fluorescence Emission spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of NaClO $(7.0 \times 10^{-5} \text{ mol/L})$ at different time. Excitation wavelength (nm):520.

Fig. S79 Fluorescence Emission spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), CuI ($4.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of NaClO ($8.0 \times 10^{-5} \text{ mol/L}$) at different time. Excitation wavelength (nm):520.

Fig. S80 Fluorescence Emission spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(3.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(1.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN. Excitation wavelength (nm):520.

Fig. S81 Fluorescence Emission spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(6.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(1.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN. Excitation wavelength (nm):520.

Fig. S82 Fluorescence Emission spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), CuI ($6.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN. Excitation wavelength (nm):520.

Fig. S83 Fluorescence Emission spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), CuI ($4.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN. Excitation wavelength (nm):520.

Fig. S84 Fluorescence Emission spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), CuI ($4.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of H₂O₂ after 30min. Excitation wavelength (nm):520.

Fig. S85 Fluorescence Emission spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), CuI ($4.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of H₂O₂ after 27min. Excitation wavelength (nm):520.

Fig. S86 Fluorescence Emission spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), CuI ($4.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of H₂O₂ after 24min. Excitation wavelength (nm):520.

Fig. S87 Fluorescence Emission spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), CuI ($4.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of H₂O₂ after 21min. Excitation wavelength (nm):520.

Fig. S88 Fluorescence Emission spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), CuI ($4.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of H₂O₂ after 18min. Excitation wavelength (nm):520.

Fig. S89 Fluorescence Emission spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), CuI ($4.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of H₂O₂ after 15min. Excitation wavelength (nm):520.

Fig. S90 Fluorescence Emission spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), CuI ($4.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of H₂O₂ after 12min. Excitation wavelength (nm):520.

Fig. S91 Fluorescence Emission spectra of 1 ($1.0 \times 10^{-5} \text{ mol/L}$), CuI ($4.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of different amounts of H₂O₂ after 9min. Excitation wavelength (nm):520.

Fig. S92 Fluorescence Emission spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of ClO₃⁻ $(1.3 \times 10^{-4} \text{ mol/L})$. The concentration of ClO⁻ was $7.0 \times 10^{-5} \text{ mol/L}$. Excitation wavelength (nm):520.

Fig. S93 Fluorescence Emission spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of ClO₄⁻ $(1.3 \times 10^{-4} \text{ mol/L})$. The concentration of ClO⁻ was $7.0 \times 10^{-5} \text{ mol/L}$. Excitation wavelength (nm):520.

Fig. S94 Fluorescence Emission spectra of **1** $(1.0 \times 10^{-5} \text{ mol/L})$, CuI $(4.0 \times 10^{-5} \text{ mol/L})$ and Sodium Ascorbate $(3.0 \times 10^{-6} \text{ mol/L})$ in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of CO₃²⁻ $(1.3 \times 10^{-4} \text{ mol/L})$. The concentration of ClO⁻ was $7.0 \times 10^{-5} \text{ mol/L}$. Excitation wavelength (nm):520.

Fig. S95 Fluorescence Emission spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), CuI ($4.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of NO₂⁻ ($1.3 \times 10^{-4} \text{ mol/L}$). The concentration of ClO⁻ was $7.0 \times 10^{-5} \text{ mol/L}$. Excitation wavelength (nm):520.

Fig. S96 Fluorescence Emission spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), CuI ($4.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of P₂O₇⁴⁻ ($1.3 \times 10^{-4} \text{ mol/L}$). The concentration of ClO⁻ was 7.0×10⁻⁵ mol/L. Excitation wavelength (nm):520.

Fig. S97 Fluorescence Emission spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), CuI ($4.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of SO₄²⁻ ($1.3 \times 10^{-4} \text{ mol/L}$). The concentration of ClO⁻ was 7.0×10⁻⁵ mol/L. Excitation wavelength (nm):520.

Fig. S98 Fluorescence Emission spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), CuI ($4.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of Ac⁻ ($1.3 \times 10^{-4} \text{ mol/L}$). The concentration of ClO⁻ was 7.0×10⁻⁵ mol/L. Excitation wavelength (nm):520.

Fig. S99 Fluorescence Emission spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), CuI ($4.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of the mix anions ($1.3 \times 10^{-4} \text{ mol/L}$). The concentration of ClO⁻ was $7.0 \times 10^{-5} \text{ mol/L}$. Excitation wavelength (nm):520.

Fig. S100 Fluorescence Emission spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), CuI ($4.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of 30µL water. The concentration of ClO⁻ was $7.0 \times 10^{-5} \text{ mol/L}$. Excitation wavelength (nm):520.

Fig. S101 Fluorescence Emission spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), CuI ($4.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of 200µL water. The concentration of ClO⁻ was 7.0×10⁻⁵ mol/L. Excitation wavelength (nm):520.

Fig. S102 Fluorescence Emission spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), CuI ($4.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of 30μ L tap-water. Excitation wavelength (nm):520.

Fig. S103 Fluorescence Emission spectra of **1** ($1.0 \times 10^{-5} \text{ mol/L}$), CuI ($4.0 \times 10^{-5} \text{ mol/L}$) and Sodium Ascorbate ($3.0 \times 10^{-6} \text{ mol/L}$) in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of 100μ L tap-water. Excitation wavelength (nm):520.

Fig. S104 Fluorescence Emission spectra of **1** (1.0×10^{-5} mol/L), CuI (4.0×10^{-5} mol/L) and Sodium Ascorbate (3.0×10^{-6} mol/L) in Tris-HCl (10mM, pH = 7.0) buffer containing 50% (v/v) water/CH₃CN in the presence of 200µL tap-water. Excitation wavelength (nm):520.